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Abstract

In this paper we examine the implications of two theories of informational frictions, signal

extraction (SE) and rational inattention (RI), for optimal decisions and economic dynamics

within the linear-quadratic-Gaussian (LQG) setting. We first show that if the variance of

the noise and channel capacity (or marginal information cost) are fixed exogenously in the

SE and RI problems, respectively, the two environments lead to different policy and welfare

implications. We also find that if the signal-to-noise ratio and capacity in the SE and RI

problems are fixed, respectively, the two theories generate the same policy implications in the

univariate case, but different policy implications in the multivariate case.

JEL Classification Numbers: C61, D81, E21.

Keywords: Signal Extraction, Rational Inattention, Exogenous and Endogenous Noises.

∗ We thank Tom Sargent and Chris Sims for helpful discussions. We are also grateful for useful suggestions and

comments from Shin-ichi Fukuda, Ken Kasa, Yang Lu, Jun Nie, Yi-Chang Tsai, Jenny Xu, Tao Zhu, and seminar

and conference participants at the Hong Kong University of Science and Technology, the University of Tokyo, and

Fudan Conference on Economic Dynamics. Luo thanks the General Research Fund (GRF) in Hong Kong and the

HKU seed funding program for basic research for financial support. Young thanks the Bankard Fund for Political

Economy at the University of Virginia for financial support. Part of this work was conducted while Luo was visiting

the UC Davis Economics Department and the Kansas City Fed, whose hospitality is greatly appreciated. All errors

are the responsibility of the authors.
† School of Economics and Finance, The University of Hong Kong, Hong Kong. E-mail: yluo@econ.hku.hk.
‡ Department of Economics, University of Virginia, Charlottesville, VA 22904. E-mail: ey2d@virginia.edu.



1 Introduction

Muth (1960) applied classical filtering methods to solve for a stochastic process for permanent

income for which Friedman (1956)’s adaptive expectations hypothesis would be an optimal es-

timator of permanent income. Specifically, Muth (1960) solved a single-agent dynamic signal

extraction (SE) problem, in which an economic agent was modeled as facing exogenous signals

and noises which had to be disentangled, and showed that the exponentially weighted average of

past observations of a random walk plus noise process is optimal in the sense that it minimizes the

mean squared estimation error. Townsend (1983) and Sargent (1991) extended the single-agent

signal extraction problem by studying multiple-agent settings in which agents extract signals from

endogenous variables that are affected by other agents’signal extraction problems. Recently, there

have been some papers examining the effects of heterogeneous information on economic dynamics

within signal extraction settings. For example, Morris and Shin (2002) examined the welfare

effects of asymmetric information in the presence of strategic complementarity; Wang (2004) ex-

amined how imperfect observations on labor income on the estimation risk and precautionary

savings; and Angeletos and La’O (2009) studied how dispersed information about the underlying

aggregate productivity shock contributes significant noise in the business cycle and helps explain

cyclical variations in observed Solow residuals and labor wedges in the RBC setting. The key

assumption in these signal extraction settings is that the stochastic properties of noises are given

exogenously.

Sims (2003) first introduced rational inattention (RI) into economics within the linear-quadratic

Gaussian (LQG) setting and argued that it is a plausible method for introducing sluggishness,

randomness, and delay into economic models.1 In his formulation agents have finite Shannon

channel capacity, limiting their ability to process signals about the true state of the world. As a

result, an impulse to the economy induces only gradual responses by individuals, as their limited

capacity requires many periods to discover just how much the state has moved; one key change rel-

ative to the RE case is that consumption has a hump-shaped impulse response to income shocks.2

1For the applications of RI within the (approximate) LQG setting, see (among others) Adam (2005), Kasa

(2006), Luo and Young (2010), Maćkowiak and Wiederholt (2009), Melosi (2009), Paciello and Wiederholt (2011),

and Kim, Ko, and Yun (2012).
2See Sims (2003) and Luo (2008).
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Luo (2008) used this model to explore anomalies in the consumption literature, particularly the

well-known “excess sensitivity”and “excess smoothness”puzzles, employing an LQG version of

the standard permanent income model (as in Hall 1978 and Flavin 1981). In that model RI is

equivalent to confronting the household with a noisy signal about the value of permanent income

but permitting the agents to choose the distribution of the noise terms, subject to their limited

capacity. The key feature of the LQG-RI model is that the RI-induced noise is optimal and

generated endogenously due to individuals’finite information-processing capacity.3

The main objective of this paper is to compare the two theories. Specifically, we explore

the effects of SE and RI for economic dynamics, policy, and welfare within the linear-quadratic-

Gaussian setting. We first study a univariate case for which the models can be solved in closed-

form. The first result we find is that if the variance of the noise itself is fixed, we can use a policy

experiment to distinguish SE from RI as they lead to different dynamic behavior, policy, and

welfare implications. Specifically, we assume that the variance of the exogenous shock is scaled

up due to a change in policy. In the SE problem with exogenous noises, an increase in the variance

of the exogenous shock will lead to a different solution for the conditional variance and Kalman

gain; consequently, the change in policy will eventually lead to a change in the model’s dynamic

behavior and the agent’s welfare. In contrast, in the RI problem, if channel capacity is fixed, a

change in the variance of the exogenous shock will lead to the same change in the conditional

variance of the state and the variance of the noise, but has no effect on the Kalman gain. That is,

inattentive agents with fixed capacity will behave as if they face noise shocks whose nature changes

systematically as the dynamic properties of the economy change with policy. Furthermore, we

show that once we assume that the marginal cost of information is fixed, capacity will be elastic

with respect to a change in policy; consequently, the Kalman gain in this case will adjust with

respect to the policy change and the change in policy has different quantitative impacts on the

model dynamics under this case and the SE case.

The welfare losses of agents due to imperfect information also depend on the value of the

Kalman gain. Therefore, SE and RI can lead to different policy and welfare implications in the

3Fully non-LQG versions of the RI problem are solved and discussed in Sims (2005, 2006), Lewis (2006), Tutino

(2009), and Metajka and Sims (2010). The main feature of the non-LQG RI models is that they have either very

short horizons or extremely simple setups due to numerical obstacles. We comment in the conclusion about the

diffi culty of extending our results to non-LQG environments.
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LQ setting. We also find that in the univariate case, if the ratio of the variance of the exogenous

shock to that of the noise (i.e., the signal-to-noise ratio, SNR) is fixed, the SE and RI problems

are observationally equivalent in the sense that they lead to the same dynamics of the model

economy when the ratio of the conditional variance to that of the noise in the SE problem is equal

to 1− 1/ exp (2κ) in the RI problem in which κ is the exogenously given channel capacity. After

considering correlated shocks and noise, we find that our results remain unchanged.

We then move on to study the multivariate case in which the state vector includes multiple

elements. In this case given channel capacity the conditional variance-covariance matrix can be

obtained by solving a semidefinite programming problem in which the inattentive agent minimizes

the expected welfare losses due to information-processing constraints. After computing the opti-

mal steady state conditional variance-covariance matrix, we can recover the variance-covariance

matrix of the noise vector and then determine the Kalman gain. In this case, we show that SE

and RI will lead to different dynamic behavior and deliver different policy and welfare implication

after the government implements a policy that changes the variance of the exogenous shock even

if the signal-to-noise ratio is fixed. However, when modeling the multivariate SE problem, it

is diffi cult to specify the process of the vector of noises ex ante without prior knowledge about

the states. Ad hoc assumptions on the nature of the noise might be inconsistent the underlying

effi ciency conditions (equalization of the marginal utility of additional capacity across variables).4

Therefore, RI provides a useful and microfounded way to specify the stochastic properties of the

noises by solving the agent’s constrained optimization problem. It is worth noting that in the

multivariate RI problem, the agent’s preference, budget constraint, and information-processing

constraints jointly determine the values of the conditional variance of the state, the variance of

the noise, and the Kalman gain, whereas in the multivariate SE problem given the variance of the

noise, the propagation equation updating the conditional variance based on the budget constraint

is used to determined the conditional variance and then the Kalman gain.

