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 Abstract 
 Recent progress suggests that neural stem/progenitor cells can potentially develop into new 
functional neurons in adult brain, offering hope for regeneration therapies for stroke treat-
ment. Targeting adult neurogenesis becomes a novel and promising therapeutic strategy for 
brain repair and recovery of neurological functions. Traditional Chinese Medicine (TCM) has 
a long history with accumulated experiences and case reports using herbal formulas to treat 
stroke disability. The combination of Chinese herbal medicine and stem cell biology approach-
es provides great potential for post-stroke rehabilitations. In the last decade, large efforts 
have been made to investigate the molecular targets for the regulation of adult neurogenesis 
and to explore the active compounds and molecular targets of herbal medicine for regenera-
tion therapy. Herein, we reviewed the current progress concerning the molecular targets and 
cellular signaling pathways involved in adult neurogenesis after cerebral ischemia. We then 
briefly introduced Chinese medical theory and herbs for stroke treatment in TCM. Finally, we 
reviewed the current knowledge about the effects of Chinese herbal formulas, active fractions 
and active compounds on promoting adult neurogenesis as well as their molecular targets. 
Although the precise mechanisms and molecular targets of herbal medicine for neurogenesis 
are still unclear, current progress at least provides a cue for exploring the therapeutic princi-
ples of Chinese herbal medicine and developing new drugs for brain repair after stroke. 
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 Background 

 Stroke is the second most common cause of death and a leading cause of adult disability 
in human diseases worldwide  [1, 2] . In China, the age-adjusted stroke prevalence ranges from 
259.86 to 719 per 100,000 people per year  [3] . With increasing life expectancy, it is antici-
pated that stroke will become a major burden in public health worldwide.

  Stroke involves a heterogeneous group of processes. Ischemic stroke accounts for about 
85% of all stroke cases, while hemorrhagic stroke accounts for the remaining 15% of all stroke 
cases  [4] . Ischemia is defined as a reduction in blood flow sufficient to result in an almost 
immediate lack of oxygen and glucose in the brain tissue. The brain is exquisitely sensitive to 
ischemia, such that even brief ischemic periods to neurons can initiate a complex sequence of 
events that may ultimately result in cell death  [5] . Following neuronal cell death due to cerebral 
ischemia, the rapid degeneration of brain structure could induce severe neurological dysfunc-
tions. The clinical symptoms of ischemic stroke include paralysis or numbness of one side of 
the body, loss of speech and vision, and trouble with balance or coordination. Early restoration 
of blood flow is extremely important in order to limit brain injury after stroke.

  In the last decades, tremendous efforts have been made to develop therapeutic approaches 
for stroke treatment. Nevertheless, the clinical outcome is still not satisfying. Recombinant 
tissue plasminogen activator is an FDA-approved drug, but it has a critical time window 
within 4.5 h with the potential risk of hemorrhagic transformation. Although thrombolytic 
therapy has decreased the morbidity and mortality of stroke  [6] , most stroke patients could 
not catch up on the golden therapeutic window beginning from their initial clinical symptoms 
in order to reach a definite diagnosis. While many neuroprotective drugs are effective in 
animal models, they failed to pass clinical trials  [7] . Thus, the development of novel thera-
peutic strategies and new drugs is important for stroke treatment. Therefore, post-stroke 
rehabilitation becomes a major therapeutic focus for most post-stroke patients. Unfortu-
nately, the currently available therapies are only rarely successful in improving recovery 
from neurological deficits.

  The discovery of adult neurogenesis sheds light on the development of new therapeutic 
approaches for stroke. Neural stem/progenitor cells (NSCs) can potentially develop into new 
functional neurons in the adult central nervous system (CNS)  [8, 9] . Adult neurogenesis 
mainly occurs in the subgranular zone of the dentate gyrus of the hippocampus and the 
subventricular zone (SVZ) adjacent to the lateral ventricle  [10, 11] . Enhanced neurogenesis 
was found in hypoxic NSCs in vitro  [12, 13]  and in ischemic brains of neonatal mice  [14] , adult 
rats  [15]  and aged humans in vivo  [16] . Enhanced neurogenesis either by stem cell transplan-
tation or stimulation of endogenous neurogenesis could partly amend the damaged brain 
functions, raising hopes for brain repair treatment. Recent progress in stem cell therapy 
proposes the approach of transplantation of NSCs targeting brain repair  [17, 18] . Experimen-
tally, the transplantation of NSCs is a promising strategy for the replacement of dead or 
injured neurons. Nevertheless, many remaining problems, such as ethical controversial, stan-
dardization, viability, purity of cell materials and safety issues, greatly block the clinical appli-
cation at least in the near future. Thus, most efforts focus on stimulating the formation of and 
preventing the death of neurons and glial cells in the CNS.

