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ABSTRACT

A recent trend in optical coherence tomography (OCT) hardware has been the move towards higher A-scan
rates. However, the estimation of axial blood flow velocities is affected by the presence and type of noise, as
well as the estimation method. Higher acquisition rates alone do not enable the accurate quantification of axial
blood velocity. Moreover, decorrelation is an unavoidable feature of OCT signals when there is motion relative
to the OCT beam. For in-vivo OCT measurements of blood flow, decorrelation noise affects Doppler frequency
estimation by broadening the signal spectrum. Here we derive a maximum likelihood estimator (MLE) for
Doppler frequency estimation that takes into account spectral broadening due to decorrelation. We compare
this estimator with existing techniques. Both theory and experiment show that this estimator is effective, and
outperforms the Kasai and additive white Gaussian noise (AWGN) ML estimators. We find that maximum
likelihood estimation can be useful for estimating Doppler shifts for slow axial flow and near transverse flow.
Due to the inherent linear relationship between decorrelation and Doppler shift of scatterers moving relative to
an OCT beam, decorrelation itself may be a measure of flow speed.

Keywords: Maximum likelihood estimation, Doppler optical coherence tomography, Decorrelation.

1. INTRODUCTION

A recent trend in optical coherence tomography (OCT) hardware development is to increase the A-scan acquisi-
tion rate.1, 2 However, the minimum detectable Doppler shift is not only determined by the sampling rate, but
also by the noise statistics and estimation method.3 One cannot measure a Doppler shift lower than the square
root of the mean squared error (MSE) of an estimator. While the Doppler shift is a reliable way to quantify axial
movement, the power spectral density (PSD) of the signal is broadened by decorrelation, especially in in-vivo
situations. This effect increases the uncertainty in the Doppler estimate, and is an inherent property of OCT
signals of moving scatterers. In addition, decorrelation is more pronounced for higher flow rates. For flow nearly
perpendicular to the OCT beam, there may be a high degree of spectral broadening but a very small Doppler
shift. Using a rat blood flow phantom, and intralipid flow phantoms, we show that the decorrelation noise max-
imum likelihood estimator (MLE)3–5 can provide better Doppler frequency estimates6–8 than the popular Kasai
estimator.9 Decorrelation is a direct consequence of either flow or OCT scanning, and hence it must be taken
into account in Doppler estimation. However, as decorrelation is proportional to the flow rate, or scanning rate,
decorrelation itself may be used to deduce the relative speed of the region of interest with respect to the OCT
beam.10
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Figure 1: Cross section and profile of intralipid flow phantom, with no flow. The FEP tubing was tilted at
16.5◦ to the horizontal. The region of interest (ROI) was selected to be the center of the tubing to obtain the
maximum flow speed.

2. ADDITIVE WHITE GAUSSIAN NOISE MAXIMUM LIKELIHOOD ESTIMATOR

If sn is a single data point at time instant n, we represent the OCT data for measuring flow velocity as

sn = |r| exp[j(nΩ∆t+ φr)] + zn. (1)

Here, |r| exp(jφr) is the unknown complex constant reflectance, and j =
√
−1. The time between measurements

is ∆t. The additive noise is given by zn, which is circularly symmetric, complex, and Gaussian. The additive
white Gaussian noise (AWGN) MLE, Ω̂MLE, is obtained by choosing the values of the Doppler frequency, Ω,
and reflectance phase, φr, that maximize the real part of the inverse discrete Fourier transform (DFT) of the
(complex conjugate of the) signal.

(Ω̂MLE, φ̂MLE)
T = argmax

Ω,φr

(

Re

{

|r|
N
∑

n=1

s∗n exp [j (nΩ∆t+ φr)]

})

. (2)

As φr is chosen to make the summation real, this is equivalent to finding the frequency corresponding to the
peak of the PSD.3 We showed that the AWGN MLE is best used when the acquisition time is short, and the
flow rate is low.3 Under these conditions, the noise is well modeled by AWGN, as there is little decorrelation.

