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Abstract This paper applies the freeway traffic congestion dynamics proposed in Laval and Leclercq
(Continuum Approximation for Congestion Dynamics Along Freeway Corridors. Transportation Science,
87–97) but with a modified distribution scheme of freeway merging flows to investigation of traffic hy-
percongestion on a freeway between an on-ramp and its immediate upstream off-ramp. The reason to
make this modification is that the original merging scheme of this dynamics is found to possibly give
undesired full priority to the traffic from the on-ramp and also occasionally make the resulting flow going
through the merge greater than the available capacity. Traffic hypercongestion in this paper refers to
a state where speed and flow change in the same direction as density varies. A homogeneous freeway
segment chosen for this investigation includes an on-ramp and an off-ramp, which may correspond to a
freeway passing by a city or town, with an off-ramp lying upstream towards the city and an on-ramp
downstream. The entry flow from the upstream approach of the freeway was fixed and constant within
the time horizon while both deterministic and random on-ramp inflow rates were used in this investiga-
tion. Then the formation and dissipation of traffic hypercongestion is investigated as on-ramp demand
and off-ramp departure profiles vary. The first finding of this investigation is that the density in the
hypercongestion area behind the merge never reached the jam density. Second, the hypercongested area
continued to grow as long as the sum of the demand from the upstream of the freeway and that from
the on-ramp was greater than the available capacity at the merge. Third, as long as the rate of flow
leaving from the freeway via the off-ramp was not smaller than the entry flow rates from the on-ramp, no
hypercongestion had been observed. In addition, in analyzing the numerical results, a series of discussions
were carried out to build the linkage between the on- and off-ramp flow profiles and the generated and
attracted demand of the city plus its adjacent area the two ramps served for; these discussions suggest
that the balanced generated and attracted demand of the city plus its adjacent area can reduce or even
remove traffic hypercongestion behind the merge on the chosen freeway segment.
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1 Introduction

Traffic hypercongestion2, where both speed and flow decrease as the corresponding density rises, exists
not only in urban areas but also starts to take place on motorways or freeways more and more often, in
particular behind merge or diverge points. Since the density in a hypercongested area is higher than the
corresponding critical density, traffic has to slow down, which makes the flow rate lower than the capacity
(McDonald et al. 1999; Verhoef, 2001; Small and Chu, 2003). This lengthens travelers’ journey times,
deteriorates traffic pollution, as well as makes the road resource under-utilized. As an undesired traffic
phenomenon, traffic hypercongestion has become a problem we have to face in the developing countries
as well as in the developed countries. Therefore, solving the problem has become a global challenge. This
paper is concerned with it but mainly focuses on traffic hypercongestion behind freeway merges. The
method used for this research is not empirical analysis based on field observations or data but involved
in modeling freeway traffic flow, including merging and diverging.

Laval and Leclercq (2010) offered a model to approximate the vehicular traffic flow congestion dy-
namics on freeway corridors, which includes a conservation equation with a spatially continuous source
term that represents net inflow from ramps. Clearly, the term is a function of time t and location x. This
model mathematically allows traffic to enter or leave a freeway simultaneously at the same location x at
time t. The core concern of this reference is the treatment of boundary conditions at merges on freeways.
Different from the assumption that entry flows from on-ramps have full priority (used in e.g. Bayen et al.
2004; Coclite et al. 2005; Bastin et al. 2007), Laval and Leclercq (2010) followed their previous work in
Laval and Leclercq (2008) and assumed that the actual inflow to a freeway from an on-ramp is a function
of both the demand from the on-ramp and the flow on the freeway. The feasibility of this assumption was
rooted in the finding from the observations of driver turn-taking behavior in congested freeway merges
(Cassidy and Ahn 2005) that the percentage of the available freeway capacity allocated to competing
flows from on-ramps is around a merge ratio. Laval and Leclercq (2010) proposed a set of boundary
conditions for the treatment of flows at merges but it is found out that the merging scheme given in this
reference can not always ensure that the sum of the on-ramp flow entering actually the freeway plus the
freeway flow going actually downstream through a merge not greater than the freeway capacity at the
merge.

On the basis of a thorough investigation of existing distribution schemes of determination of flows
going through freeway merges in a supply-demand framework, Jin and Zhang (2003) proposed a simple
distribution scheme satisfying the “fairness” condition, which requires that the flow that is eventually
able to go through a merge be proportional to its corresponding demand upstream. This is consistent
with the finding in Cassidy and Ahn (2005) and the assumptions in Laval and Leclercq (2008, 2010).
Jin and Zhang (2003) has made a detailed comparison between this scheme and the merging models in
Daganzo (1995) and Lebacuqe (1996). They took a further step to extend this scheme for merges with
more than two feeding links. A key property of this distribution scheme is that the sum of the actual
feeding flows that go actually through a merge can be guaranteed not to be greater than the available
capacity at the merge. Therefore, in order to investigate traffic hypercongestion on freeways, this paper
is to embed the distribution scheme for merging flows into the model proposed in Laval and Leclercq
(2010). This is one of the intellectual merits of this paper.

Laval and Lecqlercq (2010) models traffic flow on “a long n-lane freeway corridor of length L with
entrances and exits evenly spaced δ distance units aparts.” For this investigation, we chose a homogeneous
freeway segment which contains an on-ramp and an off-ramp and the off-ramp lies upstream, which is a
special case of the one investigated in Laval and Leclercq (2010), in which all on/off-ramps but the two
have zero inflow/outflow rates. It is assumed that neither traffic incidents took place nor traffic control
facilities existed on this segment of the freeway or on these ramps. The capacity of each facility is also
assumed to remain the same over the time horizon under investigation. This scenario may correspond to

2If we treat the flow-density function as a triangular fundamental diagram, hypercongestion can be considered to be
the same as congestion and both correspond to those states on the right branch of the diagram. If the left branch of the
flow-density curve is nonlinear, a point on the left branch also corresponds to a congested but light congested state, where the
flow rate increases as the speed falls. In this situation, a state on the right branch is often considered to be hypercongested
(see Figure 3.1 on Page 71 in Small and Verhoef, 2007).
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a typical part of a real-life transportation system where a freeway passes by a city, with an off-ramp lying
upstream towards the city and an on-ramp situated in the downstream from the city. The off-ramp and
the on-ramp both serve the city and traffic hypercongestion may often happen on the freeway between the
two ramps; sometimes the hypercongestion may even affect the flow leaving the freeway via the off-ramp
when it grows upwards beyond the diverge or approach of the off-ramp. We can imagine that, if the
city is a place with an abundant supply of employment positions, the morning (evening) demand flow
coming from the freeway off-ramp into the city will be highly likely to be higher (lower) than the morning
(evening) traffic flow departing the city via the freeway on-ramp. On the contrary, if the city is mainly
a residential place, the morning (evening) demand flow coming from the freeway off-ramp will be highly
likely to be lower (higher) than the morning (evening) traffic flow departing the city via the freeway
on-ramp. In this paper, we will build an abstract linkage of the on-ramp and off-ramp flow profiles to
the generated and attracted demand of the city the two ramps serve for, so that we may analyze how
the generated and attracted demand of the city may affect traffic hypercongestion on the chosen freeway
segment. This is a second intellectual merit of this paper. The other contribution of this paper includes
those new findings obtained from a series of numerical experiments.