  Current Molecular Targets for Adult Neurogenesis 

 NSCs have limited capacities for growth, differentiation and generation of new neurons 
in order to repair the damaged CNS in adults  [8, 9] . At 1–2 weeks after transient global 
ischemia, newly formed cells migrate into the granule cells and promote functional recovery 
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 [19] . However, this spontaneous brain repair seems insufficient to amend neurological 
deficits in most stroke cases. The major obstacles include: (a) most of the newly proliferated 
NSCs are unable to form new functional neurons and integrate into the neurological network 
and (b) there is poor survival of new neuroblasts after 4 weeks of stroke  [19] . To overcome 
those problems, pharmacological manipulation targeting NSCs is proposed for stimulating 
neurogenesis and promoting the recovery of neurological deficits. For example, treatment 
with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) can stimulate 
massive regeneration and trigger brain repair after stroke  [20] .

  NSCs within the adult brain germinal centers reside in a specialized microenvironmental 
niche. They are in close proximity to blood vessels and are surrounded by glial cells to form 
a microenvironmental niche. The proliferation and differentiation of NSCs and neural growth 
depend on the microenvironmental niche signals, which include bFGF, EGF, vascular endo-
thelial growth factor (VEGF) and nerve growth factor among others  [21–24] . Among them, 
VEGF plays a critical role in neural regeneration. It exerts its action via phosphotyrosine 
kinase receptors VEGFR1 and fms-like tyrosine kinase. VEGF can stimulate the proliferation 
and differentiation of NSCs and neurogenesis in vitro   and in vivo  [22, 24] . It was reported that 
VEGF enhanced neurogenesis, neuromigration and angiogenesis, and improved neurological 
functions in the ischemic brain and spinal cord injury  [24–27] . VEGF functions as a niche 
signal for the proliferation of NSCs in response to the bFGF signal and mediates cross-talk 
between NSCs and endothelial cells in the niche  [28–30] .

  Notch signaling plays a critical role in the maintenance, proliferation and differentiation 
of NSCs in the microenvironmental niche  [31] . Notch proteins mediate multiple cellular func-
tions through cell-cell interactions. Upon ligand binding, Notch is cleaved and releases a notch 
intracellular domain (NICD). NICD represses or activates transcription factors. Notch signaling 
can promote NSC proliferation and modulate glial and neural fates in a stepwise manner, first 
by inhibiting neuronal fate and promoting glial fate and second by inducing astrocyte differ-
entiation. The Notch-mediated inhibition of neuronal differentiation is achieved by preventing 
the neighboring cells from becoming the same cell type. Focal cerebral ischemia activates 
Notch1 signaling and promotes the proliferation of NSCs in the SVZ of adult brains  [31, 32] . 
The upregulation of Notch1 signaling, including Notch1, NICD and hairy and enhancer of split 
(Hes)1, can promote the proliferation of the NSCs and inhibit neuronal differentiation in 
ischemic brains  [33, 34] . The Notch1 signal mediates the crosstalk of NSCs and endothelial 
cells in the microenvironmental niche. Endothelial cells can release soluble factors to stim-
ulate the self-renewal of NSCs and inhibit their differentiation via activating Notch and Hes1 
 [35, 36] . The cross-talking of VEGF and Notch signaling can promote the tissue regeneration 
 [36] .

  The Wnt/β-catenin pathway is another important regulator for neurogenesis and oligo-
dendrogenesis. Wnt proteins are involved in multiple processes during the CNS development, 
including cell proliferation, migration, specification and differentiation. β-Catenin is a key 
downstream effector of Wnt. Activation of β-catenin could promote the proliferation of the 
neural progenitor pool. The Wnt/β-catenin pathway regulates the differentiation of neural 
progenitor cells into neurons and delays oligodendrocyte development  [37, 38] . Wnt signaling 
contributes to the functional recovery after ischemic injury by increasing neurogenesis or 
neuronal survival in the striatum after focal ischemic injury  [39] .

  The sonic hedgehog (Shh) signaling pathway also regulates neurogenesis  [40] . Shh acts 
through a receptor complex composed of PTCH and SMO for the activation of the target gene 
Gli  [41] . Shh promotes hippocampal progenitor cell proliferation  [42] . Disruption of Shh 
signaling by conditional knockout of its downstream mediator SMO resulted in the reduction 
of NSC proliferation  [43] . Shh can also regulate migration. Inhibiting Shh in the adult SVZ 
prevented neuroblasts (type A cells) from migrating to the olfactory bulb  [44] .