3. DOPPLER SHIFT AND DECORRELATION

According to theory,11 PSD broadening is proportional to scatterer speed for point scatterers. The assumption
of point scatterers is valid for intralipid, as the average diameter for intralipid globules is 100 nm, whereas the
beam waist of our OCT system was measured to be approximately 7.65 µm. We define the spatial point spread
function of a single scatterer as

h (ρ, z) =
2K

πw2
ρ

exp

(

−2ρ2

w2
ρ

− 2z2

w2
z

+ j
4πn

λ0

z

)

, (3)

where we have normalized the function in the transverse plane. The imaginary part of the exponent is due to
the Doppler shift. We have chosen to present the point spread function in cylindrical polar coordinates, (ρ, φ, z),
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as typically OCT beams are circularly symmetric. As the position of moving particles is a function of time, the
scatterer pulse response function is obtained by substituting ρ by vρt and z by vzt such that11, 12

p(t) =
2K

πw2
ρ

exp

[

−2(vρt)
2

w2
ρ

− 2(vzt)
2

w2
z

+ j

(

4πn

λ0

)

vzt

]

. (4)

The Gaussian shape in the transverse direction, ρ, is due to the Gaussian beam profile. The axial point spread
function is spectrally shaped in processing to be roughly Gaussian. The OCT signal at one voxel location, s(t),
may be modeled as a train of these pulse responses arriving at random times tn, with random complex amplitudes
An.

13 Mathematically, this may be expressed as

s(t) = p(t) ∗A(t)
A(t) =

∑

n

Anδ(t− tn), (5)

where the power of A(t) is given by PA. The temporal autocorrelation function of the OCT speckle pattern may
then be expressed as11, 12

R (τ) =
2|K|2
π2w4

ρ

√

π
(

v2
ρ

w2
ρ

+
v2
z

w2
z

)PA exp

[

− (vρτ)
2

w2
ρ

− (vzτ)
2

w2
z

]

exp

[

j

(

4πn

λ0

)

vzτ

]

, (6)

where the first real exponential represents the decay of the amplitude in time (decorrelation), and the second
complex exponential is due to the Doppler shift. The Doppler shift is related to the axial velocity by the formula
vz = λ0fD/ (2n), where fD is the Doppler frequency. Here λ0 is the central wavelength of the OCT beam, vρ
and vz are the radial and axial components of velocity of the flow, n is the refractive index, wρ describes the
transverse beam profile (the beam waist), and wz describes the axial resolution (coherence gate). Hence when
fitting a Gaussian to the PSD or the absolute value of the autocorrelation function, a plot of the PSD width
(reciprocal of the 1/e2 coherence time) against the flow speed v = vρ/ cos(16.5

◦) would give a straight line plot

with a gradient of
√

(

cos2(16.5◦)/w2
ρ

)

+
(

sin2(16.5◦)/w2
z

)

. The temporal PSD is given by

P (f) =
2|K|2

πw4
ρ

(

v2
ρ

w2
ρ

+
v2
z

w2
z

)PA exp






−
π2
(

f − 2nvz
λ0

)2

(

v2
ρ

w2
ρ

+
v2
z

w2
z

)






. (7)

From this equation one can see that the axial component of velocity gives rise to a Doppler shift, and the
transit time of scatterers through the beam determines the amount that the PSD broadens. While it is relatively
straightforward to estimate the axial velocity using the Kasai algorithm or an ML method, one would require
knowledge of the beam waist, axial resolution and axial velocity to estimate the transverse velocity. Red blood
cells (RBCs), however, have diameters of the order of 6 to 8 µm, which is roughly the same size as an OCT
voxel. Hence the point scatterer assumption does not apply, and one would expect that the degree and nature
of decorrelation would be different. For RBCs, it is uncertain that the relationship between decorrelation and
velocity would obey the theory described above.

