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Abstract—We study online cloud resource auctions where
users can arrive anytime and bid for heterogeneous types of
virtual machines (VMs) assembled and provisioned on the fly.
The proposed auction mechanism RSMOA, to the authors’
knowledge, represents the first truthful online mechanism that
timely responds to incoming users’ demands and makes dynamic
resource provisioning and allocation decisions, while guaran-
teeing efficiency in both the provider’s revenue and system
social welfare. RSMOA consists of two components: (1) an
online mechanism that computes resource allocation and users’
payments based on a global, non-decreasing pricing curve, and
guarantees truthfulness; (2) a judiciously designed pricing curve,
which is derived from a threat-based strategy and guarantees a
competitive ratio O(ln(p)) in both system social welfare and the
provider’s revenue, as compared to the celebrated offline Vickrey-
Clarke-Groves (VCG) auction. Here p is the ratio between the
upper and lower bounds of users’ marginal valuation of a type of
resource. The efficacy of RSMOA is validated through extensive
theoretical analysis and trace-driven simulation studies.

I. INTRODUCTION

Cloud computing, a recently emerged computing paradigm,
enables convenient and on-demand access to a virtually un-
limited pool of computing resources, such as CPU, RAM and
disk storage. Cloud providers exemplified by Amazon EC2 [1]
and Microsoft Azure [2] manage the resources by assembling
them into virtual machines (VMs), and pursue maximized
revenue through properly pricing and allocating these VMs to
cloud users. Cloud users enjoy the convenience, scalability and
flexibility of the cloud service, and pay the provider a monetary
remuneration that is usually a fraction of their utility gained
from the cloud services.

The de facto standard in selling cloud computing resources
used to be charging fixed prices for VM access [3]. The
provider sets an hourly price for each type of VMs provisioned,
and charges users by usage time. While relatively simple to
implement in practice, fixed-price policies suffer from a clear
drawback: they cannot effectively reflect the supply-demand
relationship that is varying across the temporal domain. Con-
sequently, both (a) the revenue that the provider can glean and
(b) system-side social welfare achieved by the cloud ecosystem
as a whole are suboptimal.

Towards more efficient pricing and allocation of cloud
resources, auction-style mechanisms have been proposed and
implemented in real-world cloud systems, as exemplified by
the Amazon Spot Instance market [4], with a series of sub-
sequent work on its enhancement [5]–[7]. Unfortunately, the

following flexibilities in user demand and resource allocation
are still insufficient in existing cloud auction designs. (1) On-
demand VM assembly: pre-assembled VMs with fixed configu-
rations are the existing norm in VM provisioning, which does
not address users’ heterogenous VM demand well; dynamic
assembly of cloud resources into desired combination of VM
instances is often preferred in practice. (2) Elastic resource
demands: Cloud user’s demand is typically elastic, allowing
acquisition of different amounts of resources for corresponding
levels of utility gains. Existing auctions mostly allow only a
fixed static resource demand from each user, and an auction
mechanism that efficiently supports elastic user demands is
missing. (3) VM termination at user’s will: A cloud user should
have the right to keep an acquired VM as long as she likes
and to terminate it at any time she wishes, without unexpected
preemption or the need to give a priori notification.

Aiming at an online auction mechanism that are general
and expressive enough to provide these flexibilities, we pro-
pose RSMOA, the first online combinatorial auction that timely
responds to the incoming users’ demands and makes dynamic
resource provisioning decisions. RSMOA has the following
salient features. (1) An online VM auction, in which cloud
users come and go on the fly, without a priori notification;
demands from newly arrived users are addressed instantly.
(2) Expressive bidding language and dynamic VM assembly.
Users’ elastic demands are expressed and heterogeneous types
of VMs are assembled and allocated on the fly, tailored to
the demands and resource availability, guaranteeing that each
user’s utility never decreases over time. (3) Truthfulness, the
quintessential property in auction mechanism design, which
elicits voluntary truthful VM valuation reports from selfish
cloud users. As a result, the cloud provider is guaranteed
to receive correct information based on which optimization
decisions are made. Besides truthfulness in VM valuations,
RSMOA further guarantees truthfulness in demand arrival
times. (4) Simultaneous optimization of the cloud provider’s
revenue and system-wide social welfare. Our online auction
achieves a competitive ratio O(ln p) in both social welfare and
provider revenue, when benchmarked against the well-known
offline Vickrey-Clarke-Groves (VCG) auction. Here p is the
ratio between the upper and lower bounds of users’ marginal
valuation of any type of resource.

More specifically, our contributions along the design of
RSMOA are three-fold:

First, we identify a set of necessary conditions (namely
bid independence, bundle monotonicity, and user-utility-978-1-4799-0913-1/14/$31.00 c© 2014 IEEE



maximizing allocation) for an auction to achieve individual
rationality and truthfulness in both VM valuation and demand
arrival times. Bid independence isolates the price that a user
pays from her own bid, such that the user cannot manipulate
her bid to achieve a higher utility. With bundle monotonicity,
larger demand bundles containing larger amounts of resources
are priced no lower than smaller ones. According to user-
utility-maximizing allocation, the cloud provider allocates re-
sources to maximize each user’s utility, instead of her own
revenue. While this appears to contradict provider revenue
maximization, it is proven necessary for truthfulness, which
eventually leads to maximal provider revenue together with
other guarantees of the auction design.

Second, we design an online auction framework that sat-
isfies the above three conditions. Upon arrival of a user’s bid
expressed using a number of XORed bundles, the provider
identifies the bundle that maximizes the user’s utility, and
charges the user according to a pricing curve. The pricing
curve maintains the supply-and-demand relationship across the
board, providing a higher price per unit resource when more
resources are consumed. Upon termination of a user’s VM
usage, the resources are returned to the cloud pool and re-
allocated to other existing users. The adjustment of resources
to the existing users guarantees a non-decreasing utility at each
user, and priorities for assigning more resources are given to
users who arrive early.