D
ow

nl
oa

de
d 

by
: 

U
ni

ve
rs

ity
 o

f H
on

g 
K

on
g 

   
   

   
   

   
   

   
   

   
   

 
14

7.
8.

23
0.

5 
- 

1/
2/

20
15

 1
0:

55
:1

4 
A

M

http://dx.doi.org/10.1159%2F000362638


8Integr Med Int 2014;1:5–18

 DOI: 10.1159/000362638 

 Shen et al.: Targeting Neurogenesis: A Promising Therapeutic Strategy for Post-Stroke 
Treatment with Chinese Herbal Medicine 

www.karger.com/imi
© 2014 S. Karger AG, Basel

  Our recent works explored the roles of caveolins (Cav) in the regulation of neurogenesis. 
Caveolins are a group of 22-kDa structural proteins including Cav-1, Cav-2 and Cav-3. Cav-1 
and Cav-2 are widely expressed in neuronal cell types and brain regions  [45–47] , whereas 
Cav-3 is muscle specific  [48] . Caveolins interact with proteins via the caveolin scaffold domain 
 [49] . They negatively regulate a variety of signal pathways, such as G proteins, nitric oxide 
synthases, Src tyrosine kinases, ras, estrogen receptors, protein kinase C, integrins, MAP 
kinase and EGF-R  [50–52] . Cav-1 decreased neurite outgrowth and branching, and neurite 
density in injured differentiated PC12 cells  [53]  and blocked the formation of neurites and 
phosphorylation of extracellular signal-regulated kinase (ERK) upon bFGF treatment in N2a 
cells  [54] . We found that Cav-1 knockout mouse brains displayed an increased proliferation 
and differentiation of adult NSCs in the SVZ area  [55–57] . The major discoveries include: (1) 
Cav-1 promoted astroglial differentiation of NSCs through modulating Notch1/NICD and 
Hes1 expressions  [55] ; (2) Cav-1 inhibited oligodendroglial differentiation of NSCs through 
modulating β-catenin expression  [56] , and (3) Cav-1 inhibited neuronal differentiation   via 
downregulations of VEGF, p44/42 MAPK, Akt and Stat3 signaling pathways. Downregulation 
of Cav-1 contributed to hypoxia-mediated neuronal differentiation in neural progenitor cells 
 [57] . Therefore, Cav-1 plays a critical role in neural progenitor cell proliferation and cell fate 
decision in the post-stroke brain.

  Phosphatidylinositol 3-kinase (PI3K)/Akt and ERK signaling pathways are also involved 
in the process of neurogenesis. They can regulate hypoxia-inducible factor (HIF)-1α, GSK-3β, 
and cAMP response element-binding protein (CREB). HIF-1α deletion was reported to impair 
hippocampal Wnt-dependent processes, including NSC proliferation, differentiation and 
neuronal maturation  [58] . GSK-3β can function as signaling nodes to regulate and orchestrate 
the diverse cellular responses in neurogenesis via affecting HIF-1α, HIF-2α and β-catenin. 
CREB is required for EGF-induced cell proliferation and serum response element activation 
in NSCs of adult mouse brain  [59, 60] . Vanadium, a stimulator of PI3K/Akt and ERK, increased 
NSC proliferation and promoted the migration of newborn neurons in the ischemic brain  [61] . 
PI3K/Akt and ERK also regulate many mitogenes including bFGF, Shh, and insulin-like growth 
factor 1. Thus, PI3K/Akt and ERK signaling pathways are important targets for drug discovery 
for adult neurogenesis.

  A recent review article summarized the major cellular signaling pathways in adult 
neurogenesis: Shh, miR-124, Sox2, Tlx and Wnt/β-catenin signaling pathways are regulators 
for cell proliferation; basic helix-loop-helix transcription factors such as Asc1, Neurog2 and 
Tbr2 and epigenetic factors like Gadd45b, MBD1, MeCP2 and Mll1 are necessary for neuronal 
differentiation and maturation; insulin-like growth factor 1 and Shh are essential for neuro-
blast migration; extrinsic factors including BDNF, FGF-2, GABA, glutamate and NT-3 play 
important roles in regulating neuronal survival and dendritic arborization, synaptic plas-
ticity and synapse formation; intrinsic factors including DISC1, Klf-9, NeuroD1, Cdk and 
CREB participate in neuronal survival, dendritic arborization, synaptic integration and 
maturation  [62] .

