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Abstract—This work studies resource allocation in a cloud
market through the auction of Virtual Machine (VM) instances.
It generalizes the existing literature by introducing combinatorial
auctions of heterogeneous VMs, and models dynamic VM pro-
visioning. Social welfare maximization under dynamic resource
provisioning is proven NP-hard, and modeled with a linear inte-
ger program. An efficient α-approximation algorithm is designed,
with α ∼ 2.72 in typical scenarios. We then employ this algorithm
as a building block for designing a randomized combinatorial
auction that is computationally efficient, truthful in expectation,
and guarantees the same social welfare approximation factor α. A
key technique in the design is to utilize a pair of tailored primal
and dual LPs for exploiting the underlying packing structure
of the social welfare maximization problem, to decompose its
fractional solution into a convex combination of integral solutions.
Empirical studies driven by Google Cluster traces verify the
efficacy of the randomized auction.

I. INTRODUCTION

The cloud computing paradigm offers users rapid on-

demand access to computing resources such as CPU, RAM

and storage, with minimal management overhead. Recent

commercial cloud platforms, exemplified by Amazon EC2 [1],

Microsoft Azure and Linode [2], organize a shared resource

pool for serving their users. Virtualization technologies help

cloud providers pack their resources into different types of

virtual machines (VMs), for allocation to cloud users. For

example, Tab. I illustrates a number of VMs types available

at Amazon EC2 [1].

TABLE I
AMAZON EC2 VIRTUAL MACHINE INSTANCE TYPES

VM type CPU Memory Storage

m1.medium 2 EC2 Compute Units 3.75 GB 410 GB
m1.xlarge 8 EC2 Compute Units 15 GB 1680 GB
c1.medium 5 EC2 Compute Units 1.7 GB 350 GB
c1.xlarge 20 EC2 Compute Units 7 GB 1680 GB
m2.xlarge 6.5 EC2 Compute Units 17.1 GB 420 GB
hi1.4xlarge 35 EC2 Compute Units 60.5 GB 2048 GB

The underlying reason for such VM heterogeneity is that

a cloud user’s job often requires cooperation among multiple

VM instances, each with its own focus and forte. For example,

social games [3] and enterprise applications [4] are often

composed of a front-end web server tier, a load balancing

tier and a back-end data storage tier, each suited for execution
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on a VM that is abundant in a particular type of resource:

bandwidth, CPU, or storage.

Unfortunately, existing allocation mechanisms in cloud mar-

kets either are based on fixed pricing, which is economically

inefficient, or resort to simple, static auctions that treat VMs

as type-oblivious commodities. More specifically, it is usually

assumed that either a single type of VMs exists in the cloud

market, or VMs are substitutes in that a high-end VM is

equivalent to a number of low-end VMs, e.g., a Type II (2

× Core, 2 GB RAM, 40 GB Disk) VM equals two Type I

(1 × Core, 1 GB RAM, 20 GB Disk) VMs [5], [6]. Such

type-oblivious VM auctions do not handle the existing VM

heterogeneity in today’s cloud computing platforms, and can

not be adapted in a straightforward way to do so.

This work generalizes such simple auction design in the

cloud market by proposing combinatorial auctions that are

expressive enough for cloud users to request bundles of VM

instances belonging to distinct types. It further departs from

the existing literature by explicitly modelling the dynamic

provisioning of VM instances from cloud resources. Under

static provisioning, the cloud assembles its available resources

into different types of VMs based on simple heuristics or his-

torical VM demand patterns, before the auction starts. Under

dynamic provisioning, the cloud conducts VM assembling in

an online fashion upon receiving VM bundle bids [5], targeting

maximum possible social welfare given the current bid profile.

We show that social welfare maximization under dynamic

resource provisioning is NP-hard due to its combinatorial

optimization nature. Nonetheless, such maximization can be

cast into a linear integer program, based on which we design

an efficient cooperative primal-dual approximation algorithm

that achieves a small approximation factor α. The factor α
depends on the diversity of resource demands within all bids

submitted by one user, the normalized volume of the cloud

resource pool and the number of resource types, and is shown

to be close to 2.72 in most practical settings. However, such an

approximation algorithm assumes that truthful bids are given

for free, and is not applicable in a cloud market with strategic

users driven by their own economical interests, who may not

voluntarily reveal their true evaluation of a desired VM bundle.

The crux of many auction design in the literature indeed lies

in the careful custom tuning of the auction mechanism, for

eliciting truthful bids from selfish buyers [7], [8]. A well-

known type of truthful auctions is the celebrated Vickrey-

Clarke-Groves (VCG) mechanism, which is proven to be

the only type of auctions that can simultaneously guarantee
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truthfulness and economical efficiency (social welfare maxi-

mization). Unfortunately, a VCG auction requires solving the

NP-hard problem of social welfare optimization multiple times

for calculating externalities as user payments, and becomes

computationally infeasible as the system size grows.

We design a randomized combinatorial auction for dy-

namic resource provisioning, which is computationally effi-

cient, truthful in expectation, and surprisingly, simultaneously

guarantees the same social welfare approximation factor of α
as does the cooperative approximation algorithm. Note that the

latter assumes truthful bidding for free, and can afford to focus

on algorithmically maximizing the social welfare by ignoring

potential strategic bidding from selfish cloud users, while the

former is bound to pay close attention at the same time to

eliciting truth-telling, a property not usually attained without

a compromise in social welfare [7], [8], [9].

