
Title
A soft coarse-grained reconfigurable array based high-level
synthesis methodology: Promoting design productivity and
exploring extreme FPGA frequency

Author(s) Liu, C; Lin, CY; So, HKH

Citation

The 21st Annual International IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM 2013),
Seattle, WA., 28-30 April 2013. In Conference Proceedings, 2013,
p. 228-228

Issued Date 2013

URL http://hdl.handle.net/10722/202275

Rights
Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM). Copyright © IEEE Computer
Society.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38054177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Soft Coarse-Grained Reconfigurable Array Based High-level Synthesis
Methodology: Promoting Design Productivity and Exploring Extreme FPGA

Frequency

Cheng Liu, Colin Lin Yu, Hayden Kwok-Hay So

Department of Electrical and Electronic Engineering, The University of Hong Kong
Email: {liucheng, linyu, hso}@eee.hku.hk

I. INTRODUCTION

Compared to the use of a typical software development

flow, the productivity of developing FPGA-based compute

applications remains much lower. Although the use of

high-level synthesis (HLS) tools may partly alleviate this

shortcoming, the lengthy low-level FPGA implementation

process remains a major obstacle to high productivity com-

puting, limiting the number of compile-debug-edit cycles

per day. Furthermore, high-level application developers often

lack the intimate hardware engineering experience that is

needed to achieve high performance on FPGAs, therefore

undermining their usefulness as accelerators.

To address the productivity and performance problems, a

HLS methodology that utilizes soft coarse-grained reconfig-

urable arrays (SCGRAs) as an intermediate compilation step

is presented. Instead of compiling high-level applications

directly to circuits, the compilation process is reduced to

an operation scheduling task targeting the SCGRA.

II. PROPOSED DESIGN METHODOLOGY

Figure 1 depicts an overview of the proposed high-

level synthesis methodology. As shown in the diagram, the

proposed methodology can be divided into two distinct parts.

The first part, shown in the top half of the figure, is expected

to execute frequently. It should be executed every time

a new design iteration is required, a new debug cycle is

started, or simply when a new application within the same

application domain is implemented. On the other hand, the

second part of the design flow, shown in the bottom half of

the figure, is expected to execute infrequently, perhaps on

a per-application domain basis. Towards the end of the top

half of the flow, the scheduling result is merged with the

pre-built bitstream from the bottom half to produce the final

downloadable bitstream for the target FPGA.

III. EXPERIMENT RESULTS

We take 5 computation kernels including matrix multiply

(MM), fast Fourier transform (FFT), discrete convolution

(CONV),advanced encryption standard (AES) and Viterbi

decoder (VD) as our benchmark. Figure 2 and 3 present

the performance and compilation time of the benchmark

using both AutoESL and the proposed HLS methodology

Per Application

Per Application Domain

Scheduling

 HLL
Program

LLVM

Mem

ALU

PE

PE

PE

PE PE

PE PE

PE PE

SCGRA

RTL

Instruction

Data

Instruction

FPGA

Bitstream

Pre-implemented

Compilation

Download
PE

IR

Bitstream
Updated

Data2mem

Figure 1. Overview of the proposed soft coarse-grained reconfigurable
array based high-level synthesis design methodology.

respectively. It shows that the proposed design methodology

achieved 0.8-21x times speedup in the application run time

while application compilation time is reduced by 10-100x.

�

���

�

���

�� ��� 	
�� �� ��

�
�

�
��

��
�

��
�

��

������� �!"��#���$�%&%������ ������� �!"��#���$�'&'������ ������� �!"��#���$�(&(������

�����"�)��*����#���++��$ �����"�)��*��� ����#���++��$ �����"�)��*�",�$��#���++��$
&���

Figure 2. Performance comparison of the benchmark using both AutoESL
and the proposed HLS methodology

MM FFT CONV AES VD
100

101

102

103

104

C
o

m
p

il
a

ti
o

n
 T

im
e

 (
s)

LLVM Compiling

AutoESL Implementation

SCGRA Scheduling Bitstream Integration
AutoESL Synthesis

Proposed HLS Using 4x4 Torus Proposed HLS Using 3x3 Torus Proposed HLS Using 2x2 Torus

AutoESL without Unrolling AutoESL with Medium Unrolling AutoESL with Large Unrolling

Figure 3. Compilation time comparison of the benchmark using both
AutoESL and the proposed HLS methodology

2013 21st Annual International IEEE Symposium on Field-Programmable Custom Computing Machines

978-0-7695-4969-9/13 $26.00 © 2013 IEEE

DOI 10.1109/FCCM.2013.21

228