The rest of this paper is organized as follows. Next section presents the methodology to be used
in this investigation, which is based on the freeway congestion dynamics in Laval and Leclercq (2010)
but with a modified distribution scheme of freeway merging flows that has certain desirable properties.
Section 3 analyzes traffic hypercongestion on the chosen freeway segment using this methodology while
the entry flow from the upstream approach of the freeway was assumed to be constant within the time
horizon and both deterministic and random on-ramp inflow rates were used. It consists of two sets of
numerical experiments. The first set was carried out under the assumption that the upstream off-ramp
was closed or traffic leaving the freeway via the off-ramp was too little to be worth counting. The first
purpose of presenting this set is to show that those traffic phenomena identified in Laval and Leclercq
(2010) can be reproduced using the modified method given in this paper. The other purpose is to show
that a hypercongested area will start to formulate once the sum of the rate of flow from the on-ramp plus
that from the upstream freeway is greater than the available capacity at the freeway merge and that it
will start to shrink and eventually to disappear as the freeway flow or on-ramp flow falls. This shows
that this modified method can be used to investigate freeway traffic hypercongestion. The second set of
numerical experiments is to show the impacts on traffic hypercongestion of the different profiles of flows,
both on the on-ramp and on the off-ramp. Our attention was mainly paid to two things: One is that the
tail of the hypercongested area may go beyond the diverge so it affects the flow leaving the freeway and
the other is the effects on the hypercongested area of the (im)balance of on- and off-ramp flow profiles,
which is linked to the generated and attracted demand of the city the two ramps serve for. Section 4
closes the paper with some concluding remarks.

2 Methodology

2.1 Model

Let us choose a special case of the scenario prescribed in Laval and Leclercq (2010) — a homogeneous
n-lane freeway segment of length L that includes an m-lane on-ramp and an off-ramp and the on-ramp
lies upstream; and both ramps serve the same city by which the chosen freeway segment passes. The
length of the on-ramp is set to d. To facilitate the analysis in this paper, it is assumed that no congestion
takes place on the off-ramp within the time horizon of interest, which implies that the traffic on the
freeway can leave via the off-ramp without any delay. Therefore, there is no point in considering the
traffic on the off-ramp and no need for the information on the off-ramp length and the number of lanes on
the off-ramp. It is noteworthy that, unless stated otherwise, those notations for the on-ramp (off-ramp)
will have the superscript on (off) or subscript on (off). It is also assumed that neither traffic incidents took
place nor traffic control facilities occurred within the time horizon of interest along the chosen part of
the freeway. Another assumption is that no random events took place on the chosen part of the freeway
within the chosen time horizon (i.e. supply is deterministic).
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A homogeneous equilibrium relationship exists between flow (q) and density (k) along the freeway
segment and is also known as the homogeneous fundamental diagram (FD). It is written as follows:

q(x, t) = q(k(x, t)) (1)

which also applies to traffic flow on the on-ramp. According to the continuum traffic flow theory, the
traffic conservation law along the freeway and on the on-ramp can be expressed as:

∂k

∂t
+

∂q

∂x
= g(t, x) (2)

where g(t, x) denotes the net inflow rate. Generally, g(t, x) = 0 unless x = xon and x = xoff where xon
and xoff are respectively the positions where the on-ramp joins and the off-ramp leaves the freeway. Since
here x is a continuous location variable, xon (xoff) actually falls in an interval of locations on the freeway
which corresponds to the width of the physical exit (approach) of an on-ramp (off-ramp), in particular
when more than one lane exists on the on-ramp (off-ramp).

To determine g(t, x) at the merge or diverge, we introduce two additional physical quantities that
respectively represent the rate of inflow from an on-ramp and the rate of outflow from an off-ramp and
denoted as φ+(t, x) and φ−(t, x) (in vehicles per unit time per unit distance). So g(t, x) can be expressed
as:

g(t, x) = φ+(t, x)− φ−(t, x) (3)

Clearly, in real-life freeway traffic, φ+(t, x) = 0 for all x 6= xon and φ−(t, x) = 0 for all x 6= xoff . From
now onwards, if all notation in the same equation have the same set of time and location, i.e. (t, x), we
will omit the time and location dimensions unless this might cause confusion.

Figure 1 illustrates the topological structure of the merge considered in the paper, where µ represents

Figure 1: An abstract topological structure of a freeway segment with an on-ramp

the available capacity exactly at the merge and λ1 and λ2 denote the rates of the two flow streams
towards the merge, respectively from the immediate upstream of the merge and from the on-ramp. In
the demand-supply framework, as discussed in Jin and Zhang (2003), µ represents the supply (receiving
capacity) while λ1 and λ2 are the demand (sending flow). Besides, let q1 and q2 denote the outflows
coming from the two streams behind the merge point and actually flowing through it, and q the total
flow that actually passes through the merge. Then, we have q = q1 + q2. Clearly, q = min{λ1 + λ2, µ}.
Then, Eq. (4) in Laval and Leclercq (2010) can be rewritten as:

q2 = min{1,
µ

λ1
}λ2, and (4a)

q1 = q − q2. (4b)

Now let us look at two propositions on this scheme.

Proposition 1. When the demand from the upstream of a freeway merge is not greater than the available
capacity at the merge, the merging scheme in Eq. (4) gives the full priority to the demand from the
on-ramp.

Proof. When the condition in the above property is true, i.e. λ1 ≤ µ, then Eq. (4a) gives q2 = λ2, which
implies that all demand from the on-ramp will be allowed to enter the freeway. In other words, given
this condition, the full priority is given to the flow from the on-ramp.
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Remark 1. We have three cases to look at. First, λ1 + λ2 ≤ µ, which gives q1 = λ1 and q2 = λ2. The
above distribution scheme (4) is not a problem. Second, λ1 + λ2 > µ with λ1 > µ, which yields q2 =

λ2

λ1
µ

and q1 = (1 − λ2

λ1
)µ. Clearly, this solution is infeasible when λ2 > λ1 is true; but the thing is that we

can not exclude the occurrence of λ2 > λ1. Third, λ1 + λ2 > µ with λ1 ≤ µ, which gives q2 = λ2 and
q1 = µ− λ2. Again, this will be an infeasible solution when λ2 > µ turns to be true. The other problem
with the third case is that the merging scheme in Eq. (4) gives the full priority to the on-ramp flow.
Therefore, the property of the scheme in Eq. (4) given in Proposition 1 is undesirable.