Below is a high-level overview of the structure of the

randomized VM auction. We first simulate a fractional VCG

auction based on the linear programming relaxation (LPR) of

the social welfare maximization integer program (IP). Then

we utilize a pair of tailored primal and dual linear programs

(LPs) to decompose the optimal fractional solution of the

LPR into a weighted combination of integer solutions to the

IP. This pair of LPs exploit the underlying packing nature

of the social welfare maximization IP, and are solved using

the ellipsoid algorithm with the cooperative α-approximation

algorithm acting as a separation oracle. In this process, we

prove and utilize the fact that the approximation algorithm also

verifies an integrality gap of α between the IP and the LPR.

Each integer solution is selected randomly with probability

equal to its weight calculated during the decomposition, and

contains information for instructing the cloud provider to

conduct both VM provisioning and VM allocation. Fractional

VCG payments calculated at the beginning are finally scaled

down by the approximation factor α, for ensuring that the

resulting randomized auction inherits its truthfulness from the

fractional VCG auction.

We have implemented the randomized auction and evaluated

it against traces from Google Cluster Data [10] through exten-

sive simulation studies. We found that dynamic provisioning

usually outperforms static provisioning in terms of social

welfare by a ratio on the order of 50%. An exciting observation

is that the primal-dual cooperative approximation algorithm

approaches optimal social welfare within a gap of 10% in all

the scenarios tested, performing much better beyond the the-

oretically proven approximation factor of α ∼ 2.72 in typical

scenarios. Consequently, the randomized auction can provide

better guarantee in social welfare guarantee in practice. Such

empirical observation further motivates our discussions on

improving the cloud’s revenue by scaling fractional VCG

payments with a ratio smaller than 2.72, for striking a flexible

balance between absolute truthfulness and seller revenue.

In the rest of the paper, we discuss related work in Sec.

II, and introduce the system model in Sec. III. We design

a primal-dual approximation algorithm and analyze its ap-

proximation ratio in Sec. IV, and further utilize it in Sec.

V to design the randomized VM auction, evaluated through

simulation studies in Sec. VI. Sec. VII concludes the paper.

II. PREVIOUS LITERATURE

As an efficient resource allocation mechanism in economic

markets, auctions have been studied substantially over the

past few decades. The celebrated VCG auction [11], [12],

[13] represents a general truthful auction framework, under

which buyers have no incentive to submit falsified bids. A

VCG auction requires solving the social welfare maximization

problem to optimum, for calculating payments of winning

buyers. Consequently, it becomes computationally infeasible

when exact social welfare maximization is NP-hard, as is the

case for dynamic cloud resource provisioning in this work.

A VCG auction loses its truthful property if approximation

algorithms are applied for social welfare maximization.

For non-VCG style of auction design, custom techniques

specific to the problem at hand are required for guaranteeing

truthfulness of the resulting auction mechanism. In a sequence

of recent work that originated from theoretical computer sci-

ence [14], [8], [9], [15], a decomposition technique is designed

for translating fractional solutions to integer solutions, for

packing type integer programs. The key technique lies in a

pair of tailored primal and dual LPs that exploit such packing

property, which can be solved with an efficient approximation

algorithm that can verify the integrality gap between the IP

and its LPR. To the authors’ knowledge, this work is the first

in the field of cloud computing that successfully applies such

a primal-dual decomposition technique.

The design of VM auctions has been studied in a series of

work in recent cloud computing literature. For instance, Zhang

et al. [16] study the resource allocation problem with realtime

demand arrivals, and propose a truthful online auction-based

allocation policy. Auctions also take an important role in

the exchange of computing resources among members in a

federated cloud in number of recent work [17], [18].

Zaman et al. [6] propose an auction-based VM alloca-

tion mechanism, named CA-GREEDY, for the case of static

resource provisioning, where the cloud provider has a pre-

determined number of VMs for sale in each VM type.

However, the approximation ratio of the mechanism they

designed is rather large, especially when a large number of VM

instances are provisioned, a rather common scenario in real-

world cloud computing. The authors also consider the dynamic

provisioning case [5], and present a truthful mechanism. No

guarantee is provided on the social welfare approximation ratio

of their mechanism, though. In contrast, the randomized VM

auction we design is not only truthful, but also achieves close-

to-optimum social welfare maximization.

III. SYSTEM MODEL AND PRELIMINARIES

We consider auction-based resource provisioning and VM

allocation in a cloud market. The cloud provider (auctioneer)

leases resources packed in VMs to cloud users through round-

by-round auctions. The cloud provider has a pool of t types

of resources. The total amount of type k resource is ck. The
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cloud provider offers m types of VMs, VM1, ..., VMm. A

VMj instance consumes rkj amount of type k resource.

Let B denote the set of cloud users, acting as bidders in the

auction. Each user i ∈ B can submit as many bids as it wishes.

Let Bi denote the set of bids submitted by cloud user i, and

{Bi}i∈B contains all bids from all users. Each bid specifies

a desired VM bundle S = (nS1 , · · · , nSm) along with the

bidding price bi(S), where nSj is the number of VMj instances

that cloud user i requests in S . We assume that a single bid

alone does not exceed the capacity constraint for any type of

resource, i.e., ∀1 ≤ k ≤ t, Rk � maxi∈B,S∈Bi

∑m
j=1 n

S
j r

k
j <

ck. Let xi(S) be a binary variable indicating whether user

i wins bundle S . Then x = {xi(S)}i∈B,S∈Bi represents an

allocation outcome. Let vi(x) denote the true valuation of

cloud user i, known only to i itself. Let Πi be the priced

charged to a winning user i. Then the utility ui for user i is:

ui(Bi, B−i) =

{
vi(x)−Πi if i receives a VM bundle
0 otherwsie

(1)

where B−i = {Bj}j∈B\{i} is a set of all the bids except Bi.