Third, we carefully design the explicit form of the pricing
curve following a threat-based strategy, which targets a com-
petitive ratio c of the provider’s revenue by setting prices that
allow resource transactions only when necessary, i.e., when
not selling the resource leads to violation of the targeted
competitiveness of the auction mechanism. We formulate a set
of differential equations to describe this threat-based strategy,
and solve them to derive the closed form of the pricing curve.
The best competitive ratio is found to be c = O(ln(p)),
according to a set of necessary, boundary conditions that
guarantees correct strategy execution. Though this competitive
ratio is computed for the provider’s revenue, we prove that,
interestingly, the same competitiveness is achieved in terms of
social welfare.

In the rest of the paper, we discuss related work in Sec. II,
and define the system model in Sec. III. Sec. IV and Sec. V
present the framework of RSMOA and the design of the pricing
curve, respectively. Simulation results are presented in Sec. VI.
Sec. VII discusses possible extensions and future work, as well
as concludes the paper.

II. RELATED WORK

Auction as an efficient resource pricing and allocation
method has been extensively studied in a number of fields,
including in particular cloud computing. The celebrated VCG
auction mechanism [8] constitutes the only type of auction
that concurrently achieves truthfulness and maximum social
welfare, by directly solving the social welfare maximizing
allocation and charging each user the opportunity cost she
brings. The VCG mechanism can be efficiently applied only if
two conditions are met: all required information is available,
and the optimal solution can be calculated efficiently (in poly-
nomial time). When the social welfare maximization problem

at the auctioneer involves online decision making or is NP-hard
in nature, the VCG mechanism becomes impractical [9].

One solution to overcome the computational difficulty is
to design an approximation algorithm for solving the under-
ling social welfare maximization problem, and a customized
payment rule that works in concert with the approximation
algorithm. Note that the payment rule in VCG auctions, charg-
ing an opportunity cost, works with only some approximation
algorithms, and loses truthfulness in general [10]. Although
there is no universal truthful payment rule, some instructive
ideas have been investigated, for example by exploiting the
concept of critical bids [11], or using the LP decomposition
technique [12] if the underlying social welfare maximization
problem exhibits a packing or covering structure [7].

Another solution approach attempts to first decide the
payment rule instead, and then seek a good approximation ratio
with the allocation algorithm design by fine-tuning the pay-
ment rule. Along this direction, Goldberg et al. [13] propose
an auction that sells single items according to a threshold-
based pricing rule. Ravi et al. [14] extend such threshold-
based payment rule to a pricing curve-based solution, and their
auction is applicable to more general types of goods.

Online auctions bring a new dimension of challenges into
auction mechanism design, due to the lack of future informa-
tion to solve the underlying resource allocation problem. It is
in general difficult to design a payment rule with an online
approximation algorithm that achieves nice properties [15].
For example, truthfulness is usually compromised when an
auction is extended from a single round to multiple rounds in
a straightforward fashion [16]. A pricing-curve based method
is advantageous in the online scenario, since the pricing curve
maintains global information over time, and payments can be
naturally computed round by round.

Recently, a number of auctions have been designed for VM
provisioning in cloud computing, using techniques mentioned
above. Zhang et al. [7] design a truthful single-round auction
using the LP decomposition technique. Wang et al. [5] apply
the critical bid approach, and add a collusion-resistant property
to their single-round auction. Zhang et al. [6] utilize the
pricing-curve method, and design a truthful online auction for
single-type VMs and different types of users. Our mechanism,
RSMOA, distinguishes itself in four aspects: (1) Our VM
allocation is efficient for arbitrary patterns of user valuation,
instead of specified types of users. (2) Our auction is com-
binatorial, and applies to multiple types of VMs, which are
assembled on demand. (3) The users in [6] must reveal their
departure times to the provider, while no such information is
needed in RSMOA, allowing users to leave at any time without
a priori notification. (4) Not only social welfare, but also
the cloud provider’s revenue are approximately maximized in
RSMOA. Most existing work target at maximizing only social
welfare or provider’s revenue [17], but not both.

III. SYSTEM MODEL AND DEFINITIONS

A. Auction Model

We consider a cloud provider who owns a pool of R types
of resources (e.g., CPU, RAM, disk) that can be dynamically
assembled into M different types of virtual machines (VMs),



VM1, · · · , V MM . Let [X] be the set of integers {1, 2, . . . , X}.
One instance of VMm is constituted by αm,r units of type-r
resource, for all r ∈ [R]. There are Ar units of resource r in
total, and A =

∑
r∈[R] Ar is the overall number of units of all

resources. The cloud operates over a continuous, potentially
large time interval [0, T ].

There are N users in the cloud, where user n (n ∈ [N ])
learns her VM demand at time tn. Without loss of generality,
assume t1 ≤ t2 ≤ . . . ≤ tN . The valuation of user n for
a possible VM bundle dn = (dn,1, · · · , dn,M ) is bn(dn) per
time unit. Here dn,m represents the number of VMm instances
in the bundle. bn(dn) is user n’s valuation function, mapping
a possible VM bundle to a real value. A user can express her
valuation function by enumerating the values corresponding
to all the possible VM bundles, or more succinctly using a
formula that reflects the need of her job. Consider an example
system with two types of VMs. User n running a MapReduce
job requires several instances of VM1 for the mapping tasks
and VM2 for the reducing tasks. Assume that from past
experience, the number of instances of VM1 should be 3 times
that of VM2. Her valuation for different bundles of the two
types of VMs is: bn(3, 1) = 6, bn(6, 2) = 9, bn(9, 3) = 10.
The valuation function can hence be expressed as:

bn(3x, x) = 10− (3− x)2, for 1 ≤ x ≤ 3

In the online auction, user n who knows her VM demand at
time tn sends her bid bn(·) to the provider. Here we assume
she bids her real valuation function bn(·), and later we will
show that this assumption is reasonable for any rational users,
by proving truthfulness in VM valuation. Upon receiving user
n’s bid, and prior to opening the next user’s bid, the provider
decides the bundle dn(t) for allocation to user n at time
t, along with a per-time-unit price πn(t). User n uses the
allocated resources until she decides to leave and terminate
the VMs at time tn.