  In summary, adult neurogenesis is a multistep process that requires the proliferation of 
NSCs, the differentiation into the specific neuronal cell types, migration, and that the new cells 
differentiate, survive and integrate into existing neural networks. Signaling pathways involved 
in the regulations of adult neurogenesis are very complex. The signal molecules not only come 
from the NSCs themselves but also from the microenvironmental or neurogenic niche. 
Therefore, targeting critical cellular signaling pathways is an important therapeutic strategy 
for drug discovery for brain repair for post-stroke treatment.
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  Classic Concepts and Representative Therapeutics for Stroke in 
Traditional Chinese Medicine 

 With the progress of stem cell biology, we can expect that more and more cellular signaling 
pathways will be discovered, making the underlying mechanisms of brain repair complicated. 
The question arises as how to find a ‘magic drug’ which can regulate overall profiles of cellular 
signaling and genes for neurogenesis. Given that Chinese herbal medicines generally include 
multiple herbal items and therapeutically target multiple signaling pathways, Chinese herbal 
medicine therapy may provide a solution to regulate the complex network systems to promote 
brain repair. Since Chinese herbal medicine has been used for thousands of years and produced 
a huge amount of case reports, intensive investigations on the neurogenesis-promoting 
effects of the active compounds, individually and synergistically, and their related molecular 
targets would create new directions for drug discovery to promote neurogenesis in post-
stroke studies.

  In Traditional Chinese Medicine (TCM) theory, stroke is named as ‘wind stroke’ with the 
definition of a condition mainly characterized by sudden collapse and loss of consciousness, 
deviation of the tongue and mouth, hemiplegia, slurred speech, or only deviation of the tongue 
and mouth and hemiplegia without collapses. According to TCM concepts, ‘wind stroke’ is 
caused by a long-term exposure to multiple pathological conditions including abnormal diet 
and lifestyles, emotional stress, abnormal psychological stress, and constitution factors, 
resulting in the deficiency of  qi  and abnormal movement of  qi  and   blood. The patients with a 
particular constitution named deficiency of  gan-ying  and  shen-ying  is susceptible to patho-
logical factors and easy to be attacked by ‘wind stroke’. The attack of ‘wind stroke’ could be 
attributed to the reversed flow of  qi  and   blood, and subsequently produce wind, fire, phlegm 
and blood stasis ,  inducing the formation of cerebral thrombosis or cerebral hemorrhage. 
According to the patient’s clinical conditions, ‘wind stroke’ can be divided into three subtypes: 
‘meridian stroke’, ‘ zhang-fu  stroke’ and sequela. ‘Meridian stroke’ is considered as the mild 
one, but   ‘ zhang-fu  stroke’ is the most severe clinical pattern, characteristically with obnubi-
lation. Accordingly, different therapeutic approaches and formulas are specifically designed 
to treat different TCM clinical patterns based on TCM syndrome differentiation. Based on the 
histological descriptions and clinical observations, the clinical patterns of ‘meridian stroke’ 
in TCM are generally equivalent to the clinical characteristics of primary hypertension and 
transient ischemic attack.  Tianma gouteng  decoction and  zhengang xifen  decoction   are repre-
sentative formulas for ‘meridian stroke’ treatment. As for ‘ zhang-fu  stroke’, its clinical pattern 
is similar to acute ischemic stroke or hemorrhagic stroke with serious brain damage showing 
clinical symptoms of obnubilation or coma. ‘ Zhang-fu  stroke’ has two clinical subtypes 
including excessive syndrome and deficiency syndrome.  Angong niuhuang wan  and  lingjiao 
guoteng decoction  are two representative formulas for ‘excessive syndrome with  gang-yang 
and gang  wind hyperactivity   and   upwards’, whereas  shenfu  decoction is particularly designed 
for the ‘ zhang-fu  stroke’ with the deficiency of  yang qi . For sequela,  jieyu dan  is a represen-
tative formula for relieving the symptoms of deviation of the tongue and mouth, hemiplegia 
and slurred speech. This clinical pattern is generally considered as the syndrome of phlegm 
and blood stasis. Another representative formula is  buyang huanwu  decoction (BYHWD) .  This 
formula is specifically designed for neurological deficits and dysfunctions with the types of  qi 
 deficiency-induced blood stasis.