Definition A (randomized) auction is truthful (in expectation)
if for any bidder i, reporting its true valuation in the bid max-
imizes its (expected) utility, regardless of the bids submitted by
other bidders.

We adopt the XOR bidding language, in which a user can

win at most one bid even if it submits multiple bids [15],

leading to the first constraint for VM allocation:∑
S∈Bi

xi(S) ≤ 1, ∀i ∈ B (2)

The finite supply of each type of cloud resource translates

into the capacity constraint at the cloud provider:∑
i∈B

∑
S∈Bi

xi(S)nSj ≤ Nj , ∀1 ≤ j ≤ m

m∑
j=1

Njr
k
j ≤ ck, ∀1 ≤ k ≤ t

(3)

where Nj is the number of VMj instances provisioned. The

two groups of inequalities in (3) can be merged into an

equivalent, more compact capacity constraint:∑
i∈B

∑
S∈Bi

xi(S)(
m∑

j=1

nSj r
k
j ) ≤ ck, ∀1 ≤ k ≤ t (4)

The social welfare maximization problem can now be

formulated:

maximize DP (B) =
∑
i∈B

∑
S∈Bi

bi(S)xi(S) (5)

subject to: ∑
S∈Bi

xi(S) ≤ 1, ∀i ∈ B (5a)

∑
i∈B

∑
S∈Bi

xi(S)(
m∑

j=1

nSj r
k
j ) ≤ ck, ∀1 ≤ k ≤ t (5b)

xi(S) ∈ {0, 1}, ∀i ∈ B,S ∈ Bi (5c)

where DP (B) denotes the objective function of IP (5). Note

that in a truthful auction, the bid bi(S) can be assumed to be

user i’s valuation of VM bundle S .

Theorem 1. The social welfare maximization problem defined
in IP (5) is NP-hard.

Proof: We construct a polynomial-time reduction to IP (5)

from the knapsack problem, a classic combinatorial optimiza-

tion problem that is proven NP-hard [19]:

max
x

{ n∑
i=1

vixi subject to

n∑
i=1

wixi ≤ W,xi ∈ {0, 1}}

Given an instance A = (v1, · · · , vn, w1, · · · , wn, n,W )
of the knapsack problem, we map it to an instance of the

social welfare maximization problem A′ = (|B| = n, |Bi| =
1, bi(S) = vi, t = 1,

∑m
j=1 n

S
j r

k
j = wi, ci = W ), in which

each cloud user submits a single bid, and the resource pool

contains one type of resource. Such mapping can clearly be

done in polynomial time. If there exists an algorithm solving

the social welfare maximization problem A′, then it solves

the corresponding knapsack problem A as well, and vice
versa. Consequently, the knapsack problem can be viewed as

a special case of the social welfare maximization problem,

which must be NP-hard as well.
Theorem 1 reveals that solving IP (5) is NP-hard, and is

computationally infeasible for a large input. Nonetheless, we

may consider the LP relaxation of IP (5) by relaxing its last

constraint (5c) to 1:

xi(S) ≥ 0, ∀i ∈ B,S ∈ Bi (5c’)

Introducing dual variable vectors y and z to constraints (5a)
and (5b) respectively, we can formulate the dual of the LPR,

to be used in the primal-dual algorithm design in Sec. IV:

minimize
∑
i∈B

yi +

t∑
k=1

ckzk (6)

subject to:

yi +

t∑
k=1

m∑
j=1

nSj r
k
j zk ≥ bi(S) ∀i ∈ B,S ∈ Bi (6a)

yi ≥ 0, zk ≥ 0 ∀i ∈ B, 1 ≤ k ≤ t (6b)

IV. A PRIMAL-DUAL COOPERATIVE APPROXIMATION

ALGORITHM

We first design a polynomial-time approximation algorithm

for the social welfare maximization problem in IP (5), by

assuming that truthful bids are already known and targeting a

small approximation ratio in social welfare. Such a cooperative

approximation algorithm serves as an important building block

in the design of the randomized VM auction in Sec. V, which

further elicits truthful bids from strategic cloud users.

A. The Primal-Dual Approximation Algorithm
We design a greedy primal-dual algorithm for IP (5),

partially inspired by the primal-dual framework due to Briest et

1Constraint xi(S) ≤ 1,∀i ∈ B,S ∈ Bi is redundant (implied by (5a) and
(5c’)) and removed from the LPR.
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al. [20] and the classic dual fitting technique in approximation

algorithm design [21], as shown in Algorithm 1. Based on a

certain value per unit resource, the algorithm iteratively selects

the current best bid from the remaining users B who have

not received any VM bundle yet. This bid is appended to the

solution set, and its corresponding user is removed from B.

Meanwhile the algorithm updates the dual variables y and z,

along with the primal variable x, to reflect changes in set B.

The first part of Algorithm 1 (line 2-6) initializes the primal

variable x as well as the dual variables y and z. Specifically,

it sets x to 0 (no VM is allocated at the beginning). Values

of y and z are initialized to 0 and 1/ck, respectively. While

other positive values are also possible, choosing 0 and 1/ck
simplifies the algorithm analysis, as later discussed in the

algorithm analysis in the Appendix.