Proposition 2. Based on the scheme in Eq. (4), the resulting flow actually entering from an on-ramp
may be greater than the downstream available capacity.

Proof. Look at two situations. First, when µ ≥ λ1 is true, Eq. (4a) gives q2 = λ2. If λ2 > µ then q2 > µ.
This means that this property is true.

Second, µ < λ1 plus Eq. (4a) results in q2 = λ2

λ1
µ. If λ2 > λ1 then q2 > µ, which also means that

the resulting flow actually entering from an on-ramp may be greater than the available capacity at the
merge.

Remark 2. All conditions mentioned in the two propositions or their proofs can occur in real-life traffic.
The condition in Property 1 will be true when the upstream density is not greater than that at the
merge, which often happens due to the entry of on-ramp traffic to the freeway. Second, the conditions
in the first part of the proof of Proposition 2, i.e. µ ≥ λ1 and λ2 > µ, say that the available capacity at
the merge is not less than the demand from the upstream but less than the demand from the on-ramp.
This can happen although it may be that often. Third, the conditions in the second part of the proof of
Proposition 2, i.e. µ < λ1 and λ2 > λ1, mean that the demand from the upstream of the merge is greater
than the available capacity at the merge but less than the demand from the on-ramp. This can also take
place on freeways.

Remark 3. Since all conditions mentioned in the two propositions or their proofs can occur in real-life
traffic and the above two properties of the merging scheme in Eq. (4) given in the two propositions are
undesirable, it is improper to use the scheme to model the merging operations.

To avoid the use of the scheme given in Eq. (4) due to its above two undesirable properties, we took
a merging scheme proposed in Jin and Zhang (2003) that can avoid the full priority allocated to on-ramp
flows and can ensure that the resulting total traffic flow from the upstream of the freeway or from the
on-ramp does not exceed the capacity at the merge. In Jin and Zhang (2003), the rate of actual inflow
from the on-ramp at xon is expressed as:

φ+(t, xon) =
λxon(kon(t, d))

λ(k(t, x−on)) + λxon(kon(t, d))
min{λ(k(t, x−on)) + λxon(kon(t, d)), µ(k(t, x+on))}/δ (5)

where x+on and x−on respectively denote the points immediately after and before the on-ramp, µ and λ
are respectively the supply (receiving) and demand (sending) functions that are introduced in Lebacque
(1996) for the kinematic wave theory of traffic flow, λxon is the function of demand flow from the on-ramp
and δ is the length of an insertion section where vehicles can carry out lane-changing from the on-ramp
to the freeway. Jin and Zhang (2003) has shown that this scheme is equivalent to the merging models in
Daganzo (1996) and Lebacque (1996).

Laval and Leclercq (2010) assumed that φ−(t, xoff) is a time-varying function of freeway flow arriving
at the off-ramp. In the existing literature on modeling traffic flows on freeways, φ−(t, xoff) is assumed to be
exogenous unless connected roads are simultaneously considered. We will make our further assumptions
on the function later for our numerical analysis.

In summary, g(t, x) is defined in [0, L]× [0,+∞) and it is nonzero only when an on-ramp or off-ramp
exists in the special case of the scenario prescribed in Laval and Leclercq (2010). More specifically, we
have

g(t, x) =







φ+(t, xon), if x = xon,
−φ−(t, xoff), if x = xoff , t ∈ [0,+∞)
0, otherwise

(6)
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We assume, without loss of generality, that the freeway is empty at t = 0 and that there is a flow rate
equal to λ0(t) that arrives at the upstream end of the freeway segment. Thus, the initial and boundary
conditions for the freeway can be given:

k(0, x) = 0, x ∈ [0, L]
λ(t, 0) = λ0(t), t ∈ [0,+∞)

(7)

The boundary condition on the demand at the upstream end of the freeway segment is given in the form
of flow λ0(t) other than density k(t, 0), which avoids creating an ill-posed scenario when a queue spills
back beyond the end of the upstream end of the freeway segment under investigation. In the literature it
is often to see the demand given in the form of flow rates, such as in Lebacque and Khoshyaran (2005),
Ge and Zhou (2012) and Carey and Ge (2012). In addition, the Riemann boundary condition is imposed
on the downstream boundary of the freeway segment, i.e. the spatial derivative of traffic density at the
downstream boundary is assumed to be zero, which means that the vehicles arriving at the downstream
end of the freeway segment can leave with no delay. This condition also applies to the approach to the
off-ramp.

The following initial and boundary conditions are for the continuous-time and continuous-space flow
on the on-ramp:

kon(0, y) = α(0, xon)δ/uon, ∀y ∈ [0, d]
λon(t, 0) = λon(t), ∀t ∈ [0,+∞)

(8)

where uon is the free flow speed on the on-ramp and α(t, xon) is the demand rate (in vehicles per unit
time per unit distance) representing the flow waiting on the on-ramp to enter the freeway but not the
resulting flow that actually enters the freeway.

To sum up, the only difference of the model we will use later from one in Laval and Leclercq (2010)
lies in the treatment of flows at the merge, specifically, it no longer uses the merging scheme in Eq. (4)
but one in Eq. (5). This modification makes the resulting entry flow from an on-ramp plus the flow from
the freeway upstream that actually goes through the corresponding merge not greater than the available
capacity at the merge and the on-ramp flow not receive the full priority when the available capacity at
the merge can not meet the total demand from the upstream on the freeway and from the on-ramp.

2.2 Solution method

2.2.1 The classical method for solving the LWR model

The intrinsic connotation of the kinematic wave model of traffic flow is that it is a hyperbolic system
of conservation law. A classical method for solving (2) uses the method of characteristics, which is the
foundation of solving hyperbolic partial differential equations (HPDE). A shock arises in the hyperbolic
system when its characteristics intersect, hence multiple-valued solutions occur at the same point (t,x).
A requirement for the existence of a unique single-valued solution is that the solution should satisfy
the “entropy” condition (Rainer 1990); Newell (1993) independently gave another method to get the
single-valued solution in the sense of engineering without proving. On the other hand, under the so-
called “Rankine–Hugoniot” jump condition (Rankine, 1870; Hugoniot, 1887 1889), one can obtain the
equation of shockwave interfaces. However, given a general set of initial and boundary conditions, it is
very difficult, if not impossible, to express in analytical form the solution to a set of partial differential
equations capturing traffic dynamics on the freeway and on the ramps. Therefore, it is not our intention
to use the classical method to solve the model presented in the previous section. In fact, it is quite
natural to use an approximate solution solution for them.