We show experimentally using flow phantoms in Fig. 2 that in actual OCT measurements of flow, a Doppler
shifted signal is always accompanied by PSD broadening. This broadening may arise due to the scanning
of the OCT beam across a region of interest, or the movement of scatterers across a static OCT beam. In
Figs. 1–3, a 1325 nm spectral/Fourier domain OCT microscope with an A-line rate of 91 kHz was used. The
spectral bandwidth of this system was inferred to be roughly 83 nm FWHM from the axial resolution. The axial
resolution wz was estimated by fitting a Gaussian to the absolute value of the spatial autocorrelation function of
a non-flowing intralipid solution to obtain the 1/e2 distance. Prior calibration data on the number of voxels per
known vertical distance was used. The 1/e2 half-width axial resolution, wz was estimated to be 5.97 µm (7.03
µm FWHM). Imaging was done on intralipid flow phantoms using 200 µm inner diameter fluorinated ethylene
propylene (FEP) tubing, which has a refractive index of 1.344. The tubing was submerged in water and tilted
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Figure 2: This figure shows that PSD broadening is proportional to flow speed as measured from the Doppler
shift. The Dopper shift was estimated with the decorrelation noise MLE, using a data length of 12, and an A-line
rate of 91 kHz, obtained from intralipid flow through 200 µm inner diameter tubing. The tubing was tilted at
16.5◦ elevation to obtain a Doppler shift (Fig. 1). M-scans were taken along the center of the tubing, and the
region of interest (ROI) was selected to be the center of the tubing to obtain the maximum flow rate. The flow
rate was controlled by using a syringe pump. The flow rates were set from 0 to 90 µL.min−1.

at 16.5◦ elevation relative to the OCT beam to obtain a Doppler shift (Fig. 1). A-lines were acquired from the
center of the tubing.

The Doppler speed was measured using the decorrelation noise MLE, using a data length of 12. The PSD
width was calculated by fitting Gaussians to the measured autocorrelations to obtain the 1/e2 time, and then
taking the reciprocal of this value. Fitting in the temporal domain allows one to exclude data points after a
certain time lag, which results in a more accurate fit. The best fit regression line, excluding the first two data
points, has a gradient of 1.34× 105 m−1, corresponding to an estimated beam waist of approximately 7.65 µm.
The beam waist (1/e2 half-width lateral resolution) was measured to be 7.04±0.14 µm (8.28±0.16 µm FWHM)
using a knife edge technique and least-squares fitting of an error function. Using this measured beam waist,
theory would predict, from Eq. (6), the gradient to be 1.44× 105 ± 0.03× 105 m−1. These results suggest that
that in a well calibrated system, the PSD width may be a good measure of flow speed. PSD broadening is an
inherent property of any OCT signal with relative motion due to beam scanning or blood flow. Hence for in vivo
imaging one would not obtain a Doppler shift without spectral broadening, and the AWGN model is inadequate
to estimate the Doppler shift.

Fig. 3 shows the temporal autocorrelation function and PSD of intralipid flowing through FEP tubing at 50
µL/min as measured from a stationary OCT beam aligned transversely through the center, as shown in Fig. 1.
The axial velocity introduces a phase change of the autocorrelation function with time but does not change its
absolute value.
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Figure 3: Temporal PSD and autocorrelation11, 12 measured from a 50 µL.min−1 intralipid flow phantom. (a)
The PSD shows a Doppler shift due to the axial component of intralipid flow velocity. (b) The absolute value of
the autocorrelation function, like the PSD, is Gaussian. (c) The real part of the autocorrelation function is equal
to the absolute value of the autocorrelation multiplied by a cosine function as determined by the Doppler shift
cos (4πnvzτ/λ0) = Re[exp (j4πnvzτ/λ0)]. (d) The phase (unwrapped) of the autocorrelation function indicates
Doppler shift. The gradient is equal to the Doppler shift and is proportional to vz . The green lines show the
expected PSD, Eq. (7), and autocorrelation, Eq. (6), from the measured Doppler velocity of 47.2 mm.s−1 from
this expected beam waist. The red lines, which overlap with the green lines, show the non-linear least squares
best fit Gaussian curves of the experimental data.