The remainder of the paper is organized as follows. Section 2 examines optimal decisions and

economic dynamics in an LQG setting with signal extraction. Section 3 presents the RI version of

the model and compares different implications of RI and SE on the dynamic behavior, policy and

welfare within the LQG setting. Section 4 presents applications to permanent income models.

4See Melosi (2009) for an empirical investigation of this issue.
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Section 5 concludes.

2 Signal Extraction in a LQG Model

2.1 Full-information Rational Expectations LQG Model

Consider the following linear-quadratic-Gaussian (LQG) model:

v (s0) = max
{ct,st+1}

E0

[ ∞∑
t=0

βt
(
sTt Qst + cTt Rct + 2cTt Wst

)]
, (1)

subject to

st+1 = Ast +Bct + εt+1, (2)

with s0 known and given, where β is the discount factor, st is a (n× 1) state vector, ct is a

(k × 1) control vector, εt+1 is an iid (n× 1) vector of Gaussian random variables with mean 0 and

covariance matrix Ω, and Et [·] denotes the mathematical expectation of a random variable given

information processed at t. We assume that Q, R, and W are such that the objective function is

jointly concave in st and ct, and the usual conditions required for the optimal policy to exist are

satisfied.

When the agent can fully observe the state st, the model is a standard linear-quadratic regu-

lator problem. Solving the corresponding Bellman equation

sTt Pst = max
ct

{
sTt Qst + cTt Rct + 2cTt Wst + βEt

[(
sTt A

T + cTt B
T + εTt+1

)
P (Ast +Bct + εt+1)

]}
,

yields the decision rule

c∗t = −Fst, (3)

and the Riccati equation is

P = Q+ F TRF − 2F TW + β
(
AT − F TBT

)
P (A−BF ) , (4)

where

F =
(
R+ βBTPB

)−1 (
W + βBTPA

)
. (5)

Iterating on the matrix Riccati equation (4) uniquely determines P , since the equation defines a

contraction mapping. Using P , we can determine F in the optimal policy (5).
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2.2 Signal Extraction with Exogenous Noises

Following the signal extraction literature (e.g., Muth 1960; Lucas 1972, 1973; Morris and Shin

2002), we now assume that the agent cannot observe the true state st perfectly and only observes

the noisy signal s∗t = st + ξt when making decisions. Here ξt is a (n× 1) vector of noises. The

agent then estimates the state using a standard Kalman filtering equation. In the standard signal

extraction problem, the stochastic property of the noise ξt is given exogenously. Specifically,

assume that ξt is an iid Gaussian innovation with mean 0 and variance-covariance matrix Λ.5 We

point out here that the agent may not have perfect information even about the endogenous part

of the state vector st.

Under the LQG assumption, the certainty equivalence principle holds when the agent cannot

observe st perfectly, so the decision rule under imperfect information can be written as

c∗t = −F ŝt, (6)

where ŝt = E [st|It] is the perceived state and It =
{
s∗t , s

∗
t−1, · · ·, s∗0

}
is the information set

including perceived signals until time t.

Furthermore, we assume that in the steady state, the true state follows a normal distribution

after observing the noisy signals st|It ∼ N (E [st|It] ,Σt), where Σt = Et

[
(st − ŝt) (st − ŝt)T

]
is the conditional variance-covariance matrix, and the Kalman filtering equation governs the

behavior of ŝt

ŝt+1 = (1− θt) (Aŝt +Bct) + θts
∗
t+1, (7)

where θt is the Kalman gain to be determined.6 Following the standard procedure in the Kalman

filter literature, we have the updating equation for Σt,

Σt+1 = (I − θt)AΣtA
T (I − θt)T + (I − θt) Ω (I − θt)T + θtΛθ

T
t , (8)

and the optimal Kalman gain

θt =
(
Ω +AΣtA

T
) (

Ω +AΣtA
T + Λ

)−1
. (9)

5Our quadratic objective function encompasses the standard tracking objective of minimizing the squared dif-

ference of the control from the target.
6Muth (1960) showed that the exponentially weighted average of past observations of a random walk plus a noise

process is optimal in the sense that it minimizes the mean squared forecast error.
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If iterations on Σ and θ using (8) and (9) converge, in the steady state we have

Σ = (I − θ)
(
AΣAT + Ω

)
(I − θ)T + θΛθT (10)

and

θ =
(
Ω +AΣAT

) (
Ω +AΣAT + Λ

)−1
. (11)

(Baxter, Graham, and Wright 2010 discussed the convergence of the Ricatti equation for Kalman

filtering problems with endogenous variables.) Starting from the initial condition Σ0, we can

compute the steady state (θ,Σ) by iterating on (10) and (11). After computing (θ,Σ), we can

obtain a complete characterization of the dynamic system. The key assumption in the SE problem

is that the variance-covariance matrix of the noise, Λ, is given. Given this Λ, (10) and (11) jointly

determine the steady state (θ,Σ).

It is straightforward to show that we have the following alternative equations for computing

the Kalman gain and the conditional variance-covariance matrix, (θ,Σ):

Σt+1 = Ψt −Ψt (Ψt + Λt)
−1 Ψt, (12)

and

θt = ΣtΛ
−1
t , (13)

where Ψt = AΣtA
T + Ω is the conditional variance of the state prior to observing the new signal

at t+ 1. In the steady state, (12) and (13) reduce to

Λ−1 = Σ−1 −Ψ−1. (14)

and

θ = ΣΛ−1, (15)

respectively. After obtaining (15), (42), (6), and (7) completely characterize the model’s dynamic

behavior.

3 Rational Inattention in the LQG Model

Following Sims (2003), we introduce rational inattention (RI) into the LQG model proposed

in Section 2.1 by assuming agents face information-processing constraints and have only finite
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Shannon channel capacity to observe the state of the world. Specifically, we use the concept of

entropy from information theory to characterize the uncertainty about a random variable; the

reduction in entropy is thus a natural measure of information flow. Formally, entropy is defined

as the expectation of the negative of the (natural) log of the density function, −E [ln (f (X))].

For example, the entropy of a discrete distribution with equal weight on two points is simply

E [ln2 (f (X))] = −0.5 ln (0.5) − 0.5 ln (0.5) = 0.69, and the unit of information contained in this

distribution is 0.69 “nats”.7 In this case, an agent can remove all uncertainty about X if the

capacity devoted to monitoring X is κ = 0.69 nats.

With finite capacity κ ∈ (0,∞) , a variable s following a continuous distribution cannot be

observed without error and thus the information set at time t+1, It+1, is generated by the entire

history of noisy signals
{
s∗j

}t+1

j=0
. Following the literature, we assume the noisy signal takes the

additive form s∗t+1 = st+1 +ξt+1, where ξt+1 is the endogenous noise caused by finite capacity. We

further assume that ξt+1 is an iid idiosyncratic shock and is independent of the fundamental shock.