A while loop (line 9-19) iteratively refines the primal and

dual variables in x, y and z. It has two stopping conditions:∑t
k=1 ckzk ≥ t exp(Λ − 1) and B = ∅. The first ensures the

feasibility of the generated primal solution x, as discussed

in the proof of Theorem 2. The second terminates the loop

and hence Algorithm 1 when every cloud user has received

a bundle of VMs. Since the size of the candidate set B
decrements by one in each iteration, the while loop is

executed at most |B| times.∑t
k=1

∑m
j=1 n

S
k r

k
j zk in line 13 can be viewed as the

weighted total resource requested by bid S , with zk acting

as a weight for the type k resource. Thus
bi(S)∑t

k=1

∑m
j=1 nS

k rkj zk

can be interpreted as the value for a unit-weight resource. For

each cloud user i, the for loop in lines 10-12 searches for a

bid with the maximum bidding price, from all bids that user

i submits. Line 13 selects the best bid Sμ with the maximum

unit resource value from the pre-selection results in lines 10-

12 across all cloud users. Lines 14-15 update the primal and

dual variables and the set B. In particular, we update the

dual variable y using yμ = bμ(Sμ) so that
∑

μ yμ = p in

all iterations. This helps ensure primal optimality when the

while loop terminates upon B = ∅. Lines 16-18 update the

dual variable z to reflect changes to the available resources.

B. Solution Feasibility and Approximation Ratio

We first show feasibility of solutions returned by Algorithm

1. At the end of the τ -th iteration of the while loop, let yτi , z
τ
k

be the dual variables, and pτ be the primal objective.

Theorem 2. Algorithm 1 computes a feasible solution to IP
(5).

Proof: Values in x are initialized to 0 (line 4) and updated

to 1 only (line 14), so the solution is always binary valued.

Therefore, constraint (5c) will not be violated by Algorithm

1. Constraint (5a) will not be violated either because once

Algorithm 1 finds a VM bundle for cloud user i ∈ B, no more

bundles are allocated to i in the future.

Let us examine the second constraint (5b). Suppose that

the solution is feasible so far. Let S̃ ∈ Bĩ be the first set that

breaks the feasibility when added to the current solution, say,

in iteration τ . That is, ∃1 ≤ k ≤ t, such that

Algorithm 1 The Primal-Dual Approximation Algorithm

1: // Initialization

2: Λ = min1≤k≤t ck/Rk;

3: p = 0; U = ∅;

4: ∀i, ∀S : xi(S) = 0;

5: ∀i : yi = 0;

6: ∀k : zk = 1/ck;

7:

8: // Iterative update of primal and dual variables:
9: while

∑t
k=1 ckzk < t exp(Λ− 1) AND U �= B do

10: for all i ∈ B \ U do
11: Si = argmaxS∈Bi{bi(S)};
12: end for
13: μ = argmaxi∈B\U

{ bi(Si)
∑t

k=1

∑m
j=1 n

Si
j rkj zk

}
;

14: xμ(Sμ) = 1; yμ = bμ(Sμ);
15: p = p+ bμ(Sμ); U = U ∪ {μ};
16: for all 1 ≤ k ≤ t do
17: zk = zk · (t exp(Λ− 1))(

∑m
j=1 n

Sμ
j rkj )/(ck−Rk)

;
18: end for
19: end while

∑
S′∈Γ

m∑
j=1

nS
′

j rkj ≤ ck

m∑
j=1

nS̃j r
k
j +

∑
S′∈Γ

m∑
j=1

nS
′

j rkj ≥ ck

where Γ is the family of sets added to the solution before set

S̃ . Since each single bid cannot exceed the capacity constraint,

i.e., ck > Rk ≥ ∑m
j=1 n

S̃
j r

k
j , we have

∑
S′∈Γ

m∑
j=1

nS
′

j rkj ≥ ck −Rk ⇒
∑
S′∈Γ

m∑
j=1

nS
′

j rkj /(ck −Rk) ≥ 1

and that leads to:

ckz
τ−1
k = (t exp(Λ−1))

∑
S′∈Γ

∑m
j=1 nS′

j rkj /(ck−Rk) ≥ t exp(Λ−1)

which satisfies the first stopping condition in line 14. This

implies that iteration τ − 1 is the last iteration, and S̃ would

not be added to the solution at all.

Even if the primal solution is always feasible during the

execution, the dual is not necessarily so. The following lemma

shows that the dual variables can be made feasible through

scaling by a carefully chosen factor. Such posterior dual

scaling is known as dual fitting in the primal-dual optimization

literature, and has proven effective in helping pursue good

approximation ratios in algorithm design [21].

Lemma 1. If (yτ−1, zτ−1) is the (possibly infeasible)
dual solution at the beginning of the τ -th iteration, then
(yτ−1, εf(zτ−1,Sτ )z

τ−1) is a feasible solution to the dual
(6), where f(z,S) � bi(S)/(

∑t
k=1

∑m
j=1 n

S
j r

k
j zk), ε �

maxS1,S2∈Bi,i∈B,k∈[1,t]
∑m

j=1 n
S1
j rkj /

∑m
j=1 n

S2
j rkj .

Please refer to Appendix A for the proof of Lemma 1.

Employing the dual fitting result in Lemma 1 and LP duality,

we next prove that Algorithm 1 guarantees an α-approximation
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of social welfare, where α = 1 + ε Λ
Λ−1 (et

1/(Λ−1) − 1). In

practice, the volume of a cloud provider’s resource pool is

substantially larger than a single user demand, i.e., Λ 	 1.

The number of resource types t is a small constant (3 to

5). Consequently, we can conduct the following quantitative

estimation on the approximation ratio:

lim
Λ→∞

α = lim
Λ→∞

(1 + ε
Λ

Λ− 1
(et1/(Λ−1) − 1)) = 1 + ε(e− 1)

If we further consider the case where each user only submits

one bid, then ε = 1, and the approximation ratio α is close

to e ≈ 2.72, as illustrated in the 3D plot of the function α =
1 + ε Λ

Λ−1 (et
1/(Λ−1) − 1) in Fig. 1.
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Fig. 1. The approximation ratio α quickly decreases as Λ increases, and
closely approaches e ∼ 2.72 as long as the number of resource types t is not
too large and each user only submits one bid.