2.2.2 A Godunov method

This subsection is to give a discretization scheme for solving the set of partial differential equations (2)
for traffic dynamics on the freeway and on the on-ramp. An efficient numerical method for solving this
type of models is one proposed in Godunov (1959). In the Godunov method, a link is partitioned into
small cells of length △x and the time horizon of interest is divided into homogeneous time intervals of
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duration △t. This scheme requires that the space step size and the time step size satisfy the Courant-
Friedrichs-Lewy or CFL condition (Courant et al. 1928), which ensures that no vehicle can cross both
the upstream and downstream boundaries of a cell within the same time interval; the CFL condition can
be mathematically written as follows:

△x ≥ vf△t. (9)

where vf is the link’s free flow speed.

1) Discretizing freeway segment

For a freeway segment, Eq. (2) can be approximated by the following finite difference equations

kt+1
i − kti
△t

+
qti − qti−1

△x
= gti (10)

where kti denotes the density in cell i at the beginning of time interval t, qti represents the average rate
of flow leaving cell i and entering cell i+ 1 during interval t and gti denotes the average rate of net flow
entering cell i during interval t and is given by

gti =







φ+t
i , if cell i is a merge cell

−φ−t
i , if cell i is a diverge cell

0, if cell i is an ordinary cell
(11)

in which φ−t
i and φ+t

i denote respectively the average rate of flow leaving cell i via the off-ramp and that
entering cell i from the on-ramp during time interval t.

In numerical computing, suppose that we have reached this iteration in which we have obtained the
values of kti , q

t
i−1 and gti (or φ−t

i and φ+t
i ) in Eq. (10). Then, once we have the value of qti , it is a

straightforward to use Eq. (10) to get the value of kt+1
i . The following proposition gives how to obtain

the value of qti :

Proposition 3. The average rate of flow leaving cell i and entering cell i+ 1 during interval t is given by

qti =















min{λ(kti), µ(k
t
i+1)− φ+t

i+1∆x} if i and i+ 1 are respectively an ordinary and a merge cell
min{λ(kti)− φ−t

i ∆x, µ(kti+1)} if i and i+ 1 are respectively a diverge and an ordinary cell
λ(kti) if i is the last cell on the chosen freeway segment
min{λ(kti), µ(k

t
i+1)} otherwise

(12)
where φ−t

i is given in advance and

φ+t
i+1 =

λxon(kontM )

λ(kti) + λxon(kontM )
min{λ(kti) + λxon(kontM ), µ(kti+1)}/∆x (M is the last cell of the on-ramp).

(13)

Remark 4. This proposition is a summary of those results given in many relevant papers, hence we no
longer give a proof of it here.

Remark 5. It should be noted that the above proposition does not cover the situation in which two
successive cells correspond to two ramps. We did not intend to discuss the situation because it rarely
occurs on real-life freeways.

Remark 6. For the convenience of exposition, it is implicitly assumed in Eqs (12)–(13) that the exit of
the on-ramp exactly corresponds to one cell only. Under this assumption, ∆x = δ is true.

2) Discretizing on-ramp

For the on-ramp part, Eq. (2) can be approximated with a finite difference equation below:

kont+1
j − kontj

△t
+

qontj − qontj−1

△y
= 0, ∀ cell j (14)
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where qontj and qontj−1 have the same meanings as qti and qti−1. Since Eq. (14) has no source term, it is
straightforward to give an equation to determine qontj , i.e.

qontj = min{λxon(kontj ), µxon(kontj+1)} (15)

A special case is that cell j is the last cell of the on-ramp, i.e. j = M . If the number of the corresponding
merge cell on the freeway is i+ 1 then qontj = φ+t

i+1 where φ+t
i+1 is determined by Eq. (13).

3 Applications

The methodology discussed in the previous section is for a general FD. Here, in order to compare our
results to those in Laval and Leclercq (2010), we also consider triangular fundamental diagrams (FDs)
whereas the FDs for flows on the freeway and on the on-ramp have different parameter values. For the
freeway, the free flow speed is ue = 100km/hour, wave speed we = 25km/hour, and jam density κe = nκ,
where κ = 180 veh/km is the jam density of a single lane that is the same for the freeway and for the
on-ramp. Following Daganzo (1994), the receiving and sending functions for the flow on the freeway are
given below

µ(k) = min{we(κe − k), Qe} (16a)

λ(k) = min{uek,Qe} (16b)

where Qe = ueweκe/(we + ue) is the capacity of the freeway under investigation.
For the on-ramp, the free flow speed is uon = 84km/hour, the wave speed won = 21km/hour, and the

jam density κon = mκ. Following Daganzo (1994), the receiving and sending functions for the flow on
the on-ramp can be written in the same form as Eq. (16), i.e.

µxon(kon) = min{won(κon − kon), Qon} (17a)

λxon(kon) = min{uonk
on, Qon} (17b)

where Qon = uonwonκon/(won + uon) is the capacity of the on-ramp.
It can be readily derived that the critical density on the freeway is κec = 0.2κe and that on the on-ramp

κonc = 0.2κon. It is also assumed that there are four lanes on the freeway while two lanes on all ramps,
i.e. n = 4 and m = 2; hence, κe = nκ = 720veh/km and that on the on-ramp κon = mκ = 360veh/km.
Figure 2 illustrates the two FDs used for our numerical experiments in this section.
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Figure 2: The triangular fundamental diagram FDs) for the chosen freeway and on-ramp

The time horizon used for this investigation is [0, T ] where T = 60min and the time step size used
is △t = 3.6 sec. Given the CFL condition, to simplify our treatment at the exit or entry of a ramp, we
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set the length of a cell to the length of a merging section, i.e. △x = △y = δ = 100m, respectively for
the cells on the freeway and on the on-ramp. Here are the other parameter values: L = 20km, d = 2km,
γ = 0.18κe = 0.9κec. In addition, xoff = 4km and xon = 5km, which implies that the on-ramp position is
5 km away from the upstream end of the freeway segment while the off-ramp is 1km upstream from the
on-ramp.

As mentioned previously, φ−(t, xoff) is usually an exogenous variable. In this research, it is assumed
that, if cell i is a diverge cell then φ−t

i is determined in the following manner

φ−t
i =

{

0, if λ(kti) < α(t)δ
θα(t)δ, otherwise

(18)

where α(t)δ represents the average flow entering the on-ramp during the interval t. This relationship
may not be true in reality but it is not the purpose of this paper to investigate an exact temporal
relationship between the profiles of flow entering from an on-ramp and flow leaving the freeway via
the closest upstream off-ramp if it does exist. We only used the assumed relationship in Eq. (18) to
illustrate how the balance or imbalance of on-ramp entry flow and off-ramp exit flow can affect traffic
hypercongestion on the chosen freeway segment, where their balance is represented by the parameter θ.