Note that the reason that the RI-induced noise is idiosyncratic is that the endogenous noise arises

from the consumer’s own internal information-processing constraint. Agents with finite capacity

will choose a new signal s∗t+1 ∈ It+1 =
{
s∗1, s

∗
2, · · ·, s∗t+1

}
that reduces the uncertainty of the

state variable st+1 as much as possible. Formally, this idea can be described by the information

constraint

H (st+1|It)−H (st+1|It+1)≤ κ, (16)

where κ is the investor’s information channel capacity, H (st+1| It) denotes the entropy of the

state prior to observing the new signal at t+ 1, and H (st+1| It+1) is the entropy after observing

the new signal. κ imposes an upper bound on the amount of information —that is, the change

in the entropy — that can be transmitted in any given period. We assume that the noise ξt+1

is Gaussian.8 Finally, following the literature, we suppose that the prior distribution of st+1 is

Gaussian.

Under the LQG setting, as shown in Sims (2003, 2006), the true state under RI also follows

a normal distribution st|It ∼ N (E [st|It] ,Σt), where Σt = Et

[
(st − ŝt) (st − ŝt)T

]
. In addition,

7For alternative bases for the logarithm, the unit of information differs; with log base 2 the unit of information

is the ’bit’and with base 10 it is a ’dit’or a ’hartley.’
8As shown in Sims (2003), within the LQG setting Gaussian noise is optimal.
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in the steady state the agent observes an additive noisy signal: s∗t = st + ξt. Note that in the RI

problem we also have the usual formula for updating the conditional variance-covariance matrix

of a Gaussian distribution Σt:

Σt+1 = Ψt −Ψt (Ψt + Λt)
−1 Ψt. (17)

If iterations on Σ converge (which depends on both A and Σ), (17) reduces to Σ = Ψ −

Ψ (Ψ + Λ)−1 Ψ, which can be solved for

Λ−1 = Σ−1 −Ψ−1. (18)

Using these expressions, the Kalman gain K can be rewritten as

θ = ΣΛ−1. (19)

3.1 The Univariate Case

The key difference between SE and RI is that under RI the agent faces the information-processing

constraint

− ln (|Σt+1|) + ln
(∣∣ATΣtA+ Ω

∣∣) ≤ 2κ. (20)

Since more information about the state is better in single-agent models, this constraint will be

binding.9 Considering the univariate state case n = 1, (20) fully determines the value of the

steady state conditional variance Σ:

Σ =
Ω

exp (2κ)−A2
, (21)

which means that Σ is determined by the variance of the exogenous shock (Ω) and the exogenously

given capacity (κ).10 Given this Σ, we can use (18) to recover the variance of the endogenous

noise (Λ):

Λ =
(
Σ−1 −Ψ−1

)−1
, (22)

9By “better”we mean that conditional on draws by nature for the true state, the expected utility of the agent

increases if information about that state is improved.
10Note that here we need to impose the restriction exp (2κ) − A2 > 0. If this condition fails, the state is not

stabilizable and the unconditional variance diverges. Obviously we cannot directly impose conditions on A, since

it is chosen by the agents in the model; it is also clear that we can, for a given model, often easily find suffi cient

conditions that guarantee the restriction holds.
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where Ψ = A2Σ + Ω, and use (19) to find the Kalman gain (θ):

θ = ΣΛ−1 = 1− ΣΨ−1. (23)

Substituting (21) and (22) into (23), we have

θ = 1− 1

exp (2κ)
. (24)

Note that (22) and (23) also hold in the SE problem. To compare the RI and SE problems in the

univariate case, we first make the following assumption.

Assumption 1. Assume that Λ is fixed exogenously in the SE case.

Under Assumption 1, it is clear that in the SE problem given Λ and Ω, we can compute Σ by

solving the nonlinear equation (14). After obtaining Σ, we can use (15) to determine the Kalman

gain θ; thus, in this sense SE and RI have the same implications.

We now discuss how to use a policy experiment to distinguish RI from SE. Suppose that

the variance of the exogenous shock, Ω, is scaled up due to a change in policy. In the SE

problem with fixed Λ, Equations (22) and (23) imply that an increase in Ω will generally lead to

a different solution for Σ and θ; consequently, the change in policy will lead to a change in the

model’s dynamics. Since Σ is a nonlinear function of Ω, the effect of changes in Ω on Σ could be

complicated. In the next section, we will explore this relationship using some numerical examples

in a permanent income model. In contrast, in the RI problem, if κ is fixed, (21), (22), and (23)

imply that a change in Ω will lead to the same change in Σ, Ψ, and Λ, but has no impact on

θ. In other words, agents with fixed capacity will behave as if facing noise whose nature changes

systematically as the dynamic properties of the economy change, i.e., the change in policy does

not change the model’s dynamics.

Assumption 2. Assume that the signal-to-noise ratio (SNR), ΩΛ−1, is fixed exogenously in the

SE case.

Note that Equation (22) can be rewritten as

ΩΛ−1 = ΩΣ−1 −
[
A2
(
ΩΣ−1

)−1
+ 1
]−1

. (25)

Under Assumption 2, since the SNR is fixed, 25) can be used to solve for ΩΣ−1. Given the SNR

and ΩΣ−1, we can compute

ΣΛ−1 =
(
ΣΩ−1

) (
ΩΛ−1

)
. (26)
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Consider the same case in which Ω is scaled up, Assumption 2 means that the exogenous noise

should also be scaled up such that ΩΛ−1 is fixed at the same level; consequently, (25) leads to the

same solution for ΩΣ−1 and (26) leads to the same ΣΛ−1. The following proposition summarizes

the main conclusion in this case:

Proposition 1 Under Assumption 2 (i.e., the SNR is fixed), the SE and RI problems are obser-

vationally equivalent in the sense that they lead to the same dynamics if κ is fixed and ΣΛ−1 in

the SE problem is equal to 1− 1/ exp (2κ) in the RI problem.

Proof. The proof is straightforward by comparing (24) and (26).

In the above analysis, for simplicity we assume that κ remains unchanged when Ω is affected

by the government policy. However, if an increase in Ω leads to higher marginal welfare losses

due to imperfect observations, some capacity may be reallocated from other sources to reduce

the welfare losses due to low capacity. In this case, θ will change accordingly as it is completely

determined by capacity κ; consequently, the dynamic behavior of the model will also change in

response to the change in Ω. We will further explore this issue in the next subsection and the

permanent income model examined in Section 4.

3.1.1 Alternative Way to Model Limited Information-Processing Capacity

As argued in Sims (2010), instead of using fixed finite channel capacity to model limited information-

processing ability, it is also reasonable to assume that the marginal cost of information processing

is constant. That is, the Lagrange multiplier on (20) is constant. In the univariate case, if the

decision rule under full information is c∗t = Hst and the objective of the agent with finite capacity

is to minimize
∑∞

t=0 β
t (ct − c∗t )

2, the optimization problem reduces to

min
Σt

∞∑
t=0

βt
[
H2Σt + λ ln

(
A2Σt−1 + Ω

Σt

)]
,

where Σt is the conditional variance at t, λ is the Lagrange multiplier corresponding to (20), and

we impose the restriction that βA = 1 for simplicity. Solving this problem yields the optimal

conditional variance:

Σt = Σ =
− (ΩH − λA) +

√
(ΩH − λA)2 + 4λΩA2

2HA2
> 0. (27)
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It is straightforward to show that as λ goes to 0, Σ = 0; and as λ goes to ∞, Σ =∞. Comparing

(27) with (21), it is clear that the two modeling strategies are observationally equivalent in the

sense that they lead to the same conditional variance if the following equality holds:

κ =
1

2
ln

R2 +
2HA2

− [H −A (λ/Ω)] +
√

[H −A (λ/Ω)]2 + 4A2 (λ/Ω)

 . (28)

It is obvious that as κ converges to its lower limit κ= ln (R) as λ goes to ∞; and it converges to

∞ as λ goes to 0.11 In other words, using this RI modeling strategy, the agent is allowed to adjust

the optimal level of capacity in such a way that the marginal cost of information-processing for

the problem at hand remains constant. Note that this result is consistent with the concept of

‘elastic’capacity proposed in Kahneman (1973).