Theorem 3. Algorithm 1 computes an α-approximate solution
to IP (5) in polynomial-time, where α = 1+ε Λ

Λ−1
(et1/(Λ−1)−1).

Please refer to Appendix B for the proof of Theorem 3.

V. A RANDOMZIED AUCTION MECHANISM

Capitalizing on Algorithm 1 for approximate social welfare

maximization under dynamic resource provisioning, we now

design a randomized combinatorial VM auction that achieves

the same social welfare approximation ratio α, while simulta-

neously ensuring truthful bidding from cloud users. Algorithm

2 outlines the key steps in the randomized auction mechanism.

Algorithm 2 A Randomized Combinatorial VM Auction

1: Simulating the fractional VCG auction.
2: — Compute the fractional VCG allocation x∗ and payment

ΠF , through solving the LPR of IP (5).

3: Decomposing fractional solution into integer solutions
4: — Decompose the scaled down fractional solution x∗/α to

a convex combination of integer solutions, i.e., x∗/α =∑
l∈I βlx(l), through solving a pair of primal-dual LPs in

(8) and (9) using the ellipsoid method, leveraging Algorithm

1 as a separation oracle.

5: Randomized VM allocation
6: — Select each x(l) randomly with probability βl.

7: Charging scaled fractional VCG prices
8: — for each winning cloud user i ∈ B: charge a price Πi =

ΠF
i /α.

A. The Fractional VCG Auction

Theorem 1 reveals that solving IP (5) to optimal is NP-

hard, implying that applying the VCG auction for truthfulness

is computationally expensive. We first resort to a fractional

version of the VCG auction for achieving both computational

efficiency (polynomial time complexity) and economic effi-

ciency (social welfare maximization), by applying the VCG

mechanism to the LPR instead of IP (5).

The optimal solution x∗ to the LPR constitutes the VM

allocation solution in the fractional VCG auction. The frac-

tional VCG payment for user i equals i’s externality, or the

difference in social welfare with and without i’s bid [9], [11]:

ΠF
i = Vi −

∑
i′ �=i,i′∈B

∑
S∈Bi′

bi′(S)x∗i′(S) (7)

where Vi is the optimal DPF (B) to the LPR when cloud user

i bids zero.

The VM bundle allocation scheme in x∗ has fractional

instead of binary values and is hence not practically applicable.

This is to be resolved using the primal-dual decomposition

technique, in Sec. V-B.

B. Decomposing the Fractional Solution

We first prepare for the decomposition by showing that

Algorithm 1 verifies the integrality gap between IP (5) and

the LPR in the sense that the integrality gap is also bounded

by α. This is true because for any bidding profile, Algorithm

1 computes an integer solution whose social welfare is at

least 1/α times the optimal solution to the LPR, due to

the following two facts: (i) the approximation ratio does not

depend on the bidding prices bi(S), ∀i ∈ B,S ∈ Bi; (ii) the

ratio is proven through using d/pω as an upper bound.

Integrality gap = LPR∗/DP (B)∗ ≤ d/pω = α

where DP (B)∗ is the value of the optimal solution to IP (5).

The inequality is due to LPR∗ ≤ d and pω ≤ DP (B)∗. Thus

d/pω also works as an upper bound of the integrality gap.

We next decompose x∗ into a convex combination of integer

solutions, using a LP duality based decomposition technique

for packing type of optimization problems due to Carr et al.
[14] and Lavi et al. [8]. Our goal is to find βl and x(l) such

that x∗/α =
∑

l∈I βlx(l), where Z(DP ) = {x(l)}l∈I is

the set of integer solutions to IP (5), I is the index set, and

βl ≥ 0,
∑

l∈I βl = 1. Since the integrality gap is at most

α, there exists at least one integer solution, e.g., DP (B)∗,
dominating the scaled down fractional solution. Consequently,

scaling down the fractional solution x∗ by α can guarantee the

existence of such a decomposition.

The following primal and dual LPs are solved for decom-

posing x∗:

Primal: minimize
∑
l∈I

βl (8)
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subject to:∑
l∈I

βlxi(S, l) = x∗i (S)/α ∀i ∈ B,S ∈ Bi (8a)

∑
l∈I

βl ≥ 1 (8b)

βl ≥ 0 ∀l ∈ I (8c)

Dual: maximize
1

α

∑
i∈B,S∈Bi

x∗i (S)νi(S) + λ (9)

subject to:∑
i∈B,S∈Bi

xi(S, l)νi(S) + λ ≤ 1 ∀l ∈ I (9a)

λ ≥ 0 (9b)

νi(S) unconstrained ∀i ∈ B,S ∈ Bi (9c)

The primal decomposition LP has an exponential number

of variables. We resort to the dual. Even though the dual

(9) has an exponential number of constraints, the ellipsoid

method [22] can be applied to solve it in polynomial-time,

with Algorithm 1 acting as a separation oracle for generating

separating hyperplanes for the dual. Once an optimal dual so-

lution is obtained, using a polynomial number of hyperplanes,

the primal (8) can be converted to an optimization problem

with a polynomial number of constraints corresponding to

these hyperplanes. As a result, the convex decomposition can

be solved within polynomial time. However νi(S) may be

negative, making Algorithm 1 work improperly. Instead of

using νi(S) directly, we set νi(S)+ = max(νi(S), 0) to

circumvent this issue. IP (5) satisfies the nice packing property,

i.e., if a ∈ Z(DP ), b ≤ a then b ∈ Z(DP ). Using the packing

property, the following lemma ensures that using νi(S)+ does

not violate the constraints in the dual (9).