As mentioned previously, the primary purpose of this paper is to investigate traffic hypercongestion
on freeways between an on-ramp and its immediate upstream off-ramp and the method used for this
investigated is based on one in Laval and Leclercq (2010) but its merging scheme was replaced with one
proposed in Jin and Zhang (2003) to remove its identified shortcomings. It is assumed in this reference
that traffic can enter or leave the freeway anywhere anytime whereas we assumed that traffic can only
enter from the upstream end of the freeway segment and the on-ramp and exit from the off-ramp and the
downstream end of the freeway segment. It is interesting to see that, given our settings, those phenomena
presented in Laval and Leclercq (2010) can also be observed here. We first experimented with θ = 0,
which means that the off-ramp of the chosen freeway segment has been closed or may correspond to a
situation where traffic leaving the freeway via the off-ramp was too little to be worth counting. Then we
moved on to investigate traffic hypercongestion on the chosen freeway segment as θ varies from 0 to 0.35,
then to 0.65 and finally to 1.

In the later analysis, we also aimed to build an abstract linkage between the on-ramp and off-ramp
flow profiles and the generated and attracted demand of the city the two ramps served for. This linkage
enabled us to analyze how the balance between the generated and attracted demand of the city may
affect traffic hypercongestion on the chosen freeway segment.

3.1 Off-ramp was closed while on-ramp was open

This may correspond to a very special case in which the attracted demand of the city and its adjacent
area the off-ramp served was zero or too little to be worth counting. Another relevant scenario is that a
city or town is served only by an on-ramp and that no any other ramps exist in a few miles upstream and
downstream from the on-ramp. We can consider such a city and its adjacent area is purely a residential
place. Some satellite cities of a metropolitan city can be like this; a place like this may well be an area
composed of a number of villages close to each other. In the morning rush hour, many people from a
satellite city and its adjacent area travel to the metropolitan city to work whereas only an extremely low
demand travels to the satellite city and its adjacent area.

This subsection first investigates a case whose profile of inflow from the on-ramp was constant. Sub-
sequently, we compare the results from 3 different on-ramp inflow profiles: 1) constant flow rates (i.e.
the first case), 2) flow rates that increase first, remain at a peak level for a while and then decrease (an
arch-shaped profile), 3) flow rates that decrease first, stay flat for a while and then increase (a valley-
shaped profile). Last, we look at a case in which the flow rates fluctuate around a constant inflow profile
in a uniformly-distributed manner.

3.1.1 Constant on-ramp inflow rates

Numerical analysis
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This case means that
α(t, xon) = a ∀t ∈ [0, T ]. (19)

Unless stated otherwise, we assume a = 50, 000veh/hr/km. Figure 3(a) shows the density contour map
corresponding to this case, in which 6 regions can be clearly identified and they are separated by the
characteristic lines or shock waves. As shown in Figures 3(b)–(c), the density in each of these regions
was identical. Clearly, the density in regions A1 and A2 was zero. Except that the traffic in region D

suffered from traffic hypercongestion, the traffic in all other regions traveled at the free-flow speed; in
other words, among the 6 regions, region D was the only one whose density was above the critical density.
The traffic in regions B1 and B2 all came from the on-ramp. Point “1” refers to the location where the
first vehicle arrived at the merge and it came from the on-ramp.
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Figure 3: Numerical Solution for constant on-ramp inflow profile [(a) Density contour map for the freeway segment,
(b) Density profiles respectively at t = 1min and 10min on the freeway, and (c) Density profiles respectively at
x = 2.5km and 7.5km on the freeway.]

Point “2” marks the start of traffic hypercongestion, where, as can be seen on the density contour
map, four characteristic curves met. The point is exactly the merge point of the freeway and the on-ramp.
The hypercongestion occurred because the demand for flowing through the merge point was greater than
its available capacity. In fact, at this point, the flow from the upstream and from the on-ramp were
respectively ueγ = 100 × 0.18 × 4 × 180 = 12, 960 veh/hr and αδ = 5, 000 veh/hr, which yields a sum
equal to 17, 960 veh/hr higher than the capacity of ueκec = 14, 400 veh/hr. Since the total demand from
the upstream and from the on-ramp was unable to flow freely through the merge into the downstream, a
traffic hypercongestion region started to form immediately behind the merge, i.e. region D in the density
contour map in Fig. 3(a). The region grew longer and went beyond the upstream end of the freeway
segment as time went by. It is interesting to see that the density in the hypercongested region D never
reached the jam density and stayed at k = 314 veh/km, which was above the critical density by 118.75%
but lower than the jam density by 56.25%. In reality, this may be a stop-and-go queue or a slow-moving
traffic platoon whose head position remains unchanged and whose tail position depends on the arrival
patterns of freeway upstream flow and on-ramp inflow.

Point “3” marks that the hypercongestion has been propagated backward and went beyond the
upstream end of the freeway segment, which indicates that a local congestion at the merge point has led
to the hypercongestion growing upstream continuously. This is an undesired traffic phenomenon. The

10



shockwave or characteristic line 2–3 captures the tail of the hypercongestion region. On one side, on the
two sides of the merge, region E was undercongested whereas region D was hypercongested. On another
hand, the traffic in both regions were in equilibrium.

In this case, the freeway flow rates was up to 90% of the freeway capacity. Although the on-ramp flow
was only 34.72% of the freeway capacity, traffic hypercongestion took place behind the merge and grew
upstream continuously. This is due to the fact that the sum of the two percentages was 124.72%, which
means that the demand was above the capacity at the merge by 24.72%, hence the hypercongestion was
inevitable. To resolve this problem, we may either reduce the inflow from the on-ramp or divert the
freeway flow via an upstream off-ramp, which will be discussed in Subsection 3.2.

Analytical Solution

Since a triangular fundamental diagram is used, a state in each region in Figure 3 is either hypercongested
or in a free-flow state and the speeds of characteristics associated with the two types of states are
respectively −we or ue. Therefore, we can get an analytical solution for each region independently, which
only depends on boundary conditions. In this case, φ+(t, xon) takes only two possible values depending
on the traffic state at the exit of the on-ramp, i.e.

φ+(t, xon) =

{

a, (free-flow),
we(κe − k(t, x+on))Qon/((Qe +Qon)δ), (hypercongested).

(20)

Now look at the following simple hyperbolic equation:

∂k

∂t
+ w

∂k

∂x
= 0 (21)

where w = dq/dk is constant, and can be a positive or negative number. The general solution of Eq.
(21) can be determined by:

k(t, x) = f(x− wt) (22)

where f is an arbitrary function. Additionally, if the boundary condition is known, i.e. k(t, 0) = h(t),
where h is a given function then we have f(−wt) = h(t), i.e. f(t) = h(−t/w), which gives the analytical
solution of Eq. (21) with the boundary condition k(t, 0) = h(t) is k(t, x) = h(t − x/w). A very special
case is that h(t) is constant, then k(t, x) is also must be constant.