  In recent years, large efforts have been made to understand the therapeutic principles, 
molecular targets and active compounds of the TCM herbal formulas. For example, by using 
experimental stroke animal models and conducting clinical trials,  tianma gouteng  decoction, a 
representative formula for the treatment of primary hypertension and transient ischemic 
attack, revealed to decrease blood pressure, ameliorate cognitive impairment and protect 
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neural cells in ischemic brains  [63–65] . Due to the poor design of clinical trials, however, a 
recent systematic review challenged its clinical efficacy for the treatment of primary hyper-
tension  [66] . BYHWD   is one of the classic formulas for post-stroke disability with intensive 
investigations. Several recent systematic reviews and meta-analysis studies conducted by us 
and others provide experimental and clinical evidence to support the application of BYHWD   in 
the post-stroke treatments  [67, 68] . Although the quality of clinical trials needs to be improved, 
the effects of this formula on improving neurological functions have been well accepted. The 
active constitutions and the metabolites of BYHWD have been reported as well  [69, 70] . In the 
following sections, we will focus on the current progress in the studies of Chinese herbal 
medicine for promoting neurogenesis and improving neurological functions by using different 
in vivo   and in vitro experimental systems, providing opportunities for post-stroke treatment.

  Current Progress in Chinese Herbal Medicine for Promoting Neurogenesis and 
Their Related Molecular Targets 

 In the last decades, great efforts have been made to investigate the effects of Chinese 
herbal medicine on promoting neurogenesis and their related molecular targets. In TCM 
practice, therapeutic approaches are generally designed based on unique TCM theory and the 
prescriptions include multiple herbs; the items can be changed with the different clinical 
syndrome patterns during the different phases of a disease. From the angle of photochem-
istry, the TCM formulas generally consist of thousands of chemical ingredients which may 
target multiple cellular signaling pathways. With comprehensive and advanced analytic 
approaches, scientists are trying to explore the therapeutic principles of TCM formulas by 
identifying their active compounds and molecular targets involved in the regulation of neuro-
genesis. Herein, we summarize and review the current progress in those aspects.

  Representative TCM Formulas and Their Molecular Targets for Neurogenesis 

 Buyang Huanwu Decoction 
 BYHWD has been a classic TCM formula for post-stroke disability treatment for 300 

years. The formula was first introduced in a renowned TCM textbook named  Yilin Gaicuo  
 (Correction on Errors in Medical Books)  by Dr. Wang Qing-ren in the Qing Dynasty. According 
to Dr. Wang’s opinion, paralysis caused by ischemic stroke is similar to the loss of ‘ five of ten ’ 
due to  qi  deficiency and blood stasis. Thus, boosting the  qi  and restoring the blood circulation 
are the key points to treat this clinical pattern of ischemic stroke. BYHWD consists of 7 items 
including  Astragalus membranaceus,   Angelica sinensis,   Paeonia lactiflora,   Ligusticum chuan-
xiong,   Carthamus tinctorius,   Prunus persica  and  Lumbricus  at a ratio of 120:   4.5:   3:3:   3:3:   3.  A. 
membranaceus  is the dominating herb in this formula, which accounts for about 85% of the 
whole decoction. It functions as the ‘king’ component in the formula to invigorate  qi  and 
enhance  yang-qi .  A. sinensis ,  P. lactiflora ,  L. chuanxiong ,  C. tinctorius  and  P. persica  are ‘minister’ 
and ‘assistant’ components used to promote blood circulation and replenish blood.  Lumbricus  
is used as a ‘guiding’ component to smooth the movement of  qi  and blood in the channels. 
Combining these 7 items together, BYHWD can enhance the effect of boosting  qi  and removing 
the blood stasis. Several clinical trials have been conducted to evaluate the efficacy of BYHWD 
for post-stroke disability. BYHWD revealed to promote neurogenesis, reduce infarction 
volume and improve neurological functions in post-stroke animal models and human subjects 
 [71–75] . Herein, we summarized the current research progress in the pharmacological activ-
ities of BYHWD and its ingredients and reviewed its potentials for post-stroke rehabilitation.  
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  Neuroprotective Effects and Its Molecular Targets  
 Reactive oxygen species are important pathological factors in cerebral ischemia/reper-