Lemma 2. Given an integer solution x′ ∈ Z(DP ), we can
obtain x(l) ∈ Z(DP ) so that

∑
i∈B,S∈Bi

x′i(S, l)νi(S)+ =∑
i∈B,S∈Bi

xi(S, l)νi(S).
Proof: Let

xi(S, l) =
{

x′i(S, l) if νi(S) > 0
0 otherwise

(10)

Since νi(S)+ = max(νi(S), 0), it is clear that∑
i∈B,S∈Bi

x′i(S, l)νi(S)+ =
∑

i∈B,S∈Bi
xi(S, l)νi(S). It

follows from x′ ≥ 0 that x(l) is no larger than x′. Finally,

due to the packing property, x(l) ∈ Z(DP ).

Lemma 3. If β∗ is an optimal solution to the primal (8), then∑
l∈I β

∗
l = 1.

Proof: Since ν∗ = 0, λ∗ = 1 is feasible, the optimal solution

to the dual (9) is at least 1. Suppose ∃λ∗ ≥ 0,ν∗ such that
1

α

∑
i∈B,S∈Bi

x∗i (S)ν∗i (S) + λ∗ > 1

Since x∗i (S) is the optimal fractional solution to the LPR,

x∗i (S) ≥ 0. We then have 1
α

∑
i∈B,S∈Bi

x∗i (S)ν∗i (S)+ ≥
1
α

∑
i∈B,S∈Bi

x∗i (S)ν∗i (S) > 1 − λ∗. Since the integral-

ity gap is at most α, verified by Algorithm 1 when

the objective is ν∗+, there must be l ∈ I satisfying∑
i∈B,S∈Bi

x′i(S, l)ν∗i (S)+ > 1− λ∗. By Lemma 2, we have

∃x ∈ Z(DP ), such that
∑

i∈B,S∈Bi
xi(S, l)ν∗i (S)>1 − λ∗.

This implies that ν∗ and λ∗ violate constraint (9a). Therefore,

the optimal value for the dual (9) is 1, and
∑

l∈I β
∗
l = 1 due

to strong LP duality.

C. The Randomized Auction

{βl}l∈I in the convex decomposition can be viewed

as a probability distribution over feasible integer solu-

tions in Z(DP ). Given the convex decomposition x∗/α =∑
l∈I βlx(l), as shown in Algorithm 2, we select each valid

integer solution x(l) randomly with probability βl, and set

the prices Πi = ΠF
i /α. The following theorem establishes

expected truthfulness of the randomized auction.

Theorem 4. The randomized auction in Algorithm 2 is truth-
ful in expectation, and achieves an α-approximation to the
optimal social welfare of the cloud market.

Proof: The expected utility of a given bidder i is:

ui(
∑
l∈I

βlx(l))−Πi = ui(x
∗/α)−ΠF

i /α

= (ui(x
∗)−ΠF

i )/α

The second equality is due to the linearity of ui(x). This

means the expected utility is scaled down by α from the utility

in the fractional VCG auction. Truthfulness of the randomized

auction thus follows from that of the fractional VCG auction.

VI. PERFORMANCE EVALUATION

We have implemented the randomized auction, including

Algorithm 1 and the ellipsoid algorithm as its modules, for

performance evaluation. The target cloud system includes a

medium-sized cloud provisioning six types of VMs, con-

structed from three types of resources (CPU, RAM, and

storage), following the configurations in Tab. I. Each cloud

user bids for four VM bundles, which are synthesized from

Google Cluster Data [10], while bidding prices are generated

uniformly at random.

A. Performance of the Approximation Algorithm

We first study the performance of Algorithm 1 through

varying the number of cloud users from 100 to 900, as

illustrated in Fig. 2. Algorithm 1 achieves a close-to-optimal

performance, much better than the theoretical approximation

ratio proved in Theorem 3. We suspect that the analysis of

Algorithm 1 can be further improved, for a tighter bound on

the approximation ratio. Fig. 2 also shows that Algorithm 1

scales to a large number of bidding requests without sacrificing

the social welfare approximation ratio.

B. Static Provisioning vs Dynamic Provisioning

We next compare static resource provisioning with dynamic

resource provisioning in terms of economic efficiency. Two

types of static provisioning are considered: Static Provisioning
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Fig. 2. A comparison between theoretical ratios and real ratios.

I where all six types of VMs are provisioned with the

same number; Static Provisioning II where a large amount

of resources have been packed into the entry-level VM,

m1.medium, meanwhile only relatively small numbers of the

high-end VMs are provisioned.

We consider the following three performance metrics: (i)

social welfare, (ii) CPU utilization, the ratio of the number of

allocated CPUs to the total number of CPUs, and (iii) user

satisfaction, the ratio of the number of winning cloud users to

the total number of cloud users. We run VCG auction for all

three styles of provisioning. The results for the three metrics

are illustrated in Fig. 3(a), Fig. 3(b) and Fig. 3(c), respectively.

We observe that dynamic resource provisioning can achieve

higher social welfare over both static alternatives. The social

welfare increases as the number of cloud users increases.

Regarding CPU utilization, dynamic resource provisioning

enables almost full allocation of CPU resources, while static

resource provisioning under-utilizes CPU resources due to its

unresponsiveness to realtime user demands. With regard of

user satisfaction, the overall trend is that user satisfaction

decreases as the number of cloud users grows. For a given

number of cloud users, dynamic resource provisioning perfor-

mances better than the two static resource provisioning styles.