Table 1 lists the information required for solving the kinematic wave model inside each region in
Figure 3 and the corresponding analytical expressions.

Table 1: The Information and the Analytical Expressions

Region Freeway dq/dk Boundary Condition Analytical Expression
A1 No Vehicles \ \ 0
A2 No Vehicles \ \ 0
B Free–flow ue (wδ)/ue (wδ)/ue

C Free–flow ue γ γ
D Hypercongestion −we κe −Q2

e
/((Qe +Qon)we) κe −Q2

e
/((Qe +Qon)we)

E Critical Density ue κc κc

In addition, t2 and t3 in Figure 3 can also be obtained analytically, i.e. t2 = L1/ue and t3 = t2+L1/we,
where L1 is the distance between the upstream end of the freeway and the merge point.

3.1.2 Traffic hypercongestion under three different on-ramp inflow profiles

Figure 4 shows three profiles of inflow from the on-ramp, whose corresponding density contour maps are
given in Figure 5. Here are the mathematical forms of these on-ramp inflow profiles:
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α(t, xon) =











































a, ∀t ∈ [0, T ] [referred to as α1]






(2184sin(πt40) + 840)/δ, ∀t ∈ [0, T3 )

3024/δ, ∀t ∈ [T3 ,
2T
3 )

(2184sin5(π(t−20)
40 + 840)/δ, ∀t ∈ [2T3 , T ]

[referred to as α2]
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2T
3 )

(2184sin(π(t−40)
40 ) + 840)/δ, ∀t ∈ [2T3 , T ]

[referred to as α3]

(23)

Profile α1 and its corresponding density contour map have been analyzed in the previous subsection.
This flat on-ramp inflow profile resulted in a hypercongested area that kept growing upstream uniformly.
The arch-shaped profile α2 has been used in Carey and Ge (2001) and their other work, which tends
to represent a demand profile over a rush hour, rising first up to a flat level and then falling down. In
addition, it can avoid sharp changes in flow rates. The valley-shaped profile α3 may correspond to a
transitional period from one peak time to another.

It is easy to understand, can also be seen in Figure 5, that the first vehicle from the on-ramp in all
three cases shared the same trajectory due to no effects of any downstream traffic on it. So did the first
vehicle from the freeway upstream, which was attributed to two aspects. First, since the traffic from the
on-ramp was very light so no hypercongestion occurred yet by the time when the first vehicle from the
freeway upstream arrived at the merge point. Second, because of the use of a triangular FD, even though
the rates of on-ramp inflow in the three cases were different, the traffic from the merge downwards was
traveling at the same speed and equal to the free-flow speed.

In Figure 5(b), as the inflow from the on-ramp continued to increase, the hypercongestion started to
form at t = t2 (corresponding to point 2). From this time instant onwards, a hypercongestion region on the
freeway started to grow upstream. The characteristic curve 2–3 represents the tail of the hypercongested
region and point “3” marks a moment that the hypercongestion has gone beyond the upstream end
of the chosen freeway segment. The far-right side of region D in Figure 5(b) shows the dissipation of
the hypercongestion while the far-left side of this region captures the formulation of the hypercongestion.
From point 2 rightwards until the traffic was settled in equilibrium, the hypercongestion became gradually
worse and worse because of the ever-increasing inflow rate from the on-ramp, as evidenced by the ever-
increasing density from the left to the right in this region (more specifically in region D1). Then, as the
stable state was violated because of the fall of the on-ramp inflow rates, the traffic in the hypercongested
region started to move faster, as shown by the shockwaves in region D3 of the density contour map and

12



Time, min

F
re

ew
a
y

L
o
ca

ti
o
n
,
k
m

 

 

2
1

3

A1

A2

B

C

D

E

t2 t3
0 10 20 30 40 50 60

0

1

2

3

4

5

6

7

8

0

50

100

150

200

250

300

(a) Profile α1

Time, min

F
re

ew
ay

L
o
ca

ti
o
n
,
k
m

 

 

2

2*
1

3

A1

A2

B

C

D1 D2 D3

E

t2*t2 t3
0 10 20 30 40 50 60

0

1

2

3

4

5

6

7

8

0

50

100

150

200

250

300

(b) Profile α2

Time, min

F
re

ew
ay

L
o
ca

ti
o
n
,
k
m

 

 

2

5

3 4

6

1

A1

A2

B

C

D1 D2

E1
E2 E3

t2 t5 t3 t4
0 10 20 30 40 50 60

0

1

2

3

4

5

6

7

8

0

50

100

150

200

250

300

(c) Profile α3

Figure 5: Density contours for three different on-ramp inflow profiles in Figure 4
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the hypercongestion gradually disappeared as the inflow rates from the on-ramp continued to fall over
time.

In Figure 5(c), point “2” and “4” respectively mark the beginning of each of the two hypercongested
regions over the time horizon, corresponding to the two high-demand ends of the entry flow profiles. At
first, although the inflow from the on-ramp was decreasing, the inflow was high enough so that, once it
was topped on the flow from the freeway upstream, the total demand just was higher than the available
capacity at the merge. Then, hypercongestion immediately occurred and propagated upstream, from
t = t2 up to t = t5. As the inflow rate continued to fall, the hypercongested region gradually shrank and
eventually disappeared at time t = t3. This hypercongestion corresponds to region D1. Clearly, at point
“5” the first hypercongested region reached its farthest location upstream and then started to shrink.
While the inflow rates stayed flat, the traffic started to settle at a stable state. But at t = t4 the inflow rate
started to increase again and a new hypercongested region started to form just behind the merge, which
corresponds to the hypercongested region D2. Certainly, curves 2–5–3 and 4–6 respectively correspond
to the tails of the two hypercongested regions.

The head position of the hypercongested area remained unchanged and stayed at the merge in Figure
5(a) when a flat on-ramp inflow profile was applied. However, when the inflow profile was arch-shaped
(i.e. one applied in Figure 5(b)), the head position of the hypercongested area in region D3 was moving
upwards from the merge. It should be noted that these results were obtained in the setting that the
freeway flow from the upstream was constant. When we had a close look at Figure 5(c), it should
be reasonable to say that, given the constant freeway flow from the upstrea, the head position of a
hyperconegsted area shall stay at the merge, once it is formed, as the on-ramp inflow increases or does
not fall and it may move upwards as the inflow falls quickly enough.