fusion injury. Our previous studies showed that BYHWD inhibited the neuronal nitric oxide 
synthase activity and protected neurons from oxidative injury in a permanent focal cerebral 
ischemia model  [76] . Both in vitro and   in vivo studies revealed that BYHWD had anti-apop-
totic effects against cerebral hypoxic/ischemia reperfusion injury. The   in vitro studies showed 
that BYHWD protected cortical neurons from hypoxia-induced apoptotic cell death through 
scavenging NO and superoxide (O 2  – ), downregulating the expressions of p53 and p21 genes 
and upregulating the expression of bcl-2  [77, 78] . The   in vivo studies showed that oral admin-
istration of BYHWD reduced the number of TUNEL-positive neurons by attenuating the 
expression of caspase-3 p20, a product of catalytically active caspase-3 in the hippocampal 
CA1 region  [79] . BYHWD obviously inhibited the expression of HSP70 mRNA but had no effect 
on the HSP70 protein  [80] . BYHWD revealed to modulate pro-inflammatory mediators 
including IL-1β and TNF-α in an experimental cerebral ischemia stroke model  [81] . The active 
fractions and compounds, including alkaloid, glycoside, polysaccharide and aglycone, were 
found to inhibit inflammatory cytokines, alleviate the inflammatory reactions and downreg-
ulate the expression of caspase-1 in cerebral ischemia/reperfusion injury. The alkaloid, 
glycoside and aglycone fractions inhibited the expression of caspase-3 in the hippocampus, 
cortex and medulla and protected neurons from cerebral ischemia injury  [82] . Ca 2+  overload 
and excitatory amino acid are important mediators of neurotoxicity in cerebral ischemia/
reperfusion injury. BYHWD showed to reduce intracellular Ca 2+  concentration in neural 
progenitor cells  [83]  and regulate the metabolism of endothelin and calcitonin gene-related 
peptide in patients with early cerebral infarction  [74] . A recent study reported that BYHWD 
treatment significantly decreased the level of excitatory amino acids and increased inhibitory 
amino acids in cerebrospinal fluid extracted from the rats subjected to cerebral ischemia/
reperfusion injury  [84] .

  In addition, the effects of BYHWD on the antithrombotic functions were also studied by 
using human umbilical vein perfusion. BYHWD reduced the von Willebrand factor release and 
inhibited the conversion of fibrinogen to fibrin catalyzed by thrombin  [85] . Administration of 
BYHWD increased the blood flow in the hippocampal region after occlusion and inhibited the 
hypoperfusion after reperfusion in ischemia/reperfusion rats  [86] . In addition, BYHWD 
reduced the platelet activator factor in the arterial blood after thrombosis  [87] . Therefore, the 
neuroprotective mechanisms of BYHWD are related to regulate multiple cellular signaling 
pathways.

  Neurogenesis-Promoting Effects and Molecular Targets 
 Our early studies revealed that BYHWD containing serum significantly promoted the 

proliferation of neurons under both normal and hypoxic conditions  [88] . Further studies 
found that BYHWD increased the 5-bromo-2-deoxyuridine-positive neural progenitor cells in 
the rat hippocampus and SVZ after ischemic stroke, suggesting that BYHWD could improve 
the neural progenitor proliferation  [72] . Furthermore, BYHWD treatment also stimulated the 
differentiation of neural progenitor cells as evidenced by increasing the neurofilament-
positive cells and glial fibrillary acidic protein-positive cells in cultured neural progenitor 
cells  [83] . A recent study reported that BYHWD treatment significantly increased 5-bromo-
2-deoxyuridine-positive cells in the SVZ, subgranular zone and corpus striatum of the infarcted 
brain by upregulating the expression of migration activators including stromal cell-derived 
factor 1, CXC chemokine receptor 4, VEGF, Reelin and BDNF in the ipsilateral infarct area after 
middle cerebral artery occlusion cerebral ischemia. In addition, BYHWD treatment was able 
to promote the neuronal differentiation, which closely related to the migratory process of 
neural progenitor cells in middle cerebral artery occlusion rats. These results suggest that 
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BYHWD might promote the migration of neural progenitor cells to the ischemic brain area 
 [89] .

  VEGF and its receptor Flk1 are important neurotrophic, neuroprotective and neuropro-
liferative factors. Our study showed that BYHWD upregulated the expressions of VEGF and 
Flk1 at the SVZ and cortex in the post-ischemic brains  [72] . Further studies revealed that 
BYHWD treatment increased the expression of VEGF in the serum of stroke patients  [90] . 
Moreover, the combination of mesenchymal stem cell transplantation and BYHWD treatment 
repaired the injured blood vessels and lesion tissues by inducing the expression of VEGF and 
Ki-67  [91] .

  Moreover, a genomic assay was applied to explore the regulation of BYHWD on overall 
genomic profiles in the post-stroke brains. Treatment of BYHWD remarkably led to upreg-
ulate 25 genes but downregulate 6 genes in the brain tissues of a rat model of experimental 
cerebral ischemia  [92] . A recent study revealed that BYHWD treatment upregulated the 
expressions of 93 genes but downregulated 284 genes in a cerebral ischemia mouse model. 
Among the 93 genes, 6 are associated with neurogenesis and 9 are related to nervous system 
development. In addition, BYHWD also showed to regulate the genes related to anti-inflam-
mation (14 genes), anti-apoptosis (15 genes), anti-angiogenesis (11 genes) and anti-coagu-
lation (7 genes)  [73] .