Furthermore, it is clear from (28) that if the cost of information processing (λ) is fixed, an

increase in fundamental uncertainty (Ω) will lead to higher capacity (κ) devoted to monitoring the

evolution of the state. We now consider the same policy experiment discussed above: Ω is scaled

up due to a change in policy. If we adopt the assumption that λ is fixed, (27) means that there

is no change in Σ because ∂ ln Σ
∂ ln Ω < 1. (Note that in the fixed κ case, ∂ ln Σ

∂ ln Ω = 1.) Consequently,

a change in Ω will change θ and the model’s dynamics if the inattentive agent is facing fixed

marginal cost of information. Therefore, different ways to model RI may lead to different policy

implications.12

3.1.2 Extension to Correlated Shocks and Noises

In the above analysis, we assumed that the exogenous fundamental shock and noise are uncorre-

lated. We now discuss how correlated shocks and noises affect the implications of SE and RI for

the model’s dynamic behavior. In real systems, we may observe correlated shocks and noises. For

example, if the system is an airplane and winds are buffeting the plane, the random gusts of wind

affect both the process (the airplane dynamics) and the measurement (the sensed wind speed) if

people use an anemometer to measure wind speed as an input to the Kalman filter.

11We require here that H 6= 0; that is, the state must be detectable.
12Note that these two different ways to model RI is very similar to the constraint and multiplier preferences

adopted by Hansen and Sargent (2007) to model robustness. They also established the observational equivalence

between the two preferences within the LQG setting.
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It is straightforward to introduce correlated shocks and noises into the SE problem. Specif-

ically, we consider the case in which the process shock (ε) and the noise (ξ) are correlated as

follows:

corr (εt+1, ξt+1) = ρ,

cov (εt+1, ξt+1) = Γ = ρ
√

Ω
√

Λ,

where ρ is the correlation coeffi cient between εt+1 and ξt+1, Ω = var [εt+1] and Λ = var [ξt+1].

Under SE, Λ is given exogenously and the correlation just introduces another exogenous stochastic

dimension on the noise. As shown in Simon (2006), in this case the optimal Kalman gain can be

written as

θ = (Ψ + Γ) (Ψ + Λ + 2Γ)−1 , (29)

and the updating formula for the conditional variance is:

Σ = Ψ− (Ψ + Γ)2 (Ψ + Λ + 2Γ)−1 , (30)

where Ψ = Ω + A2Σ. Just like the case without the correlation, given Λ and Γ, (29) and (30)

jointly determine the steady state (θ,Σ).

In the RI problem, the correlation generalizes the assumption in Sims (2003) on the uncor-

related RI-induced noise. The presence of correlation between shocks and noises does not affect

the conditional variance Σ since Σ = Ω
A2−exp(2κ)

. In the steady state, (30) can be rewritten as the

following quadratic equation in terms of
√

Λ:
[
ρ2Ω− (Ψ− Σ)

]
Λ + 2ρΣ

√
Ω
√

Λ + ΣΨ = 0, which

can be solved for
√

Λ =
−ρΣ

√
Ω +

√
ρ2Σ2Ω− ΣΨ [ρ2Ω− (Ψ− Σ)]

ρ2Ω− (Ψ− Σ)
. (31)

It is clear from (31) that if κ is fixed, the change in Ω will lead to the same change in Σ, Ψ, and

Λ, but has no effect on the Kalman gain θ = ΣΛ−1. That is, the presence of correlated noise does

not change the dynamic behavior of the model.

3.2 The Multivariate Case

In the multivariate RI problem, it is much more diffi cult to determine the steady state conditional

variance-covariance matrix Σ because it cannot be computed analytically. Here we follow Sims

(2003) and calculate the expected welfare loss due to imperfect observations under RI. Specifically,
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we assume that the value functions under full information and imperfect information can be

written as

v (st) = sTt Pst and v̂ (ŝt) = ŝTt P̂ ŝt,

respectively.13 We can compute the optimal Σ by minimizing the expected welfare loss due to RI,

Et [v (st)− v̂ (ŝt)] , (32)

subject to information-processing constraints. Note that to solve this problem numerically, we

need to use a two-stage procedure.14 First, under the linear-quadratic-Gaussian assumption, the

certainty equivalence principle applies and the decision rule under imperfect information,

c∗t = −F ŝt, (33)

is independent of Σ or Λ. We then use this decision rule to determine v̂ (ŝt) which depends on Σ

and Λ. Applying the welfare criterion proposed in (32), we can solve for optimal steady state Σ

and Λ.

Solving the problem posed in (32) is equivalent to solving the semidefinite programming prob-

lem

max
Σ
{trace (−ZΣ)} (34)

subject to

− log (|Σ|) + log
(∣∣ATΣA+ Ω

∣∣) ≤ 2κ, (35)

ATΣA+ Ω � Σ, (36)

where Z = F TRF − 2F TW + β
(
F TBTPBF + F TBTPA+ATPBF

)
(see online appendix 1.1

for the derivation). If the positive-definiteness constraint on ATΣA+ Ω−Σ, (36), does not bind,

the first-order condition for Σ can be written as follows:

Z = λ
[
A
(
AΣAT + Ω

)−1
AT − Σ−1

]
, (37)

which can be reduced to:

Σ−1 =
(
GΣGT +G0

)−1 − Z

λ
, (38)

13See also Maćkowiak and Wiederholt (2009).
14Sims (2010) also applied this principle solve a tracking problem with information constraints.
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where G =
(
AT
)−1

A and G0 =
(
AT
)−1

ΩA−1. We can then use standard methods to solve (38).

When applied to a permanent income model in the next section, we first solve this equation and

then check whether in fact (36) is satisfied by the optimal solution of Σ. If so, the problem is

solved.15

After computing the optimal steady state Σ, we can then use (18) to determine the steady

state Λ and (19) to determine the Kalman gain θ. Therefore, the key difference between SE and

RI is that in the SE problem we need to specify the process of the noise first, whereas in the RI

problem we need to first specify the value of channel capacity that determines the steady state

conditional variance of the state by solving the semidefinite programming problem proposed in

(34) subject to (35) and (36).16 Theoretically, it is clear that after solving an RI problem, we can

always reconstruct a SE problem using the resulting endogenous noise due to RI as the input,

and the two models are observationally equivalent in this sense. However, it is diffi cult to specify

the process of the vector of noises ex ante when modeling the multivariate SE problem.17

When modeling the multivariate RI problem we only need to set a value for channel capacity

and then compute optimal conditional variance-covariance matrices of the state and the variance-

covariance matrices of the noise vector by solving the constrained semidefinite minimization prob-

lem (34). Therefore, in the multivariate RI problem, the agent’s preference, budget constraint,

and information-processing constraints jointly determine the values of Σ, Λ, and θ, whereas in

the multivariate SE problem given Λ, (18) that is used to determine Σ and θ only depends on

the budget constraint. If the noise in SE is specified exogenously, it may violate the optimality

conditions for RI; for example, Melosi (2009) showed that a particular estimated SE model does

not equate the marginal utility of attention across states, implying that the variance-covariance

matrix of the noise would not be consistent with any channel capacity. Of course, obtaining the

marginal utility of attention requires solving the RI problem, so it will be diffi cult to specify ex

ante an SE problem consistent with RI.