C. The Randomized Auction

We implemented the randomized auction that composes of

the ellipsoid method and the primal-dual approximation algo-

rithm. Given the randomized nature of the auction, we simulate

each auction scenario for 50 times and compute the average

social welfare. Fig. 4(a) compares the randomized auction

with the classic VCG auction in terms of economic efficiency

(social welfare). The black curve in Fig. 4(a) is the expected

social welfare calculated according to Theorem 4. The results

of the randomized auction fluctuate around the curve, verifying

the correctness of the proposed randomized algorithm. Fig.

4(b) illustrates the total payment of the randomized auction,

which matches 1/α fraction of the VCG payment.

D. An Even Better Randomized Auction?

The bound α proven in Theorem 3 can be loose, as

suggested by simulation results from Sec. VI-A. This

might make the randomized auction pessimistic, over-

scaling the fractional VCG prices and compromising

revenue of the cloud provider. We are curious to know

whether smaller α can still work with the convex

decomposition (8). In Fig. 4(a) and Fig. 4(b), α =

3.179, 3.184, 3.219, 3.334, 3.333, 3.333, 3.330, 3.333, 3.333
for these 9 points respectively. We experiment with α = 2 in

the convex decomposition (8), and run the ellipsoid method

for the dual (9) again. After obtaining the results, we check

all candidate integer solutions with the constraints (5a) and

(5b), to ensure that all these solutions are feasible. The results

shown in Fig. 5(a) and Fig. 5(b), are rather surprising. α = 2
works well with the randomized auction, producing a much

better approximation ratio for our proposed auction. However

this is not always the case if we employ a smaller α such

as α = 1.5. The approximation ratio given by Theorem 3

guarantees the existence of such integer solution which is at

least 1/α times of the fractional solution in the worst case.

VII. CONCLUSION

Focusing on dynamic resource provisioning and heteroge-

neous types of VMs, we first propose a cooperative primal

dual approximation algorithm with approximation ratio close

to 2.72. Employing the cooperative approximation algorithm

as a building block, we then design a novel randomized auction

using a pair of tailed primal and dual LPs to decompose

an optimal fractional solution into a summation of a series

of weighted valid integer solutions. The randomized auction

achieves the same approximation ratio in social welfare as the

cooperative algorithm does. Simulation studies verify the effi-

cacy of the proposed auction and the effectiveness of dynamic

resource provisioning over static resource provisioning.

APPENDIX A

PROOF OF LEMMA 1

Proof: Since the set {Si}i∈B is selected by line 11, where

each Si belongs to the corresponding Bi, i.e., the correspond-

ing cloud user, we have ∀i ∈ B,S ∈ Bi:

bi(S) ≤ bi(Si) (11)

Because yμ is set to bμ(Sμ) where bμ(Sμ) ≥ bμ(S), ∀μ ∈
U ,S ∈ Bμ. That is:

yμ ≥ bμ(S), ∀μ ∈ U ,S ∈ Bμ

which implies that constraint (6a) is satisfied ∀μ ∈ U ,S ∈ Bμ.

Next we examine the users μ ∈ B \ U . Note that Sτ is

decided by line 13, which is a maximization. Therefore,

f(zτ−1, Sτ ) =
bτ (Sτ )∑t

k=1

∑m
j=1 n

Sτ
j rkj z

τ−1
k

≥ bi(Si)∑t
k=1

∑m
j=1 n

Si
j rkj z

τ−1
k

, ∀i ∈ B \ U ⇔

f(zτ−1, Sτ )

t∑
k=1

m∑
j=1

nSi
k rkj z

τ−1
k ≥ bi(Si), ∀i ∈ B \ U

(12)

Since ε
∑m

j=1 n
S1
j rkj ≥ ∑m

j=1 n
S2
j rkj , ∀S1,S2 ∈ Bi, i ∈

B, k ∈ [1, t], (12) further implies that ∀i ∈ B \ U ,S ∈ Bi,

εf(zτ−1, Sτ )

t∑
k=1

m∑
j=1

nSk r
k
j z

τ−1
k ≥ εbi(Si) ≥ bi(S)

Thus (yτ−1, εf(zτ−1,Sτ )z
τ−1) is a feasible solution to the

dual (6).
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Fig. 3. Comparisons of social welfare, CPU utilization and user satisfaction among different provisioning styles.
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Fig. 4. Social welfare and total payments of the randomized auction, compared with the VCG auction.
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Fig. 5. Social welfare and total payments of the randomized auction when scaled down by α = 2, compared with the VCG auction.

APPENDIX B

PROOF OF THEOREM 3

Proof: We first examine the complexity of Algorithm 1. Due

to the stopping conditions, the while loop will iterate at most

|B| times, linear to the input size. Within loop body, lines 10-

12 can be finished within O(mt|B| · |S|) even using a simple

brute-force search. Similarly, line 13 and lines 16-18 can also

be done in polynomial time. Therefore, Algorithm 1 runs in

polynomial time overall.

Next we analyze the approximation ratio of Algorithm 1. Let

d1(τ) =
∑

i∈B y
τ
i , d2(τ) =

∑t
k=1 ckz

τ
k . Let d be the optimal

solution to the dual (6). Let Sτ denote the set selected in the

τ -th iteration. ω is denoted the last iteration of the loop.