3.1.3 Random on-ramp inflow profile

Suppose that there exists a random on-ramp inflow profile below:

αr(t, xon) ∼ [0.8α(t, xon), 1.2α(t, xon)] referred to as α4 (24)

At each time instant t, the inflow αr(t, xon) follows a uniform distribution within the interval [0.8α(t, xon), 1.2α(t, xon)],
whose mean is equal to α(t, xon); this setting made the resulting density contour map of this profile com-
parable to the corresponding one presented previously. Figure 6 displays the density contour map corre-
sponding to such a random inflow profile in which α(t, xon) was chosen to be the previous valley-shaped
inflow profile, i.e. Profile α3.
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Figure 6: Density contour map from the random on-ramp inflow profile α4 in Eq. (24)

As shown in Figure 6, same as the previous deterministic cases, traffic hypercongestion happened
just behind the merge. Compare the two density contour maps in Figures 6 and 5(c) and we can see
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that the random profile gave a much smaller hypercongested area than the deterministic one, either in
terms of the length of the hypercongested region or the duration the hypercongestion lasted. This point
applied to the two hypercongested areas in both density contour maps. In addition, given this random
on-ramp inflow profile, the head position of the hypercongested region is clear and was still at the merge
but the tail of the region changed randomly although the random change seems invisible in Figure 6; our
other numerical experiments (as shown later) showed that the position of the tail fluctuated forward and
backward when the inflow randomly changed with a much larger magnitude. Furthermore, the shockwave
curves changed their directions randomly in Figure 6 and the overall density in the hypercongested region
under the random on-ramp inflow profile looks smaller than that under the associated deterministic profile
investigated previously, which helps to explain why the hypercongested region under the random inflow
profile was smaller and lasted shorter.

We have also experimented with the random profiles with α(t, xon) set to each of the other three
deterministic profiles, i.e. α1, α2 and α3. All results have shown the consistent phenomena as discussed
in the previous paragraph.

3.1.4 A summary

We have observed the hypercongestion phenomena and investigated the formulation and dissipation of it
when different on-ramp inflow profiles were used, both deterministic and stochastic. In addition to what
has been said before, it is also worthy pointing out a few more points. First, in all density contour maps
regions A1 and A2 correspond to a state that no vehicles were at that location at that time. Second,
the traffic in region B was entirely determined by the inflow from the on-ramp. Third, the change in the
sizes of regions C and D and their states was dominated by the flow from both the freeway upstream
and the on-ramp. Fourth, the upstream traffic streams had some effects on the traffic states in region
E but main impacts on the traffic in this region shall come from the downstream, which is beyond the
scope of this paper.

It should be noted that the same or similar clearly recognized regions as those in the density contour
maps in Figures 3(a), 5 and 6 are presented and discussed in Laval and Leclercq (2010). But no discussion
on traffic hypercongestion was made in this reference while some discussion on on-ramp queues was given.
This paper focuses on freeway traffic hypercongestion and does not touch on on-ramp queues.

3.2 Both on-ramp and off-ramp were operating

We have investigated traffic hypercongestion on the chosen freeway segment when the upstream off-ramp
was closed or the flow leaving from that off-ramp was too little to be worth counting. Now we consider the
impacts on traffic hypercongestion of different amounts of traffic leaving from the upstream off-ramp as
well as the variation in on-ramp inflow profiles. As specified in Eq. (18), the outflow from the off-ramp was
assumed to be proportional to the inflow from the on-ramp (the proportion is denoted by θ). As for the
on-ramp inflow profiles, we chose three from those experimented previously, i.e. α2 (arch-shaped inflow
profile), α3 (valley-shaped inflow profile) and α4 (random profile with α(t, xon) = a). Figure 7 displays
the density contour maps for the three chosen profiles with the three specified values of θ = 0.35, 0.65
and 1. For the convenience of comparison, we should have included those maps corresponding to θ = 0
in this figure but that would make each graph too small to be read comfortably.

As pointed out previously, θ = 0 may imply that the city and its adjacent area served by the off-ramp
of the chosen freeway segment attracted no demand or too little to be worth counting in the time horizon
of interest. We can imagine that the attracted demand of the city increased as θ increased; the increased
value of θ may be associated with the change in the land-use pattern of the city (e.g. gradual transfer
from a pure residential place to a residential place but with the rising number of employment positions).
In all cases presented in Figure 7, it is assumed that the generated demand from the city remained
unchanged. In fact, the absolute demand was not what we were really concerned with but the balance or
imbalance between the attracted and generated demand of the city and its adjacent area that used the
two ramps of the chosen freeway segment. The balance is captured here by means of the parameter θ.
The closer to 1 θ is the more balanced the two types of demand are. θ = 1 means that the attracted and
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generated demand of the city and its adjacent area was exactly matched. We did not experiment with
θ > 1 because traffic hypercongestion would happen as long as θ was as great as 1.

Compare the maps in Figure 7 with those in Figures 5(b)-(c) and 6 and then we can gain a number of
insights. First, more and more traffic left the freeway via the off-ramp as θ was increasing and, accordingly,
the hypercongested regions gradually become smaller and smaller and eventually disappeared in all three
cases of interest, which reduced the duration traffic hypercongestion as well as the average length of the
hypercongested region. This means that a more balanced attracted and generated demand of a city and
its adjacent area may be able to reduce traffic hypercongestion on those freeways or expressways which
pass by or go through the city. Without question, this can also reduce the density on the freeway from
the merge downwards.

Second, as θ rose up the hypercongested density either in the segment between the two ramps or from
the diverge upwards continued to fall for each corresponding on-ramp profile, which certainly shortened
the journey times of those who did not travel to or from the city served by the two ramps of the chosen
freeway segment.

Third, as mentioned before, the constant flow entering from the far upstream of the freeway was
ueγ = 12, 960veh/hr and the maximum rate of flow from the on-ramp was αδ = 5, 000veh/hr; their sum
was 17, 960veh/hr, which is above the freeway capacity of ueκec = 14, 400veh/hr by 24.72%. If the flow
rate leaving the freeway via the off-ramp is less than 5, 000−(14, 400−12, 960) = 3, 560veh/hr (i.e. 71.2%
of the peak amount of the on-ramp inflow) then traffic hypercongestion will be certain to happen behind
the merge. However, if the attracted demand of the city and its adjacent area increases whereas the
generated demand and the upstream demand of the freeway do not change, we can expect more freeway
flow leaving via the off-ramp, which may reduce the probability traffic hypercongestion forms behind the
merge.

Fourth, from the third column in Figure 7, we can readily see that no hypercongestion will take place
on the chosen homogeneous freeway segment as long as the flow leaving from the upstream off-ramp is
not smaller than that entering from the on-ramp. Here, only one simple random on-ramp flow profile was
considered. If the freeway flow from the upstream and that from the on-ramp either or both vary randomly
with a large magnitude or a high flow level stays for quite a long while, traffic hypercongestion may appear.
But as long as these profiles change uniformly and the expected flow leaving via the up-stream off-ramp
is not less than the expected downstream on-ramp entry flow, even though hypercongestion may appear,
it may not last or become something concerning. Therefore, it would be a good idea to maintain a city
to make its attracted and generated time-varying demand profiles can roughly match well.