  Identification of Active Compounds and Their Metabolites 
 About 54 main chemical constituents in BYHWD have been identified pharmacologically. 

They belong to C-glycosyl quinochalcones, flavonoid O-glycosides, isoflavones, monoterpene 
glycosides, saponins, organic acids and amino acids  [93] . To understand the active compounds 
contributing to the bioactivities of BYHWD, rapid resolution liquid chromatography was 
coupled with quadrupole time-of-flight tandem mass spectrometry to identify the absorbed 
components and metabolites in rat urine after oral administration of BYHWD. A total of 50 
compounds were detected in rat urine samples within 20 min, including 12 parent compounds 
and 38 metabolites. Except for 3 prototype components (hydroxysafflor yellow A, paeoni-
florin and amygdalin), the identified metabolites mainly came from  radix astragali ,  radix 
angelicae sinensis , and  rhizoma chuanxiong . The results indicated that glucuronidation and 
sulfation were the major metabolic pathways of isoflavonoids, while glutathione conjugation, 
glucuronidation and sulfation were the main metabolic pathways of phthalides  [69] .

  A recent study further identified the active compounds of BYHWD by comparing the 
high-performance liquid chromatography of a drug-containing urine sample with that of a 
drug-free sample. A total of 17 characteristic compounds were isolated from the methanol 
extract of a drug-containing urine sample by column chromatography. Their structures, 
including 11 isoflavanoids, 2 pterocarpanoids and 4 isoflavonoids, were identified by spec-
troscopic means. Of the 17 compounds, 8 were new compounds. Based on the possible rela-
tionship and metabolic pathways of the 17 compounds in vivo, 3R-7,2 ′ -dihydroxy-3 ′ ,4 ′ -dimet
hoxyisoflavan(isomucronulatol), 6aR,11aR-3-hydroxy-9,10-dimethoxypterocarpan (methyl-
nissolin, astrapterocarpan), 7,3 ′ -dihydroxy-4 ′ -methoxyisoflavone (calycosin) and 7-hydroxy-
4 ′ -methoxyisoflavone (formononetin) were the most important absorptive original isofla-
vonoid constituents of BYHWD in vivo, which underwent reactions of glucuronidation, 
hydroxylation, demethylation and reduction  [70] .

  Other Representative TCM Formulas 
 MLC901 is a simplified formula from the China State FDA-registered botanical drug 

MLC601, originally developed from a TCM formula named  danqi piantang jiaonang   [94] , 
containing  radix astragali ,  radix salvia miltiorrhizae ,  radix paeoniae rubra ,  rhizoma chuanxiong ,  
radix angelicae sinensis ,  C. tinctorius ,  P. persica, radix polygalae , and  Rhizoma acori tatari-
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nowii . Previously randomized double-blind, controlled trials showed that  danqi piantang 
jiaonang  could improve the recovery of neurological functions in stroke patients. MLC901 
was reported to increase the proliferation of human embryonic stem cell-derived progenitors 
 [95] . The molecular targets and its active compounds contributing to neurogenesis-promoting 
activities remain to be addressed.  Fuzhi san  is a herbal formula used for improving learning 
and memory. This TCM formula includes  Panax ginseng ,  Scutellaria baicalensis ,  Acorus tala-
rinowi ,   and  Glycyrrhiza uralens is. A recent study revealed that  fuzhi san  increased the prolif-
eration of neural progenitor cells and the survival of newborn cells in the hippocampal dentate 
gyrus of SAMP-8 aging mice and improved learning and memory activities  [96] .  Liuwei 
dihuang tang  is a classic TCM formula with the herbs of  rehmanniae radix ,  dioscorae radix , 
 corni fructus ,  alimatis rhizoma ,  moutan cortex radicis ,  hoelen ,  maximowicziae fructus  and  cervi 
cornu.  The aqueous extract of  liuwei dihuang tang  revealed to induce the proliferation of rat 
neural stem cells and increased spatial learning ability by the radial-arm maze test  [97] . In 
addition,  kami-ondam-tang (jiawei-wen-dan-tang)  is also a potential herbal formula for 
promoting neurogenesis. The formula consists of the following herbal items:  pinelliae rhizoma, 
bambusae caulis, aurantii immaturus fructus, poria, citri reticulatae pericarpium, glycyrrhizae 
radix, polygalae radix, scrophulariae radix, ginseng radix, rehmanniae radix, zizyphi spinosae 
semen, jujubae fructus  and  zingiberis rhizoma .  Kami-ondam-tang  treatment increased the 
doublecortin-positive cells in the hippocampus area and increased step-through latency in 
the passive avoidance task in mice. The molecular mechanisms are associated with promoting 
the expressions of pAkt, BDNF and pCREB  [98] .