4. MULTIPLICATIVE DECORRELATION MAXIMUM LIKELIHOOD ESTIMATOR

To include decorrelation noise in the signal model, Eq. (1), consider scatterers moving transversely across an
OCT voxel. At any time instant, they are randomly distributed within the voxel. Over time, the configuration
of scatterers changes, and the signal “decorrelates,” broadening the PSD. Similarly, decorrelation can arise when
scanning the OCT beam across a static sample. One can simulate this with Doppler shifted correlated random
variables. Hence, we modify the signal from Eq. (1) to include a multiplicative term qn,

sn = qn|r| exp[j(nΩ∆t)] + zn, (8)

where qn is a correlated complex Gaussian random variable with a known auto-covariance matrix, Σ. Here Σ is
real and Toeplitz symmetric, with the first row having a Gaussian profile. Its 1/e2 half-width is determined by
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Figure 4: Increasing the acquisition rate increases the performance of the decorrelation noise MLE relative to
the other estimators.5 The decorrelation MLE also achieves the Cramer-Rao lower bound (CRLB). This figure
shows the estimators under simulated multiplicative decorrelation noise and negligible additive noise against data
length for a constant acquisition time. Here, the acquisition time is 1 ms, and 1000 repetitions were acquired.
A Gaussian weighted covariance matrix was used, with a coherence time of 0.10 ms. Hence ∆t/τ ranged from
5.000 down to 0.3125. At short data lengths, decorrelation leads to aliasing or “phase wrapping”; however the
Doppler shift estimate was constrained to lie within the bounds determined by the sampling rate. The maximum
variance for an estimator, taking into account phase wrapping, is given by N2π2/T 2. (a) Variances are measured
in rad2.s−2. (b) Estimator bias in radians per second.

the coherence time of the signal. In our earlier work,5 we have shown that as additive white noise is statistically
unchanged under Doppler shifts, it may be included in qn through decreasing the off diagonal terms in the
covariance matrix Σ by an amount determined by the signal to white noise ratio (SWNR). Hence we may set
zn = 0 without loss of generality. The likelihood function is given by5

Ω̂dMLE = argmin
Ω

(

sT (Ω)Σ−1s(Ω)
)

, (9)

where s =
(

s1 exp(−jΩ∆t), . . . , sN exp(−jNΩ∆t)
)T

. As we have shown, decorrelation is an inherent prop-
erty of OCT signals with flow, and hence this estimator is expected to perform better than the AWGN MLE.
We have shown that with an appropriate covariance matrix, the decorrelation noise MLE reduces to the AWGN
MLE.5 Hence the decorrelation noise MLE is a more general estimator than the AWGN MLE. This MLE for-
malism may be used to estimate the coherence time, τ , if Σ(τ) is an explicit function of the coherence time.

5. KASAI ESTIMATOR

We use the Kasai estimator9 in its discrete form. The phase subtended, 6 , by the lag one autocorrelation function
over the time between measurements, ∆t, gives the Doppler frequency estimate,

Ω̂Kasai =
6 (R̂(∆t))

∆t
=

6

(

∑N−1

n=1 sn+1s
∗
n

)

∆t
=

6

{

∑N−1

n=1 |sn+1||sn| exp[j(φn+1 − φn)]
}

∆t
. (10)

Here sn is the signal acquired at the nth time instant, and φn, its phase. As no assumptions are made about the
noise statistics, the Kasai method provides reasonable estimates even in the presence of decorrelation noise.4

6. COMPARISON OF PERFORMANCE

We ran simulations to estimate the variances and biases of the estimators. The analog frequency was assumed
to be Ω = 400π rad.s−1 for all simulations, without loss of generality. The simulated acquisition rates were well
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Figure 5: Color Doppler Maps of 3ml.hr−1 RBC flow, through 0.58 mm inner diameter tubing, with an average
axial velocity of 0.91 mm.s−1 (Doppler frequency measurements in rad.s−1). The line scan rate is 47 kHz, with a
data length of 8. Under these conditions, the Kasai estimator has an estimation variance of 2.70× 108 rad2.s−2,
or 84.3 dB. The decorrelation MLE shows a 0.72 dB improvement over the Kasai estimator, with a variance of
2.29× 108 rad2.s−2. The AWGN MLE performance is 3.43 dB worse than the Kasai estimator’s, with a variance
of 5.95× 108 rad2.s−2. The 1/e2 half width coherence time is approximately 4.6∆t ≈ 0.1 ms.