The provider does not know the arrival and departure times
tn and tn of each user in advance. A user’s true valuation (the
valuation function) is private information, and can be different
from her bid. The user’s utility per time unit is the difference
between her valuation and the payment on the allocated bundle
dn(t):

un(t) = bn(dn(t))− πn(t) (1)

During user n’s residence time [tn, tn], the provider can adjust
the bundle dn(t) of VMs allocated to the user, as well as the
price πn(t), under the guarantee that the user’s utility never
decreases due to such adjustment. The adjustment is typically
done when more sources become available, and is reasonable
due to the elastic demand of each user, as expressed in her
valuation function.

At the provider side, the total amount of resources from
the VMs provided to all the users at any time cannot exceed
the resource capacity:∑

n∈[N ]

∑
m∈[M ]

dn,m(t)αm,r ≤ Ar, ∀r ∈ [R], t ∈ [1, T ] (2)

We assume that the provider can gain a residual value p
per time unit if a unit of resource r is not used, which can be
considered as the operational cost that is saved. Note here we

adjust the units of different types of resources so that all types
of resources have a uniform residual value p.1 The revenue of
the provider at time t is the sum of users’ payments and the
overall residual value for all the unallocated resources:2

uP (t) =
∑

n∈[N ]

πn(t) +
∑
r∈[R]

pÃr(t) (3)

Here Ãr(t) is the remaining units of resource r at time t:

Ãr(t) = Ar −
∑

n∈[N ]

∑
m∈[m]

αm,rdn,m(t) (4)

The achieved social welfare at time t is the sum of the
provider’s revenue and the users’ utilities:

S(t) =
∑

n∈[N ]

bn(dn(t)) +
∑
r∈[R]

pÃr(t) (5)

We assume the marginal valuation of any type of resource
r of any user is lower bounded by p (intuitively, the valuation
of the resource should be no lower than the residual value
when the resource is not sold), and has an upper bound p as
well, i.e., ∑

r∈[R]

αm,rp ≤ ∂bn(dn)

∂dn,m
≤

∑
r∈[R]

αm,rp.

We denote the ratio between the upper bound and the lower
bound by p = p/p. We also assume bn(·) is concave and non-
decreasing on the number of any type of VMs, i.e., ∂2bn(dn)

∂d2
n,m

≤
0, ∂bn(dn)

∂dn,m
≥ 0.

For ease of reference, we summarize important notation in
Table I.

B. Economic Properties

The following properties are pursued in our auction design.

(i) Non-decreasing user utility. The solution space in our
auction design includes re-adjusting the bundle allocated to
a user n at a time t ∈ (tn, tn). A corresponding desirable
property that such re-adjustment should satisfy, for encour-
aging user participation, is that a user always gains a higher
utility from the new bundle allocated and is hence happy with
the adjustment. Formally, we require ∀t1 > t2 ∈ [tn, tn],
un(t1) ≥ un(t2), ∀n ∈ [N ].

We continue with our MapReduce example to illustrate this
property. Suppose user n is allocated 6 instances of VM1 and
2 instances of VM2 upon bidding, at a per-unit-time price 6.
Her utility is therefore 9 − 6 = 3. At a later time point, the
provider decides to give her 3 more instances of VM1 and 1

1For instance, suppose 1 CPU unit has a residual value $1, and 1 GB
memory has a residual value of $4. We then use 0.25GB as the unit of memory,
and the residual values of CPU and memory are now both $1.

2Another way to formulate the provider’s revenue: Let p be the unit
operational cost of the resources. The provider’s revenue is more naturally
expressed as

∑
n∈[N ] πn(t)−

∑
r∈[R] p(Ar − Ãr(t)) =

∑
n∈[N ] πn(t)−∑

r∈[R] pAr +
∑

r∈[R] pÃr(t). Here
∑

r∈[R] pAr is a constant, removing
which we obtain (3). Using the revenue formulation in (3) and interpreting p
as the residual value instead, provide us convenience in proving properties of
our auction, as well as connect better to the pricing curve design in Sec. V.



TABLE I. NOTATION

N # of users [X] integer set {1, 2, . . . , X}
M # of VM types tn user n’s bidding time
R # of resource types tn user n’s leaving time

T total time length
VMm VM type m
αm,r # of resource r required by VMm

Ar available units of resource r
A total available units of all resources

˜Ar(t) total units of remaining resource r at time t
πn(t) user n’s payment per time unit at time t
un(t) user n’s utility per time unit at time t
p lower bound of marginal valuation of any

resource, as well as the provider’s residual value
p upper bound of marginal valuation
p ratio between the upper and lower bounds of the

marginal valuation
D set of all the possible bundles

dn(t) user n’s allocated bundle at time t
dn,m(t) # of VMm in user n’s bundle at time t
bn(dn) user n’s valuation function

τ queue containing all the current users
uP (t) the provider’s revenue at time t
S(t) social welfare at time t
cS social welfare competitive ratio
cR provider revenue competitive ratio

more instance of VM2, at a price 6.5 per unit time for all the
9+3 instances. The user’s new utility becomes 10−6.5 = 3.5.

The valuation function allows a user to express her elastic
demand on the resources. For example, a user can configure
the upper bound of resources desired, by having the valuation
function reach a plateau at the upper bound, such that further
excess supply results in zero valuation increment. In this way,
a user can impose a cap on the amount of received resources
by specifying her valuation function accordingly.

We would like to emphasize that the non-decreasing utility
is a property achieved by our algorithm, rather than a constraint
or restriction imposed on the model. The design of online
algorithms typically enables dynamic adjustment over time
in order to improve the algorithm efficiency. Existing online
mechanisms, such as the Amazon Spot Instance market [4],
may terminate the leases at any time and bring significant
uncertainty to the users. We seek to improve the existing
mechanisms by providing guarantee of basic resources to
the users, while retaining flexibility in adjusting resource
allocation, which is essential to the efficiency of the online
auction. By guaranteeing a non-decreasing utility (calculated
based on the valuation function), the dynamic adjustment of
allocated resources is welcomed by a user who targets utility
maximization.