As can be seen in all cases investigated here, no traffic hypercongestion took place when θ = 1. Put
all results together and we can draw a reasonable conclusion that no hypercongestion will appear as long
as the time-varying profile of outflow via the off-ramp matches well with the profile of inflow from the
on-ramp. We did not consider a case in which the on-ramp flow falls while the flow leaving the freeway
rises; in fact, from the previous results we can see that no traffic hypercongestion behind the merge will
happen in such a situation. All these show that a satellite city and its adjacent area of a metropolitan
city shall try to divert or attract as much traffic from the freeway as it can and try offer as many job
opportunities as possible so as to reduce or remove traffic hypercongestion between the two ramps serving
the satellite city, which can reduce traffic pressure as well as employment pressure the metropolitan city
bears.

We did not consider the capacity or entry constraints at the upstream end of the off-ramp in the
previous experiments or discussions. If there are such constraints, a queue or hypercongestion will
appear when the flow waiting to leave is higher than the available capacity at the approach. The queue
or hypercongestion on the off-ramp may also move upwards beyond the diverge so the traffic on the
freeway can be affected, which is probably the very thing we should avoid in ramp operations.
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(e) α3 & θ = 0.65
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(i) α4 & θ = 1

Figure 7: Density contour maps under different on-ramp inflow profiles with varied off-ramp departure proportions
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Our chosen on-ramp inflow profile has a peak lower than the on-ramp capacity. Certainly, the maxi-
mum flow can not be greater the capacity and once a flow rate higher the capacity appears a queue will
develop at the entry end of the on-ramp. This is out of the scope of this paper.

4 Concluding remarks

This paper has used a method modified from the freeway traffic congestion dynamics model in Laval
and Leclercq (2010) to investigate traffic hypercongestion on a freeway segment with an on-ramp and
an off-ramp situated upstream. We used the distribution scheme satisfying the “fair” condition in Jin
and Zhang (2003) to replace the formula for generating the actual rates of inflow from an on-ramp [i.e.
Eq. (4)] in Laval and Leclercq (2010). The key reason we made this change is that Eq. (4) in Laval
and Leclercq (2010) can not always ensure that the sum of inflow from an on-ramp and the flow on the
freeway upstream not greater than the available capacity at the merge. Then we showed numerically that
this modified method can produce those phenomena presented in Laval and Leclercq (2010). Then we
carried out a series of numerical experiments to analyze the impacts on traffic hypercongestion of varied
profiles of on-ramp inflow and off-ramp outflow.

To carry out this investigation, we have chosen a homogeneous freeway segment along which there are
an on-ramp and an off-ramp and it is assumed that neither traffic incidents took place nor traffic control
facilities existed on these facilities. The characteristics of each facility were assumed to remain unchanged
over the time horizon. This scenario may correspond to a typical part of a real-life transportation system
where an freeway passes by a city, with an off-ramp lying upstream towards the city and an on-ramp
situated downstream. Clearly, the upstream off-ramp and the on-ramp both mainly served the traffic to
and from the city.

All numerical experiments can be grouped into two sets. The first set was carried out under the
assumption that the upstream off-ramp was closed or the traffic leaving the freeway via the off-ramp was
too little to be worth counting. We have seen that a hypercongested region started to formulate once
the sum at the merge point of the inflow from the on-ramp plus the flow from the freeway upstream was
greater than the available capacity at the merge and it started to shrink and eventually disappeared as
the freeway flow or on-ramp flow fell. An interpretation on this case was that the flow on the freeway
that was attracted by the city or its adjacent area was zero or too little to be counted since the city was
a purely residential place but at the far downstream end of the freeway was a metropolitan city so that
a large number of commuters were traveling along the freeway to there to work. Consequently, a severe
traffic hypercongestion took place once a high level of flow from the on-ramp started to merge with the
flow on the freeway, which lasted long and went upstream easily beyond the off-ramp diverge point.

The second set of numerical experiments investigated the impacts on traffic hypercongestion of varied
profiles of on-ramp inflow and off-ramp outflow, with an emphasis on the impacts of the balance between
the on-ramp inflow and the off-ramp outflow. Since there was no capacity constraints for either end of the
off-ramp, no congestion existed on the off-ramp. Besides, because of the Riemann boundary condition
applied to the approach of the off-ramp, no traffic leaving the freeway from the off-ramp was stopped
here. Three on-ramp inflow profiles were chosen, i.e. arch-shaped, valley-shaped and one fluctuating in
a uniformly-distributed manner. The off-ramp outflow rate at time t was assumed to be proportional
to the rate of entry flow of the on-ramp at the same time and the proportion increased from 0, to 0.35,
to 0.65 and finally to 1. Our experiments showed that traffic hypercongestion was gradually lessened as
the proportion of freeway flow choosing to leave via the off-ramp rose. This can be imagined to be a
scenario where a city used to be a purely residential place was gradually converted or grew to be a place
with more and more mixed land uses, hence more and more employment positions were available in this
city and then higher and higher proportion of the freeway flow was diverted through the off-ramp to this
city. This means that the increase in the attracted demand level of the city and its adjacent area can
mitigate traffic hypercongestion behind the merge. In other words, under these assumptions given in this
paper, these experiments showed that the occurrence or duration of traffic hypercongestion depended on
the degree of the balance between attracted and generated demand of the city and its adjacent area the
two ramps of the chosen freeway segment served. Without question, a balanced attracted and generated
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demand that were to use the two ramps can reduce the freeway traffic density from a merge downwards,
and the journey times who have to experience while traveling down to the far end of the freeway. This
shall also be able to reduce traffic pressure in the metropolitan area at the downstream end of the freeway.

This paper assumed no traffic control facilities on the freeway or on the ramps and no capacity con-
straints on both ends of the off-ramps. In reality, variable/dynamic message signs, ramp metering or other
control and management facilities are often installed on freeways to ensure or improve the performance of
freeways. An ongoing piece of our work is to minimize the impacts of traffic hypercongestion or remove
it by means of, say, ramp operations or control and coordination of flows on freeways and on street roads
(e.g. Allen and Newell, 1976; Gugat et al. 2005; Wang et al. 2013; Srivastava and Geroliminis 2013) or
improvement in driver behavior in freeway weaving areas (e.g. Sarvi 2013). Another piece of our ongoing
work is to put an urban freeway segment into a road network so that we can optimize the whole network,
including traffic on the freeway and ramps.
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