above the Nyquist limit as the lowest simulated acquisition rate was 2 kHz. Multiplicative decorrelation noise
in the signal simulates the presence of moving scatterers. Fig. 4 shows that under the presence of multiplicative
noise, and negligible additive noise, the decorrelation noise MLE has the best performance, and the AWGN MLE
has the worst performance. As the acquisition rate and data length increase, the relative improvement of the
decorrelation MLE also increases. Similarly, increasing the coherence time increases the relative performance
improvement of the decorrelation MLE.5

In Figs. 5 and 6 a 1310 nm spectral/Fourier domain OCT microscope was used for imaging. The light source
consisted of two super-luminescent diodes combined by using a 50/50 fiber coupler to yield a spectral bandwidth
of 170 nm. The axial (depth) resolution was 3.6 µm, full-width-at-half-maximum (FWHM), and the transverse
resolution was 7.2 µm FWHM, and the highest imaging speed was 47000 axial scans per second, achieved by
an InGaAs line scan camera (Goodrich-Sensors Unlimited, Inc). The camera sensitivity was typically set to
“medium” to obtain the widest dynamic range. A 5× objective, Mitsutoyu, was used and the center of tubing
was placed in focus. We used a syringe pump with 0.58 mm inner diameter tubing and rat blood, using heparin
as the anticoagulant. The tube was placed at a 16◦ incline, so that there was an axial velocity which could
be measured as a Doppler shift. Due to the Poiseuille flow profile of the tube, measurements of the Doppler
shift were taken at 0.15 mm from the inner edge of the tubing for consistency when making comparisons. The
estimation variances were computed from 100 estimates. To compute the decorrelation MLE, the auto-covariance
function was estimated from data. The PSD half-width 1/e2 maxima were estimated from data using least squares
fitting. The DFT length of the AWGNMLE was increased by 256 times using zero padding, so that the estimator
variance would not be artifactually rounded to zero.

Fig. 5 shows that for a 3.0 ml.hr−1 flow rate, the decorrelation noise MLE has the best performance, whereas
the AWGN MLE performed more poorly. Images of the rat retina, Fig. 6, also suggest that the decorrelation
noise MLE performs better than the AWGN MLE and the Kasai estimator. We have shown in earlier work that
the decorrelation MLE can outperform the AWGN MLE in all conditions, as it is a more general ML estimator,
and the covariance matrix can be designed to incorporate additive noise into the estimation model.5

7. CONCLUSION

We have shown that while the AWGNMLE is statistically optimal under additive white Gaussian noise conditions
observed in slow flow, decorrelation is an inevitable consequence of signals acquired from moving scatterers, such
as when there is relative movement across an OCT beam. Therefore a AWGN model is inadequate to describe
the signal. As a consequence, the AWGN MLE becomes statistically suboptimal when used to quantify faster
flow. We have derived a decorrelation noise MLE that is more general than the AWGN MLE and can incorporate
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Figure 6: Doppler maps of a rat retina using (a) Kasai, (b) Decorrelation MLE, and (c) AWGN MLE algorithms.
Data was acquired at an A-line rate of 47 kHz, and estimates were obtained from blocks of 20 transverse pixels. (d)
Histogram of Doppler shifts in the regions shown in (a)–(c). The decorrelation MLE has a narrower distribution
of estimates, suggesting that it is a more precise estimator.

decorrelation noise as well as AWGN into the estimation model. We have shown that the decorrelation noise
MLE has better performance than the AWGN MLE and the Kasai estimator. We have also shown that while
decorrelation reduces the performance of the AWGN MLE, it has a well defined linear relationship with Doppler
shift for point scatterers. Decorrelation itself, taking into account the more complicated scattering effects for
red blood cells, may be used as a measure of flow speed in vasculature, in a well-calibrated system where the
axial and transverse resolutions are known. Decorrelation methods complement Doppler-based approaches and
potentially quantify nearly transverse flow where Doppler shifts are too small to measure.
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