(ii) Individual Rationality. An online auction is individually
rational if no user has a negative utility over her staying time:
∀n ∈ [N ], t ∈ [tn, tn], un(t) ≥ 0. This property provides a
basic incentive for users to participate in the auction.

(iii) Truthfulness in VM Valuation. Each user in the auction
achieves her maximum utility if she bids her valuation bn(·)
truthfully regardless of other users’ bids. The user’s utility gain
by reporting bn(·) should be no smaller than the utility gain
with a false bid b′n(dn) �= bn(dn).

(iv) Truthfulness in Demand Arrival Time. A user may try
to delay her bid upon learning her resource demand, in order

to maximize her total utility across her staying in the cloud.
Truthfulness in demand arrival time guarantees that bidding
at the time user n learns her demand, i.e., tn, maximizes her
total utility.

(v) Competitiveness in Social Welfare. We compare the
overall social welfare of the online auction with the social
welfare under the offline VCG auction, which is the optimal
offline social welfare [8]. The offline VCG auction calculates
the maximum offline social welfare by collecting all the bids
over [0, T ] and find the optimal allocation satisfying all the
constraints introduced in Sec. III-A and guaranteeing a non-
decreasing utility at each user. Suppose the social welfare at
t under the offline VCG is Svcg(t). Denote the total social
welfare under our auction mechanism and the offline VCG
auction by S and Svcg respectively. The supremum of

cS =
Svcg

S
=

∫ T

0
Svcg(t)dt∫ T

0
S(t)dt

is referred to as the social welfare competitive ratio of the
online auction.

(vi) Competitiveness in Provider’s Revenue. We compare the
provider’s revenue from the online auction with the revenue
under the offline VCG auction as well. Suppose the revenue
at t under the offline VCG is uPvcg(t). The supremum of

cR =
uPvcg

uP
=

∫ T
0

uPvcg(t)dt∫ T
0

uP (t)dt
is the revenue competitive ratio

of our online auction.

IV. ONLINE AUCTION DESIGN

A. Conditions on Truthfulness and Individual Rationality

We start our auction mechanism design by investigating
conditions that must be satisfied to guarantee truthfulness of
the online auction in both the VM valuation and demand arrival
time, as well as individual rationality.

Assume the provider calculates user n’s payment πn(t) by
a function πn(bn(·),dn, t), which is dependent on user n’s
valuation function, her received bundle, and the current time,
(and implicitly the bids of previously arriving users). Here
we slightly abuse the notation πn to denote both the user’s
actual payment, and the payment calculation function used
by the provider. We will show that, for truthfulness in VM
valuation, the payment πn(bn(·),dn, t) should be independent
from a user’s bid bn(·), to prevent the user from influencing
the payment by modifying her bid. Therefore, the payment
calculation function can be simplified to πn(dn, t). Another
intuitive requirement on the payment is that it should be
bundle-monotonic, i.e., larger bundles with more resources are
priced higher. The idea is simple: if smaller bundles are more
expensive, the mispricing will be exploited by dishonest users.
After a pricing function πn(dn, t) is established, the exact
bundle dn(t) to be allocated to user n can be decided based
on the pricing function and the user’s valuation. A general
rule in truthful auction design is to allocate the amount of
resource which maximizes the user’s utility. Since maximizing
her utility is a user’s objective, such a mechanism encourages
users to bid truthfully by giving them the maximum utility. We
give the definitions of the above three requirements and prove
them as necessary conditions for truthfulness in VM valuation



in Theorem 1. The detailed proof can be found in Appendix
A.

Definition 1: (Bid-independent Payments) Let
πn(bn(·),dn, t) denote the payment of user n at time t
if receives bundle dn by bidding bn(·). The payment is
bid-independent if for any two different bids bn(·) �= b′n(·)
which lead to the same bundle allocation result, the payments
are always the same, i.e., πn(bn(·),dn, t) = πn(b

′
n(·),dn, t).

When bid-independent, the payment only depends on a
user’s allocated bundle and previous user bids.

Definition 2: (Bundle-monotonic Payments) Define dn ≥
d′
n if dn,m ≥ d′n,m, ∀m ∈ [M ]. A bid-independent pay-

ment is further called bundle-monotonic if πn(dn, t) ≥
πn(d

′
n, t), ∀dn ≥ d′

n.

Definition 3: (Utility-maximizing Allocation Rule) An al-
location rule is utility-maximizing if the provider always
calculates a payment function πn(dn, t) independent of user
n’s bid, and decides the VM allocation by finding the bundle
d∗
n(t) which maximizes this user’s utility un(t), i.e.,

d∗
n(t) = argmax

d∈D
(bn(dn)− πn(dn, t)) (6)

where D is the set of all possible VM bundles.

In the special cases where the maximum utility is negative,
the provider allocates an empty bundle to the user (resulting
in zero utility).

Theorem 1: (Necessary Conditions on Truthfulness in VM
valuation) For any VM valuation truthful deterministic on-
line auction, its payment must be bid-independent, bundle-
monotonic, and the allocation should be utility-maximizing.

Next we study truthfulness in the demand arrival time. To
incentive users to bid as soon as their demands arrive (tn), the
auction mechanism should “punish” users who postpone their
bidding, by charging higher prices for the same bundles. We
define a time-monotonic payment as follows, and prove that by
adding this requirement, we have identified a set of sufficient
conditions for an online auction to be truthful in VM valuation
and demand arrival time, as well as individually rationality, in
Theorem 2, with a detailed proof in Appendix B.

Definition 4: (Time-monotonic Payment) The payment is
time-monotonic if user n never gets a lower price for the same
bundle dn by delaying her bidding time: if user n bids at time
t1, her payment is πn(dn, t) at time t ≥ t1; if she bids at time
t2 > t1, her payment at time t ≥ t2 is π′

n(dn, t) ≥ πn(dn, t).
Given that the users are differentiated by their arrival times,
the property is equivalent to the following: for any users
n1 < n2, n1 ∈ [N ], n2 ∈ [N ], πn1

(d, t) ≤ πn2
(d, t),

∀t ∈ [0, T ], ∀d ∈ D.