  Representative Active Compounds from Chinese Herbal Medicine for Promoting 
Neurogenesis 

 EGb761 is a standard extract of  Ginkgo biloba,  a medicinal herb widely used for the treat-
ments of stroke.  Bilobalide  is a unique ingredient of  Ginkgo biloba,  whereas quercetin is its 
representative antioxidant component. EGb761 and its active compounds  bilobalide  and 
quercetin   have the ability to promote proliferation of progenitor cells in the rat hippocampus 
and embryonic brains through activating the CREB signaling pathway  [99, 100] .  Salvia mil-
tiorrhiza  is a commonly used herb for the treatment of stroke in TCM clinical practices. Salvi-
anolic acid B is one of the active compounds from  S. miltiorrhiza . Salvianolic acid B promoted 
the self-renewal of neural progenitor cells and induced the proliferation of rat embryonic 
neural stem cells through modulating the PI3K/Akt signaling pathway  [101] . In an ischemic 
stroke rat model, even delayed treatment with salvianolic acid B showed to improve cognitive 
impairment in post-ischemic rat brain  [102] . Baicalin is a flavonoid compound isolated from 
 S. baicalensis G . Baicalin was previously reported to promote the differentiation of human 
umbilical cord blood mesenchymal stem cells and rat bone marrow stromal cells into neurons 
 [103, 104] . Recently, we found that baicalin downregulated p-stat3 and Hes1, and upregu-
lated NeuroD1 and Mash1 (Asc1) in cultured embryonic NSCs. Furthermore, baicalin 
promoted the neural differentiation but inhibited glial formation, indicating that it could 
regulate cell fate decision in embryonic NSCs  [105] . Tenuigenin and the  polygala tenuifolia 
 root extract are isolated and extracted from  Polygala tenuifolia , a medicinal herb used for 
improving insomnia and memory. Recent studies showed that they improved NSC prolifer-
ation and neuronal differentiation  [106, 107] . Other active compounds from herbal medicine 
can also be found in the literature, including ginsenosides Rg5  [108] , and panax notoginseng 
saponins  [109] , wolfberry polysaccharides  [110]  or epimedium flavonoids  [111] .
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  Conclusion and Perspectives 

 With the development of stem cell biology, targeting adult neurogenesis becomes an 
important therapeutic strategy for brain repair in post-stroke treatment. Drug discovery 
from these natural extractions have been paid more attention nowadays with the globally 
increased popularity of and expenditures on herbal therapies recently. TCM herbs offer a 
great and unique source of both single compounds and complex combined compounds for 
drug screening. US and Chinese scientists have jointly established a library of 202 authenti-
cated medicinal plant and fungal species and about 10,000 standard fractions from these 
materials. More and more compounds and extracts from herbal medicine have been reported 
to have the potential to induce neurogenesis in the literature. The current progress already 
opens a door to explore the active compounds from commonly used TCM herbs for stroke 
treatment and seek their molecular targets. Those discoveries are useful not only for eluci-
dating the scientific basis of herbal medicine for stroke treatment but providing a cue for drug 
development. However, we must remark that many studies in the literature only reported the 
phenomenon instead of mechanistic studies. Studies rarely used pharmacological inter-
vention or genetic tools to build the internal relationship between the molecular targets and 
neurogenesis-promoting effects. How those compounds regulate the signaling and molecule 
targets, and whether they directly bind those proteins or indirectly affect their activities and 
expressions remains to be addressed. Overall, Chinese herbal medicine is an important 
resource for drug discovery and valuable therapeutic strategy to promote adult neurogenesis. 
Although the precise mechanisms and molecular targets are still unclear, current studies 
indeed bring novel insights into drug discovery and advancements in fighting post-stroke 
disability.

  Last but not least, we should remark that adult neurogenesis is involved in multiple signal 
networks; however, much of those are still unknown. The complex networks for controlling 
neurogenesis make drug development extremely difficult. It is hard to adjust overall abnormal 
network systems by simply targeting several signaling pathways and molecules. Thus, there 
is currently no FDA-approved drug for the neuroprotection and neurogenesis. TCM formulas 
may provide an alternative strategy for this purpose since they generally target multiple 
signaling pathways. Understanding the synergic effects of different compounds and fractions 
of herbal formula will be the future direction. With the development of proteomics, metabo-
nomics and bioinformatics, we are at the gate to open the complex and magic world. We 
believe that the combination of stem cell biology and modern Chinese medicine will lead to 
the development of novel therapeutic strategies for post-stroke treatment.
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