15 If this constraint does not bind, in principle we can apply the logic of the reverse water-filling problem to solve

for Σ. In practice, this method has proven numerically unstable.
16Note that the basic idea of solving the multivariate RI problem is the same as that in the univariate model and

thus the key difference between SE and RI problems remains unchanged.
17This problem will be particularly diffi cult for non-LQG problems, since the distribution of the noise shocks will

generally be impossible to specify analytically.

14



We now consider the different policy effects of RI and SE in the multivariate case. We first

assume that initially the SE and RI problems have the same Kalman gain that generates the

same dynamic behavior. Suppose that the variance-covariance matrix of the exogenous shock, Ω,

is scaled up due to a change in policy.18 In the SE problem with fixed Λ, Equations (22) and (23)

imply that a change of Ω will lead to a different solution for Σ and θ, i.e., the change in policy will

lead to a change in the model’s dynamics. In contrast, in the multivariate RI problem, as shown

in (34)-(36), a change in Ω will have complicated effects on Σ, Λ, and θ. In other words, in the

multivariate case a change in policy will affect the model’s behavior in both SE and RI problems.

(Note that in the univariate case the change in policy does not change the model’s dynamics.)

We next consider the effects of RI and SE under Assumption 2 (i.e., the SNR, ΩΛ−1, is fixed

in the SE problem). As before, we assume that initially the SE and RI problems have the same

Kalman gain. To illustrate how a change in Ω affects the Kalman gain in RI and SE problems

under Assumption 2, we multiply Σ on both sides of (22):

ΣΛ−1 = I −
[
AΣATΣ−1 +

(
ΩΛ−1

) (
ΛΣ−1

)]−1
, (39)

where I is the identity matrix and we use the fact that ΩΣ−1 =
(
ΩΛ−1

) (
ΛΣ−1

)
. Under Assump-

tion 2, the policy has the same impact on Ω and Λ to keep the SNR fixed. (39) clearly shows

that if the policy changes Σ and then AΣATΣ−1, it will affect θ = ΣΛ−1 even under Assumption

2. Multiplying Ω on both sides of (22) gives

ΩΛ−1 = ΩΣ−1 −
(
AΣATΩ−1 + I

)−1
, (40)

which means that a change in Ω will lead to different Σ given that ΩΛ−1 is fixed. Note that in

the univariate case, AΣATΣ−1 = A2, which means that the policy has no impact on θ, and the

SE and RI problems cannot be distinguished by the policy under Assumption 2 that the SNR,

ΩΛ−1, is fixed.

4 Applications to the Permanent Income Model

In this section we consider the effects of SE and RI for consumption dynamics and their policy

and welfare implications in an otherwise standard permanent income model. As in the previous

18That is, all elements in the variance-covariance matrix are scaled up.
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section we first consider applications to the univariate case and then discuss applications to the

multivariate case.

We are not the first to examine this model. Sims (2003) examined how RI affects consumption

dynamics when the agent only has limited capacity when processing information. Luo (2008)

showed that the RI permanent income can be solved explicitly even if the income process is not

iid, and then examines how RI can resolve the well-known excess smoothness and excess sensitivity

puzzles; that model admits a reduction to a single state variable.19

4.1 The Univariate Case

Following Luo (2008), we have the following univariate version of the standard permanent in-

come model (Hall 1978, Flavin 1981) in which households solve the dynamic consumption-savings

problem

v(s0) = max
{ct}

E0

[ ∞∑
t=0

βtu(ct)

]
(41)

subject to

st+1 = Rst − ct + ζt+1, (42)

where u(ct) = −1
2 (ct − c)2 is the period utility function, c > 0 is the bliss point, ct is consumption,

st = wt +
1

R

∞∑
j=0

R−jEt [yt+j ] (43)

is permanent income (the expected present value of lifetime resources), consisting of financial

wealth (wt) plus human wealth,

ζt+1 =
1

R

∞∑
j=t+1

(
1

R

)j−(t+1)

(Et+1 − Et) [yj ] ; (44)

is the time (t+ 1) innovation to permanent income with mean 0 and variance ω2
ζ , wt is cash-on-

hand (or market resources), yt is a general income process with Gaussian white noise innovations, β

is the discount factor, and R is the constant gross interest rate at which the consumer can borrow

and lend freely. We assume y follows an AR(1) process with persistence coeffi cient ρ ∈ [0, 1],

19The excess smoothness puzzle states that consumption responds too little to permanent changes in income.

The excess sensitivity puzzle states that current consumption responds to changes in income that were anticipated

in earlier periods.
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yt+1 = ρyt + εt+1, where εt+1 ∼ N
(
0, ω2

)
, ζt+1 = εt+1/ (R− ρ). For the rest of the paper we

will restrict attention to points where ct < c, so that utility is increasing and concave; following

the literature we impose the restriction that βR = 1, because it implies a stationary path for

consumption. This specification follows that in Hall (1978) and Flavin (1981) and implies that

optimal consumption is determined solely by permanent income:

ct = (R− 1) st. (45)

Within this LQG setting, the certainty equivalence principle holds and introducing SE or RI lead

to the following new consumption function:

ct = (R− 1) ŝt, (46)

where ŝt = Et [st] is the perceived state and is governed by the following Kalman filtering equation

ŝt+1 = (1− θ) (Rŝt − ct) + θ (st+1 + ξt+1) , (47)

where θ is the Kalman gain, and given s0 ∼ N
(
ŝ0, σ

2
)
. As shown in Luo (2008), combining (42),

(46), with (47) yields the following expression for the change in consumption:

∆ct = (R− 1)

[
θζt

1− (1− θ)R · L + θ

(
ξt −

θRξt−1

1− (1− θ)R · L

)]
, (48)

where L is the lag operator. We require (1− θ)R2 < 1, the model equivalent of the stabilizability

condition stated before (this condition implies (1 − θ)R < 1 since R > 1). This MA(∞) process

shows that the dynamic behavior of the model is strongly influenced by the Kalman gain θ. Using

the explicit expression for consumption growth (48), we can compute the key stochastic properties

of consumption process: the volatility of consumption growth, the persistence of consumption

growth, and the correlation between consumption growth and income shocks.20 All these moments

depend on the Kalman gain. In other words, SE and RI lead to different consumption processes

if and only if the resulting θ differs.

4.1.1 Policy Implications under SE and RI

In this univariate permanent income model, substituting A = R into Equation (25),

ω2
ζΛ
−1 = ω2

ζΣ
−1 −

[
R2
(
ω2
ζΣ
−1
)−1

+ 1
]−1

, (49)

20See Luo (2008) for a discussion on the effects of RI on consumption dynamics.
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where ω2
ζΣ
−1 =

(
ω2
ζΛ
−1
) (

ΛΣ−1
)
, and denote θ = ΣΛ−1 and π = ω2

ζΛ
−1, we obtain the following

relation between π and θ:

π = θ

(
1

1− θ −R
2

)
. (50)

Solving for θ yields

θ =
− (1 + π) +

√
(1 + π)2 + 4R2 (π +R2)

2R2
, (51)

where we omit the negative root of θ as both Σ and Λ must be positive. Figure 1 below illustrates

the relationship between π and θ given R = 1.02 and π ∈ [0.1, 10]. It clearly shows that θ is an

increasing function of π, the signal-to-noise ratio. Also, as π →∞, θ → 1.