Theorem 2: (Sufficient Conditions on Truthfulness and In-
dividual Rationality) An online auction with a bid-independent,
bundle-monotonic, time-monotonic payment and a utility-
maximizing allocation rule is truthful in VM valuation, truthful
in demand arrival time, and individual rational.

B. Online Auction Mechanism

Based on Theorem 2, we are able to design an online
auction framework that achieves the three important properties:

At time t upon receiving a user n’s bid, the provider prepares
a payment function πn(dn, t) that depends on the bundle to
be allocated to user n (dn) and all previous user bids before
t (but independent of user n’s bid), and is bundle-monotonic
and time-monotonic. Then the provider selects the bundle d∗

n
that maximizes user n’s utility, and determines her payment
by πn(d

∗
n, t).

The key lies in designing the payment function. To obtain
a payment function that is bundle-monotonic, we first evaluate
the total number of units of resources that VMs in the bundle
consume, as x(dn) =

∑
m∈[M ]

∑
r∈[R] dn,mαm,r. We then

set up a marginal price function P (x) : R+ → R
+, which

gives the marginal price of one more unit of resource, when x
units of resource have been allocated. The payment function
is defined as: πn(dn, t) =

∫ x0+x(dn)

x0
P (y)dy, where x0 is the

total number of units of allocated resources before allocating
bundle dn to user n. The payment function is apparently bid-
independent and bundle-monotonic.

The detailed design of the pricing curve, P (x), which
is a core component of RSMOA, is presented in the next
section. For now, we know that P (x) is non-decreasing, such
that: (1) a lower marginal price P (x) for smaller x leads
to a lower payment for a user who arrives earlier, which
implies time monotonicity; (2) when more units of resources
have been allocated (i.e., x is larger), a higher marginal price
is desirable, such that VM bundles are allocated to users
who value them more – a common technique in resource
allocation to pursue competitiveness in provider revenue and
social welfare. Thus the payment mechanism helps achieve a
higher overall valuation (and also revenue) when the resources
are constrained.

To pursue competitiveness, our online auction also enables
dynamical adjustment of bundles (prices) allocated (charged)
to the existing users who have arrived earlier, upon arrival of
a new user or departure of a user at time t. Specifically, users
are maintained in a queue τ : a user is added to the tail of τ
upon arrival, and removed from the queue when she departs.
The provider always adjusts bundle allocation to existing users
according to their order in queue τ (the oldest user is handled
first), in order to guarantee time monotonicity in Definition 4
(i.e., at any time t, the price for the same bundle to a user who
arrived earlier is lower). For each user, the best bundle which
maximizes her utility is selected, and the payment is computed
using the payment function, according to how many units of
resources have been allocated so far.

The non-decreasing pricing curve P (x), combined with the
handling order τ , also guarantees a non-decreasing utility at
each user. Consider when a user n′ is removed from τ , then
for any user n who is after n′ in τ , her request is handled
earlier than before. Consequently her payment is the integral
of P (x) on smaller value of x, and with smaller value of
P (x). So assuming her receiving bundle is unchanged, her
payment is non-increasing and her utility is non-decreasing.
Further note that the provider always finds the user’s utility-
maximized bundle among all the possible bundles, which
include her original receiving bundle. As a result, the utility
after adjustment is non-decreasing.

Our online auction mechanism, RSMOA, is summarized in
Alg. 1. Theorem 3 proves that RSMOA achieves all the desired



properties except competitiveness, which we will show in the
next section. The detailed proof is given in Appendix C.

Algorithm 1 RSMOA: The Online Auction Mechanism
Do the following at t if there is user arrival or departure:

1: Update queue τ
2: Initialize the amount of allocated resource x0 ← 0
3: for all user n in queue τ do
4: Prepare the payment function πn(dn) =∫ x0+x(dn)

x0
P (y)dy

5: Compute the best bundle to be allocated to user n
d∗
n ← argmaxdn∈D{bn(dn)− πn(dn)}

6: Compute user n’s payment πn(d
∗
n, t)

7: Update the amount of allocated resource x0 ← x0 +
x(d∗

n)
8: end for

Theorem 3: RSMOA, as described in Alg. 1, is truthful
in VM valuation, truthful in demand arrival time, individually
rational, and guarantees a non-decreasing utility at any user
over time.

V. PRICING CURVE AND COMPETITIVE RATIO ANALYSIS

In this section, we show that the efficiency of Alg. 1 can
be achieved by carefully designing the global, non-decreasing
pricing function P (x). We design P (x) that guarantees a
competitive ratio O(ln p) in the provider’s revenue as well as
in social welfare, based on a threat-based approach proposed
in recent literature [14].

Assume we target a competitive ratio c between the
provider’s revenue obtained with Alg. 1 and that with the
offline VCG mechanism. Recall in Alg. 1, the provider sells
resource units (in the form of VM bundles) at the non-
decreasing marginal price P (x) per extra unit. With the threat-
based approach, P (x) is set in a way that the next units of
resources are sold to a user (in the form of a VM bundle,
when the user’s valuation of the bundle is no lower than
the payment the provider is asking for), only if not selling
these units leads to an immediate violation of the competitive
ratio c in the provider’s revenue, in the case that the auction
immediately terminates. In other words, P (x) should lead to
rejection of a user unless her bid is so high that not accepting
this bid results in a threat to the revenue competitiveness of
the algorithm. We only consider such immediate threats (i.e.,
the target competitive ratio will be violated if the auction
immediately terminates), because only in this scenario can
the competitive ratio be calculated accurately with hitherto
available information. Otherwise, if we wish to consider the
competitive ratio at a future time, we need assumptions about
the future events, which complicates the strategy and is less
practically feasible.