Case 1: Algorithm 1 stops at ω-th iteration where U = B and∑t
k=1 ckzk < t exp(Λ − 1). We know that each cloud user

wins one bid. We here prove that the algorithm produces an

optimal solution to IP (5). Theorem 2 guarantees that pω is

the value of a feasible solution to IP (5). Meanwhile since

yωμ = maxS∈Bμ{bμ(S)} ≥ bμ(S), ∀μ ∈ U ,S ∈ Bμ, thus

constraint (6a) is satisfied regardless of z, ∀i ∈ B,S ∈ Bi,

i.e., (yω, z = 0) is a feasible solution, whose value is exactly

pω as well, to the dual of the LPR. By weak duality for the

LP relaxation, any feasible solution to the dual (6) is an upper

bound of IP (5). Therefore pω is the optimal value to IP (5).

In this case, the approximation ratio is 1.

Case 2: Algorithm 1 stops at ω-th iteration where d2(ω) =∑t
k=1 ckz

ω
k ≥ t exp(Λ − 1). We analyze the approximation

ratio in following two sub-cases.

Sub Case 2.1: ∃ an iteration τ ≤ ω, such that α ≥ d
d1(τ−1) .

That means we already found an α-approximate ratio, since (a)

d1(τ − 1) = pτ−1, which is the value of the primal solution;

(b) d1(τ) is a non-decreasing function of τ because it becomes

larger when the iteration continues.

Sub Case 2.2: α < d
d1(τ−1) , for all iterations τ ≤ ω. For

any iteration τ ≥ 1, we have:
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d2(τ) =

t∑
k=1

ckz
τ
k

=
t∑

k=1

(ckz
τ−1
k (t exp(Λ− 1))(

∑m
j=1 n

Sτ
j rkj )/(ck−Rk))

=

t∑
k=1

(ckz
τ−1
k (1 +

δ
ck
Rk

− 1
)(

∑m
j=1 n

Sτ
j rkj )/Rk )

≤
t∑

k=1

(ckz
τ−1
k (1 +

δ
ck
Rk

− 1
(

m∑
j=1

nSτj rkj )/Rk))

=

t∑
k=1

ckz
τ−1
k +

t∑
k=1

(
δck

ck −Rk

m∑
j=1

nSτj rkj )z
τ−1
k )

≤ d2(τ − 1) + Δ

t∑
k=1

m∑
j=1

(nSτ
j rkj z

τ−1
k )

where δ = ( ck
Rk

− 1)((t exp(Λ − 1))
1/(

ck
Rk
−1) − 1), Δ =

max1≤k≤t
δck

ck−Rk
. The first inequality is due to (1 + a)x ≤

1 + ax, ∀x ∈ [0, 1].

Note that δck
ck−Rk

is a non-increasing function of ck
Rk

> 1,

and Λ = min1≤k≤t ck/Rk, then δck
ck−Rk

reaches the maximum

when ck
Rk

= Λ, i.e.,

Δ =
Λ

Λ− 1
(Λ− 1)((t exp(Λ− 1))1/(Λ−1) − 1)

= Λ(et1/(Λ−1) − 1)

Recall the definition of f(zτ−1,Sτ ). We have:
t∑

k=1

m∑
j=1

(nSτj rkj z
τ−1
k ) = bτ (Sτ )/f(z

τ−1,Sτ )

Since pτ is the value of the primal solution at the end of

τ -th iteration, then pτ − pτ−1 = bτ (Sτ ), this leads to:

d2(τ) ≤ d2(τ − 1) + Δ
pτ − pτ−1

f(zτ−1,Sτ )
(13)

Following Lemma 1, we covert the dual

variables (yτ−1, zτ−1) at the τ -th iteration to

(yτ−1, εf(zτ−1,Sτ )z
τ−1), which is a feasible solution

to the dual (6). Therefore we have the following inequality to

associate d with d1 and d2:

d ≤ d1(τ − 1) + εf(zτ−1,Sτ )d2(τ − 1)

⇒ f(zτ−1,Sτ ) ≥ 1
ε
d−d1(τ−1)
d2(τ−1)

Recall that for all iterations τ ≤ ω, α < d
d1(τ−1) , implying:

1

f(zτ−1,Sτ )
≤ ε

d2(τ − 1)

d− d1(τ − 1)
≤ ε

α

α− 1

d2(τ − 1)

d

Substitute this bound on 1/f(zτ−1,Sτ ) in Eqn. (13):

d2(ω) ≤ d2(ω − 1) + ε
αΔ

(α− 1)d
(pω − pω−1)d2(ω − 1)

= d2(ω − 1)(1 + ε
αΔ

(α− 1)d
(pω − pω−1))

≤ d2(ω − 1) exp(ε
αΔ

(α− 1)d
(pω − pω−1))

≤ d2(0) exp(ε
αΔ

(α− 1)d
pω)

the second inequality is due to 1 + x ≤ ex, ∀x ≥ 0.

Note that the stopping condition in this sub case is d2(ω) ≥
t exp(Λ− 1) and d2(0) = t, as a result, we have that:

t exp(Λ− 1) ≤t exp(ε
αΔ

(α− 1)d
pω)

⇔ Λ− 1 ≤ ε
αΔ

(α− 1)

pω
d

⇔ d/pω ≤ ε
αΔ

(α− 1)(Λ− 1)
Due to the weak duality theorem in linear programming and

the relaxation of IP (5), the following inequality holds:

DP (B)∗/pω ≤ d/pω

where DP (B)∗ is the value of the optimal solution to IP (5).

This means d/pω plays as an upper bound of the approxima-

tion ratio.

Finally we obtain the approximation ratio:

ε
αΔ

(α− 1)(Λ− 1)
= 1 + ε

Λ

Λ− 1
(et1/(Λ−1) − 1) = α.
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