In the RI version of the permanent income model, we have

Σ =
Ω

exp (2κ)−R2
, (52)

Λ =
(
Σ−1 −Ψ−1

)−1
, (53)

where Ψ = R2Σ + Ω. Using (52) and (53), the Kalman filter gain under RI can be written as

θ = ΣΛ−1 = 1− 1

exp (2κ)
. (54)

Comparing (51) with (54), it is clear that the signal to noise ratio (π) and the level of channel

capacity (κ) have one-to-one correspondence. Figure 2 shows that the relationship between κ and

π when the SE and RI problems are observationally equivalent in the sense that they lead to the

same consumption dynamics governed by the Kalman gain θ. This result is consistent with the

general conclusion we obtained using Assumption 2 in the previous section.

Using the same expression for θ, (51), we can examine how Assumption 1 can be used to

distinguish SE and RI when implementing a change in government policy. Specifically, in the SE

problem, we assume that before the government implements stabilization policies, the signal-to-

noise ratio π =
ω2ζ
Λ = 2. In this case, θ = 0.79. After the government implements these policies,

the variance of the shock to permanent income will be reduced from ω2
ζ to 0.5ω2

ζ . Since Λ is fixed

under Assumption 1, π =
ω2ζ
Λ will fall from 2 to 1; consequently, θ = 0.74. We now assume that the

RI and SE problems are observationally equivalent in the sense that they lead to the same θ = 0.79

before implementing the stabilization policies. After implementing these policies, ω2
ζ will be scaled

down to 0.5ω2
ζ , and the RI theory predicts that both Σ and Λ will be scaled down to 0.5Σ and
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0.5Λ, respectively.21 Consequently, the Kalman filter gain, θ = ΣΛ−1 = 0.79, remains unchanged.

In other words, stabilization policy have different implications for consumption dynamics in the

SE and RI models.

Alternatively, if we assume that the cost of information processing (λ) is fixed, the optimal

conditional variance equals

Σ =
− [Ω (R− 1)− λR] +

√
[Ω (R− 1)− λR]2 + 4λΩR2

2 (R− 1)R2
. (55)

Comparing (55) with (52), it is clear that the two modeling strategies are observationally equivalent

in the sense that they lead to the same conditional variance if the following equality holds:

κ =
1

2
ln

R2 +
2 (R− 1)R2

−
[
(R− 1)−R

(
λ/ω2

ζ

)]
+

√[
(R− 1)−R

(
λ/ω2

ζ

)]2
+ 4R2

(
λ/ω2

ζ

)
 . (56)

In this case, the Kalman gain is

θ = 1−

R2 +
2 (R− 1)R2

−
[
(R− 1)−R

(
λ/ω2

ζ

)]
+

√[
(R− 1)−R

(
λ/ω2

ζ

)]2
+ 4R2

(
λ/ω2

ζ

)

−1

. (57)

After implementing these policies, ω2
ζ is scaled down to 0.5ω2

ζ , and the fixed λ theory predicts that

the Kalman filter gain, θ = ΣΛ−1, is reduced. For example, before the government implements

stabilization policies, we have λ/ω2
ζ = 0.000135 and θ = 0.79. After the policy, we can easily

calculate that θ = 0.68 using (57). Figure 3 plots the different implications of SE and RI for

consumption dynamics after implementing the stabilization policy: consumption growth falls

more (less) under SE than RI when κ is fixed (when λ is fixed), since the Kalman gain decreases

(increases).22

4.1.2 Welfare Effects of Imperfect Information under SE and RI

Given the restriction that βR = 1, the value function for the RI or SE models is

v̂ (ŝ0) = −(R− 1)R

2
ŝ2

0 +Rcŝ0 −
1

2
R

(
1

R− 1
c2 + ω2

η

)
, (58)

21A proof is straightforward from Expressions (52) and (53).
22 In principle one might be able to use policy changes to distinguish the models, although in practice identification

would seem to be a serious obstacle.
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where

ω2
η = var [ηt+1] =

θ

1− (1− θ)R2
ω2
ζ > ω2

ζ , (59)

and

ηt+1 = θ

[(
ζt+1

1− (1− θ)R · L

)
+

(
ξt+1 −

θRξt
1− (1− θ)R · L

)]
. (60)

With the Kalman gain θ < 1, ω2
η > ω2

ζ and it then follows that ω
2
η is decreasing in θ.

Proposition 2 ∂ω2η
∂θ < 0.

Proof. By simple calculation we obtain

∂ω2
η

∂θ
=

(
1−R2

)
ω2
ζ

[1− (1− θ)R2]2
< 0 (61)

because R > 1 and 1− (1− θ)R2 > 0.

The value function (58), together with (59) and (61) clearly show that imperfect observations

due to finite capacity lead to more uncertainty about the state, which thus increases welfare

losses. More importantly, they also show that after implementing the stabilization policy discussed

in the preceding subsection, SE and RI will lead to different welfare implications of imperfect

observations. The reason is that the policy will lead to different Kalman gain in the SE and RI

problem and thus affects the welfare losses due to imperfect information. Using the same example

discussed above, when ω2
ζ is reduced to 0.5ω2

ζ , θ = 0.79 under RI when κ is fixed, where it is

equal to 0.74 under SE. That is, given the same initial conditions, the stabilization policy will

reduce the welfare of agents under SE, whereas it has no effect on agents with RI. The intuition

is that the stochastic property of the noise in the RI problem changes accordingly in response to

the change in the policy.

Since imperfect information about the state cannot help in decision making, we can use an

alternative welfare criterion, the expected welfare gap between the unconstrained value function

and the constrained value function conditional on the processed information at the current period,

to evaluate different welfare implications of SE and RI.23 Note that the unconstrained value

function in the full-information case can be written as

v (st) = −(R− 1)R

2
s2
t +Rcst −

1

2
R

(
1

R− 1
c2 + ω2

ζ

)
. (62)

23 Imperfect information cannot make a single decision-maker better off, but of course that result need not hold

when agents interact.
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The expected welfare gap due to imperfect information, ∆ (Σ, θ), can thus be written as follows:

∆ (Σ, θ) = Et [v (st)− v̂ (ŝt)] (63)

= −(R− 1)R

2
var t [st]−

1

2
R
(
ω2
ζ − ω2

η

)
= −(R− 1)R

2
Σ +

1

2
R

[
θ

1− (1− θ)R2
− 1

]
ω2
ζ ,

where the expectation, Et [·], is conditional on processed information at time t and Σ is the

conditional variance of the state. (See online appendix 1.2 for the derivation.) From (63), we can

clearly see that imperfect information affects the welfare gap via two channels:

1. The post-observation variance, i.e., the conditional variance of the state, Σ. The first term

in (63) means that a larger conditional variance will decrease welfare. The intuition behind

this result is that ŝ2
t in the constrained value function is in the time-t information set, while

s2
t in the constrained value function is not in the information set; consequently, Et

[
s2
t

]
> ŝ2

t .

However, when R is close to 1, this term is close to 0 and thus has little effect on welfare.

2. The innovation to the level of perceived permanent income, ηt+1, is more volatile than that

to the level of actual permanent income, ζt+1. That is, ω2
η > ω2

ζ . Therefore, the second term

in (63) means that imperfect information will reduce welfare by increasing the volatility

of the innovation to the perceived state. Note that the unconstrained value function is

determined by the dynamics of the actual state st:

st+1 = Rst − ct + ζt+1, (64)

whereas the constrained value function is determined by the dynamics of ŝt:

ŝt+1 = Rŝt − ct + ηt+1. (65)

As will be shown later in (67), the second channel will dominate the first channel and thus

imperfect information always leads to welfare losses.