Such a threat-based approach is a conservative strategy in
maintaining a target competitive ratio c. Intuitively, a more
aggressive strategy is to set the prices so that more resources
are sold when a user’s valuation is higher. There is a catch
though: it may mistakenly sell too many resources to a user and
miss a better opportunity to sell the same amount of resources
with a higher price in the future. How to ensure a good
competitive ratio with this strategy requires future studies. In

comparison, the threat-based strategy is guaranteed to achieve
the target ratio c [14].

In order to derive the mathematical expression of P (x)
according to the threat-based strategy, we investigate its inverse
function Q(z) = P−1(z).3 Since P (x) is the marginal price
per extra unit of resource when x units have been allocated,
Q(z) represents the total number of units of resources allocated
when the marginal price reaches z. From the perspective of
the cloud provider, designing function P (x) and designing
function Q(z) are two equivalent problems: if the provider
focuses on P (x), she tries to quote a reasonable price for the
next unit of resource; if she focuses on Q(z), she tries to decide
the additional number of units sold to users, when the marginal
price increases. We next focus on deriving Q(z) by setting up
a number of equations on Q(z), according to the threat-based
strategy. We use V (z) to denote the total payment collected
by the provider for Q(z) units of resources sold, when the
marginal price goes up to z. We derive Q(x) based on the
following conditions:

Q(z) = 0 and V (z) = 0, ∀z ≤ cp (7)

Recall that the provider gains a residual value p for each unit of
unallocated resource. If the marginal price z is not higher than
cp, the provider does not need to allocate any unit of resource,
since the competitive ratio c will not be violated anyway: the
revenue of selling all the resources is no higher than Acp, but
not selling anything can achieve a total residual value Ap.

V ′(z) = zQ′(z), ∀z ∈ [cp, p] (8)

The number of resource units sold at marginal price z is Q′(z),
and the product of z and Q′(z) is the additional payment
V ′(z).

zA/c = (A−Q(z))p+ V (z), ∀z ∈ [cp, p] (9)

When the marginal price is z, the worst case is that all the
resources, at the total number of units A, are sold at price
z. To maintain a competitive ratio c, the overall revenue
gleaned by the provider should be at least 1/c fraction of the
revenue collected under VCG. The marginal price reaching z
shows that there exists a user, who is the last user under our
immediate termination assumption, valuing one more unit of
resources by no more than z (recall the assumption on non-
increasing marginal valuation). None of the previous users has
a higher marginal valuation, since P (x) is non-decreasing. So
the total revenue collected under VCG is no more than Az.
Therefore by setting the revenue target Az/c equal to the sum
of total payment V (z) and residual value of the remaining
resources (A−Q(z))p, we can guarantee a competitive ratio
c when comparing our mechanism to VCG.

Q(p) = A (10)

All the resources should have been sold at the upper bound of
the marginal price.

Solving these four groups of equations (7)-(10), we can
derive the solution of Q(z) as follows (detailed steps are given

3Since P (x) may not be strictly increasing, we define P−1(z) as the
maximum value y satisfying z = P (y)
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Fig. 1. An example of P (x), where p = 1, p = 16, c = 2.38, A = 1000.

in Appendix D):

Q(z) = A

∫ z

cp

1

c(y − p)
dy, z ∈ [cp, p] (11)

Then we obtain the marginal pricing function P (x) by invert-
ing Q(z):

P (x) = p(1 + (c− 1)ecx/A) (12)

The pricing function is non-decreasing and concave, i.e.,
the marginal price increases more significantly when less
available resource remains. Fig. 1 shows an example of the
pricing curve P (x), where p = 1, p = 16, A = 1000, and
c = 2.38. The marginal price starts from cp = 2.38, and
increases exponentially to the upper bound p = 16, with the
increase of the number of allocated resource units.

Applying such a pricing function in Alg. 1 guarantees a
competitive ratio c in the provider’s revenue, achieved by our
online auction. We seek to derive the best ratio c under which
the threat-based strategy remains feasible, which is given as
the solution to the following equation (detailed steps are given
in Appendix D). We can prove the best ratio is c = O(ln p)
(recall p = p/p), since c = W (p−1

e ) + 1, where W (·) is
the product log function, a.k.a. the Lambert W function, and
W (n) = O(lnn).

c = ln
p− 1

c− 1
(13)

Theorem 4 proves that applying the pricing function P (x)
in (12), a competitive ratio O(ln p) is achieved in terms of
the provider’s revenue. The detailed proof can be found in
Appendix E. Surprisingly, though the threat-based strategy
focuses on the provider’s revenue, the same competitive ratio
is achieved in terms of social welfare as well, as stated in
Theorem 5, and proved in Appendix F.

Theorem 4: Applying the pricing function P (x) in (12)
in Alg. 1, the competitive ratio cR of the algorithm in the
provider’s revenue is O(ln(p)), if the resources are not ex-
hausted, i.e., Ãr(t) > 0, ∀t ∈ [0, T ].

Theorem 5: Applying the pricing function P (x) in (12)
in Alg. 1, the competitive ratio cS of the algorithm in social
welfare is also O(ln(p)), if the resources are not exhausted,
i.e., Ãr(t) > 0, ∀t ∈ [0, T ].

VI. PERFORMANCE EVALUATION

A. Simulation setup

We evaluate our online auction design using trace-driven
simulations. We consider 6 types of VMs and 3 types of
resources. The configurations of VMs (αm,r) are based on
the instances of Amazon EC2, as shown in Table II. Users’
resource demands are extracted from Google cluster data [18],
which is a record of computational tasks submitted to the
Google cluster, with information on their resources demands
(CPU, RAM, disk). We convert the resource demands into VM
demands by calculating the number of instances that make up
the same amount of resources. The VM demand constructed
in this way corresponds to one VM bundle of a user in our
model. Since a user’s demand is elastic in our model, we create
elastic demand of a user in the following manner: Suppose
the basic VM bundle needed by user n from the Google data
is dn, the user can receive bundles 2dn, 3dn, . . . , λdn at
different valuations as well, where λ is uniformly distributed
in [1, 5]. A user by default applies a linear, increasing valuation
function bn(·), with a marginal valuation (i.e., slope of the
linear valuation function) uniformly distributed within [1, p].
The default number of users is N = 10000. The system runs
for T = 10000. The arrival time tn of a user is uniformly
distributed within [0, T ], and the departure time of the user
is uniformly distributed within (tn, T ]. The total number of
units of resources of each type is by default 60% of the
overall maximum amount demanded by all users. We run each
experiment for 10 times, and present the average result.

TABLE II. VM INSTANCES OF AMAZON EC2

VM Type CPU RAM Disk
m1.medium 2 3.75GB 410GB
c1.medium 5 1.7GB 350GB
m2.2xlarge 13 34.2GB 850GB
m1.large 4 7.5GB 840GB
m1.xlarge 8 15GB 1.68TB
c1.xlarge 20 7GB 1.68TB

B. Simulation results

We first compare the ratio of the social welfare achieved
by the offline VCG auction and that achieved by our online
auction in the experiments, with the theoretical worst-case
competitive ratio O(ln p), at different values of p. Fig. 2 shows
that the ratio in practice is much better than the worst-case
bound, and is close to the optimum 1. We also observe that
our online auction performs close to the offline VCG auction
regardless of the value of p.

Next we suppose a concave valuation function for each
user (with linearly decreasing marginal valuation), instead of
a linear valuation function. Fig. 3 compares the ratio between
the social welfare achieved by the offline VCG auction and
that achieved by our online auction under the two types
of valuation functions. The ratio is slightly larger when the
concave valuation function is used. With the concave valuation
function, the marginal valuation of each additional VM is
variable, which makes it more difficult for the algorithm to
find an optimal allocation.

We further evaluate the impact of different number of users
on the performance of our online auction in Fig. 4, where p is
fixed at 8. It can be concluded that the performance of RSMOA
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is not affected by the number of the users, which is consistent
with our analysis of the worst-case ratio, which is only related
to p.

Our theoretical analysis in Theorem 4 and 5 only guaran-
tees a competitive ratio when the total amount of resources at
the provider is sufficient. As a supplement to our theoretical
results, we evaluate the performance of our auction when the
resources are more constrained, by setting the total amount of
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Fig. 6. Provider’s revenue of RSMOA compared with offline VCG auction
under different values of p

resources of each type to be 60%, 50%, . . . , 10% of the overall
demand of the users. Fig. 5 shows only slight increase of the
ratio when the resources are more scarce.

Finally, we compare the provider’s revenue achieved with
RSMOA with the revenue under the offline VCG auction.
Fig. 6 shows that the revenue under our online auction is close
to that of the offline VCG.

VII. CONCLUSION

RSMOA presented in this paper can be applied to other
related models. For example, the temporal domain can be
finite or infinite, continuous or slotted. Users can modify their
valuation at any time during the auction. RSMOA just treats
the users with modified valuation as new incoming users,
whose utility may decrease. But other users are unaffected
and still gain a non-decreasing utility.

RSMOA represents the first online combinatorial auction
for dynamic cloud resource provisioning with guaranteed
revenue and social welfare. It advances the state-of-the-art
of cloud auction design in that all previous VM auction
mechanisms either have fixed VM provisioning, or focus on
one performance metric only. Our online auction, RSMOA,
comprises of two components. First we design an online
mechanism based one a set of necessary conditions of the
truthful property. Second, we derive the closed form of the



critical pricing curve from a threat-based strategy. RSMOA
guarantees a competitive ratio of O(ln p) where p is the
ratio between the upper and lower bounds of users’ marginal
valuation of any type of resource. Trace-driven simulation
shows RSMOA achieves near-optimal performance in practical
scenarios.

We plan to extend this work to more practical model
settings, such as by considering the network bandwidth among
VMs, or by considering the problem of packing VMs into
physical machines. Furthermore, some impossibility results
may complement results in this work, for instance, lower
bound results on the competitive ratio in either revenue of
social welfare.
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APPENDIX A
PROOF OF THEOREM 1

Proof: First we argue that bid-independent is necessary
for truthfulness in VM valuation. We do this by induction
on time t. The payment at the beginning of users’ arrival tn
should be independent of users’ bids bn(). Otherwise, there are
two different bids bn(), b

′
n() such that the bundles allocated at

time tn are the same but the payments are correspondingly
πn(tn) > π′

n(tn). Then the user with real valuation bn() can
make a false bid b′n() and increase his utility at time tn. Then
he terminates the VMs in a very short time (recall that the user
can arbitrarily decides the leaving time without notifying the
provider in advance), and his total utility over the staying time
is larger than using truthful bid, which contradicts truthfulness.
Next we argue that for any t > tn, the payment should still be
bid-independent. Similarly there are bids bn() �= b′n() which
leads to the same allocating bundles d(t) during time [tn, t]. By
induction, the payments before t are the same for both bidders.
However the payment at time t is different πn(t) > π′

n(t).
Again the bidder with valuation bn() can bid b′n() and leave
the auction at a short time after t with higher total utility.

Second we argue that the larger bundle should never have
a lower price. Otherwise, consider bids bn(), b

′
n() which lead

to two different bundles d′
n ≥ dn, with payments πn(dn, t) >

πn(d
′
n, t). But the user’s valuation increases with bundle size:

bn(d
′
n) ≥ bn(dn) since the non-negative marginal valuation.

Then the user can modify his truthful valuation bn() to a false
bid b′n() to increase his utility.

Finally we argue that the utility-maximized allocation is
also a necessary condition. We have proved that the provider
must calculate πn(dn) without the knowledge of bn(). If the
allocation decision dn does not maximize user’s utility, which
means there is another bundle d′

n leading to higher utility but
not chosen. Then the user can modify the bid to achieve the
better allocation result d′

n. Since the payment is independent
of the user’s bid, he can successfully achieve the higher utility.