To evaluate the different effects of SE and RI on the welfare losses under government stabi-

lization policies, we divide ω2
ζ on both sides of (63) and obtain

∆̃ (π,K) , ∆ (Σ, θ)

ω2
ζ

= −(R− 1)R

2

θ

π
+

1

2
R

[
θ

1− (1− θ)R2
− 1

]
, (66)
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where we use the fact that Σ
ω2ζ

= Σ
Λ

Λ
ω2ζ

= θ
π , where π = ω2

ζ/Λ is defined as the signal-to-noise ratio.

Using (66), we can examine how stabilization policies affect the welfare losses under SE and RI.

Specifically, after implementing the stabilization policy (i.e., ω2
ζ is reduced to 0.5ω2

ζ ), SE and RI

will lead to different welfare losses via Σ and θ. Under RI, when κ is fixed and ω2
ζ is reduced to

0.5ω2
ζ , the conditional variance will fall from Σ to 0.5Σ but θ = 0.79 will remain unchanged. (66)

therefore implies that ∆(Σ,θ)
ω2ζ

will remain the same after implementing the policy as RI has no

impact on the signal-to-noise ratio π. In contrast, under SE, under Assumption 1 (i.e., Λ is fixed),

θ will be reduced to 0.74. (66) therefore implies that ∆(Σ,θ)
ω2ζ

will be reduced after implementing the

policy as π will fall to 0.5π. That is, given the same initial conditions (θ = 0.79), the stabilization

policy will lead to smaller welfare losses in the SE model than in the RI model. Note that under

RI, substituting Σ =
ω2ζ

1/(1−θ)−R2 , into (63), we can further simplify (63) as follows:

∆ (Σ,K) =
1

2
ω2
ζ (R− 1)

(1− θ)R2

1− (1− θ)R2
, (67)

which means that given ω2
ζ , the welfare loss is decreasing with the Kalman gain, i.e., is increasing

with the degree of inattention (see online appendix for the derivation).

Following Barro (2007), we use (58) to compute the welfare effects of changes in channel

capacity and compare them with those from proportionate changes in the initial level of the

perceived state (ŝ0). Specifically, the relative marginal welfare losses (rmw ) due to imperfect

information at different capacity (κ) can be written as

rmw =
∂v̂/∂κ

(∂v̂/∂ŝ0) ŝ0
= − 1

− (R− 1) ŝ2
0 + cŝ0

(
1−R2

)
exp (−2κ)ω2

ζ

[1− exp (−2κ)R2]2
> 0, (68)

where ∂v̂
∂ŝ0

= − (R− 1)Rŝ0 +Rc > 0, ∂v̂∂κ = −1
2R

∂ω2η
∂K

∂K
∂κ > 0 is evaluated for given ŝ0, Expression

(68) gives the proportionate increase in ŝ0 that compensates, at the margin, for an reduction in

capacity κ devoted to monitoring the state, in the sense of preserving the lifetime utility. Using

Expression (68), it is straightforward to show that ∂(rmw)
∂κ < 0. Denote by f (κ) = exp(−2κ)

[1−exp(−2κ)R2]2
.

It is clear that only the f (κ) term is important for the effects of RI on rmw . Figure 4 illustrates

how capacity κ affects f (κ) and rmw when R = 1.01. It clearly shows that RI can have significant

effects the relative marginal welfare losses when capacity devoted to monitoring the state is low.

For example, when κ = 0.2 nats, f = 16.6, whereas f = 0.45 when κ = 1 nat.

To do quantitative welfare analysis, we need to know the level of the initial level of permanent

income, ŝ0. For simplicity we assume that ŝ0 is just mean permanent income. To compute ŝ0,
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denote by γ the local coeffi cient of relative risk aversion, which equals γ = E[y]
c−E[y] for the utility

function u (·) evaluated at mean income E [y]. Here we impose β = 0.9971 such that the annual

real interest rate is 2.5%. We then follow the procedure used in Hansen and Sargent (2004) and

use the estimated one-factor endowment process as follows

yt+1 = 0.9992yt + εt+1, (69)

and εt+1 follows an iid process distributed as N
(
0, 5.58192

)
. Here we set the coeffi cient of vari-

ation of endowment, sd [yt] /E [yt], to be 0.1, which can be used to compute the mean income

level E [y] = 1396 and then the value of the bliss point c that generates reasonable relative risk

aversion γ. For example, when the local CRRA γ is set to 1, we have c = 2E [y] = 2792. Fur-

thermore, assume that the ratio of mean financial wealth to mean labor income, E [w] /E [y], is

5.24 Since st = wt + 1
R−0.9992yt and ζt = εt

R−0.9992 we have E [s] =
(

5 + 1
R−0.9992

)
E [y] .Given this

specification and set the values of κ and R, we can use (68) to compute the welfare effects of finite

capacity quantitatively. Figure 5 illustrates the values of rmw at different capacity for given γ.

We can see that rmw is decreasing with κ, i.e., the proportionate increase in ŝ0 that compensates

for an reduction in κ in the sense of preserving the lifetime utility is increasing with the degree

of inattention.25 For example, given γ = 1, when κ = 0.2 nats, rmw = 2.7127 · 10−2%, whereas

rmw = 9.0105 · 10−4% when κ = 1 nat. That is, if the agent’s capacity is reduced from 1 bit to

0.2 nats, the proportionate increase in ŝ0 that compensates for an reduction in κ in the sense of

preserving the expected utility will be increased by about 30 times. Hence, if the level of ŝ0 is

large, the agent would have strong incentive to reallocate more capacity to monitor this state if

he is allowed to adjust his capacity.

After the government implements the stabilization policies that reduces the variance of the

shock from ω2
ζ to 0.5ω2

ζ , the economy switches to a more stable environment. If we relax the

assumption that κ is fixed and assume that the marginal cost of information λ is fixed, the corre-

sponding κ will be reduced from 0.78 to 0.57 nats, i.e., some capacity will be reallocated to other

sources to increase the economic effi ciency because a reduction in macroeconomic uncertainty

24This number varies substantially for different individuals, from 2 to 20. 5 is the average wealth/income ratio

in the Survey of Consumer Finances 2001.
25 In addition, given κ, rmw is increasing with γ. That is, agents who are more risk averse require more compen-

sation for a reduction in capacity to maintain the initial level of expected utility.
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leads to smaller marginal welfare losses due to RI. In this case, the Kalman gain θ will fall from

0.79 to 0.68 accordingly; consequently, the dynamic behavior in the RI model will also change in

response to the change in ω2
ζ .