APPENDIX B
PROOF OF THEOREM 2

Proof: First, the utility-maximized allocation rule guar-
antees individual rationality. Next we prove the truthfulness
in VM valuation: Suppose the user n’s true valuation is bn(),
and under truthful bid, his bundle at time t is d∗

n(t), with
utility bn(d

∗
n(t)) − πn(d

∗
n(t), t). Assume he makes a false

bid b′n(), and gets bundle d′
n(t). Then the new utility is

bn(d
′
n(t)) − πn(d

′
n(t), t), which is not larger than the utility

under truthful bid, since d∗
n(t) maximizes his utility at time t.

So the total utility over time [tn, t] is maximized under truthful
valuation.

Finally we prove that the user cannot gain more utility by
delaying his bidding time. Suppose user n’s real arriving time
is tn, with bundle d∗

n(t) and utility b(d∗
n(t))− π(d∗

n(t), t). If
he delays the bid to a later time t′n > tn. According to the
time-monotonic property, for any bundle dn(t), his payment is
no less than the payment under no-delaying bid: π′(dn(t), t) ≥
π(dn(t), t). So the maximum utility at time t with delaying



bid is not larger than the utility with no-delaying bid:

max
dn∈D

{b(dn(t))− π′(dn(t), t)}
≤ max

dn∈D
{b(dn(t))− π(dn(t), t)}

≤ b(d∗
n(t))− π(d∗

n(t), t) (14)

So the total utility with no-delaying bid is larger than the utility
with delaying bid during [t′n, tn].

APPENDIX C
PROOF OF THEOREM 3

Proof: Alg. 1 has bid-independent, bundle-monotonic,
time-monotonic payment and utility-maximized allocation
rule. So Thm. 2 has shown that it achieves truthfulness in VM
valuation, truthfulness in demand arrival time and individual
rationality. We only need to prove the non-decreasing utility.
Notice that a new user arrival does not affect the existing
users, since the payment of old users is based on smaller
value of x on P (x), and their priorities are not changed. So
we only consider the case when user n′ leaves the auction.
For the same reason, all the users n < n′ are not affected.
For other users ∀n > n′, his payment function lowers on
any bundle, compared with before the adjustment, because his
priority is promoted. Suppose the payment before adjustment
is π(dn), and the payment after adjustment is π′(dn). Then
we have ∀dn, π′(dn) ≤ π(dn). Assuming his previous bundle
is d∗

n, and becomes d∗∗
n after adjustment. User n’s utility after

adjustment is:

b(d∗∗
n )− π′(d∗∗

n )

≥ max
dn∈D

{b(dn)− π′(dn)}
≥ max

dn∈D
{b(dn)− π(dn)}

= b(d∗
n(t))− π(d∗

n) (15)

, which implies non-decreasing utility.

APPENDIX D
DERIVATION OF Q(z), P (x), AND c

Proof: Taking differential on both side of (9) gives us:
A/c = −pQ′(z) + V ′(z). Then substitutes V ′(z) here by (8):
A/c = (z − p)Q′(z). And we have determined Q(cp) = 0
in (7). So we derive the expression of Q(z) in (11). P (x) is
simply derived by calculating the inverse function of Q(z).

Next we use the condition in (10): Q(p) = A/c ·
ln(

p−p

(c−1)p ) = A. So ec = p−1
c−1 , which is exactly (13).

APPENDIX E
PROOF OF THEOREM 4

Proof: We compare the revenue uP (t) at any time t. For
user n let the quantity of resources allocated before him to be
xold, and the quantity of his bundle to be xn = x(dn(t)). The
marginal price after him is Pn = P (xold + xn). Let n∗ be
the last user in τ that receives a non-empty bundle. Let b′n(x)
denote the marginal valuation of user n’s bid: b′n(x) =

∂bn(d)
∂x .

For all n and x > xn, we have b′n(x) ≤ Pn. Additionally, for
all n1 < n2 ∈ τ , Pn1

≤ Pn2
. So every user in τ values

additional resources Δx by no more than Pn∗Δx.

Since VCG auction maximizes user’s valuation, there exist
a user n′, such that the quantity allocated under VCG xn′,vcg
is larger or equal to xn′ , which indicates b′n′(xn′,vcg) ≤
b′n′(xn′) ≤ Pn∗ . Notice VCG maximizes total valuation, so
for all n ∈ τ and x > xn,vcg , b′n(x) ≤ Pn∗ . So we conclude
that uPvcg ≤ A · Pn∗ . According to the property of Q(z),
the online revenue is A · Pn∗/c. Since at any time, the per
time unit revenue has competitive ratio c, the total competitive
ratio is also c if the offline VCG result does not satisfy the
non-decreasing utility at each user. Adding the non-decreasing
utility requirement decreases the actual performance of the
VCG auction in our model, thus the competitive ratio is c
in terms of revenue.

APPENDIX F
PROOF OF THEOREM 5

Proof: Suppose the set of user bids is σ. Consider a new
set of bids σ∗ by modifying each user’s marginal valuation:

b′∗n (x) =
{
Pn if x ≤ xn

b′n(x) if x > xn
(16)

The allocations for σ and σ∗ are the same because we
only modify the bids at parts that are not allocated. Since
b′n(x) ≤ Pn ≤ Pn∗ , we have Svcg ≤ A·Pn∗ . Note the property
of threat-based rule: S(σ∗) ≥ uP (σ

∗) = Pn∗/c. So S(σ∗) ≥
Svcg(σ

∗)/c.

In order to utilize the above result on σ∗, we need to modify
σ to σ∗, in several steps, and each step modifies one user’s
bid. For user n, if b′n(x) > b′∗n (x) at x, then it is decreased to
the target. Let σn be the bidding set after n modifications. The
online auction is affected on the whole decrease part on the val-
uation curve, so S(σn)−S(σn+1) ≥ Svcg(σ

n)−Svcg(σ
n+1).

Adding these inequalities together:

S(σ) ≥ (Svcg(σ)− Svcg(σ
∗))/c+ S(σ∗) (17)

≥ Svcg(σ)/c

So the total social welfare over a period of time is also
lower-bounded by ratio c.