4.2 The Multivariate Case

In this section we solve for optimal steady state Σ and Λ in a parametric multivariate RI permanent

income model and then illustrate the differences between RI and SE problems. This example is

similar to that discussed in Sims (2003) and considers multiple income shocks with different

stochastic properties. Specifically, we assume that the original budget constraint is as follows

wt+1 = Rwt − ct + yt+1, (70)

where wt is the amount of cash-in-hand, and the income process yt have two persistent components

(x and z) and one transitory component (εy,t):

yt = y + xt + zt + εy,t,

xt = 0.99xt−1 + εx,t,

zt = 0.95zt−1 + εz,t,

with

Ω = var


εy,t

εx,t

εz,t

 = 10−3


0.9 0 0

0 0.009 0

0 0 0.27

 , (71)

where xt is the most persistent and smooth component and εy,t is the most transitory and volatile

component. For the quadratic utility function u(ct) = −1
2 (ct − c)2, the model economy can be

characterized as the following three equations system:
wt

xt

zt

 =


R 0.99 0.95

0 0.99 0

0 0 0.95



wt−1

xt−1

zt−1

+


−1

0

0

 (ct−1 − c)+


1 1 1

0 1 0

0 0 1



εy,t

εx,t

εz,t

+


y − c

0

0

 ,
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where β is set to 0.95. Using the first welfare criterion (32) provided in Section 3.2, we can

compute that

Σ = 10−3


0.1399 −0.0737 −0.0110

−0.0737 0.1596 −0.1820

−0.0110 −0.1820 0.5555

 , (72)

when capacity κ = 2.2 bits, which can be used to compute the variance of the noise Λ using

Λ−1 = Σ−1 − Ψ−1, and then compute the Kalman gain according to θ = ΣΛ−1. It is clear from

(72) that due to the low capacity devoted to monitoring the state, the post-observation variances

(i.e., the conditional variances) of the x and z components are both greater than the corresponding

innovation variances in (71). More importantly, the conditional variance of the slow-moving x

component is 18 times larger than its corresponding innovation variance, whereas that of the

fast-moving z component is only 2 times larger than its innovation variance.26 The intuition

behind this result is that the optimizing agent devotes much less capacity to monitoring the

slow-moving component, which leads to greater impacts on the conditional variance term. Figure

6 plots the impulse responses of consumption to the income shocks and noises. It shows that

consumption reacts to the income shocks gradually and with delay, and reacts to the corresponding

noises promptly. In addition, we can see that the response of consumption to the slow-moving

x component is much more damped than that to the fast-moving z component. It is also worth

noting that since the agent only cares about the trace of ZΣ and the symmetric matrix Z is

negative semidefinite, the agent with low capacity will choose to make the post-observations

of the states be negatively correlated. This correlation conserves capacity by permitting some

information about each state to be transmitted using a single nat.

When we relax the information-processing capacity and increase κ to 2.8 nats, the conditional

covariance matrix becomes

Σ = 10−3


0.0787 −0.0419 0.0153

−0.0419 0.1172 −0.1926

0.0153 −0.1926 0.5170

 . (73)

26Alternatively, we can also see that the conditional variance of the x component is about 3 times smaller than

its corresponding unconditional variance (0.4523), whereas that of the z component is about 5 times smaller than

its corresponding unconditional variance (2.7692).
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Comparing (72) with (73), we can see that relaxing information-processing capacity has the largest

impact on the conditional variance of the endogenous state variable w: the post-observation

variance of w is reduced to about half the initial value. The intuition behind this result is that

the endogenous variable plays the most important role in affecting the welfare losses due to RI.

To see this clearly, the matrix Z is displayed here:

Z = 10−2


−0.0204 −0.6732 −0.2769

−0.6732 −22.2156 −9.1363

−0.2769 −9.1363 −3.7573

 . (74)

While w per unit has less of an effect on welfare, it is proportionally much larger than either of the

other two state variables. It is also clear that as the information constraint is relaxed the agent

chooses to allocate more capacity to monitoring the slow-moving component x than to monitoring

the z component.

Note that in the RI problem (72) is optimal in sense that it minimizes the expected welfare

losses due to finite information-processing capacity by allocating fixed capacity optimally across

different elements in the state vector. In contrast, in the SE problem, Λ must be specified first

and then Σ and K can be computed. However, it is diffi cult to specify Λ without prior knowledge

about the states. Ad hoc assumptions on Λ might be inconsistent with the underlying effi ciency

conditions. Therefore, RI could provide a useful way to specify the stochastic properties of the

noises by solving the agent’s optimization problem subject to information constraints. As we have

noted previously, Melosi (2009) presents an application of this idea; he notes that a particular

estimated model shows that the marginal utility of information is not equated across variables

and is thus inconsistent with RI (that is, inconsistent with any value for κ.)

5 Conclusions

In this paper we have explored the implications of two informational frictions theories, signal

extraction and rational inattention, for economic behavior, policy, and welfare within the linear-

quadratic-Gaussian (LQG) setting. First, we showed that if the variance of the noise itself is fixed

exogenously, the two theories can be distinguished as they lead to different dynamics and welfare

after implementing government policies. Second, we showed that if the signal-to-noise ratio (SNR)
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in the SE problem is fixed and channel capacity in the RI problem, SE and RI is observationally

equivalent in the sense that they lead to the same dynamics even after implementing policies in the

univariate case, whereas they generate different policy and welfare implications in the multivariate

case. Furthermore, in the multivariate case we showed that under RI the agent’s preference, budget

constraint, and information-processing constraints jointly determine the stochastic properties of

the post-observation variance and endogenous noise; hence, RI provides an effi cient way to specify

the nature of the Kalman gain that governs the model’s dynamics.

Distinguishing between SE and RI has policy relevance beyond the simple examples we consider

here. Paciello and Wiederholt (2011) study the optimal monetary policy in a model that nests

both SE and RI. They find that the policy can differ across the two types of models —the key

is that under RI the policymaker can affect the attention allocation between different shocks.

In particular, they find that the divine coincidence of no tradeoff between stabilizing prices and

output holds under RI, but not under SE.

Extending our results to compare environments outside the linear-quadratic-Gaussian setup

will be challenging. Solving the SE problem is straightforward, although computation of the

conditional expectations may be diffi cult depending on the distributional assumptions. The RI

problem is diffi cult to solve, however, because the optimal joint distribution of states and controls

is typically not of a known form and not easy to approximate; the optimality of discrete solutions

discussed in Matejka and Sims (2010) make it diffi cult to characterize the distribution in terms

of a small number of parameters. It seems therefore unlikely that SE and RI environments will

be observationally equivalent.

6 Online Appendix (Not for Publication)

6.1 Solving for the Steady State Conditional Variance-Covariance Matrix

Assume that the value functions under full information and imperfect information can be written

as

v (st) = sTt Pst

and

v̂ (ŝt) = ŝTt P̂ ŝt
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respectively. Note that the two value functions satisfy the following Bellman equations

v (st) = sTt
(
Q+ F TRF − 2F TW

)
st + βEt

(
v
(
s∗t+1

))
, (75)

v̂ (ŝt) = Et
[
sTt Qst + ŝTt F

TRFŝt − 2ŝTt F
TWst

]
+ βEt [v̂ (ŝt+1)] , (76)

where

s∗t+1 = Ast −BFst + εt+1

is the value of st+1 when the agent can observe st perfectly. The agent thus chooses the steady

state conditional covariance matrix Σ to minimize the expected welfare loss due to imperfect

observations:

Et [v (st)]− v̂ (ŝt) = Et
[
sTt Pst

]
− ŝTt P̂ ŝt. (77)

Substituting the two Bellman equations into this objective function gives

Et
[
sTt Pst

]
− ŝTt P̂ ŝt

= Et
[
sTt
(
Q+ F TRF − 2F TW

)
st
]

+ βEt
[
s∗Tt+1Ps

∗
t+1

]
− Et

[
sTt Qst + ŝTt F

TRFŝt − 2ŝTt F
TWst

]
− βEt

[
ŝTt+1P̂ ŝt+1

]
= Et

[
sTt
(
Q+ F TRF − 2F TW

)
st
]
− Et

[
sTt Qst + ŝTt F

TRFŝt − 2ŝTt F
TWst

]
+ βEt

[
s∗Tt+1Ps

∗
t+1 − ŝTt+1P̂ ŝt+1

]
= Et

[
sTt
(
Q+ F TRF − 2F TW

)
st
]
− Et

[
sTt Qst + ŝTt F

TRFŝt − 2ŝTt F
TWst

]
+ βEt

[
s∗Tt+1Ps

∗
t+1 − ŝTt+1P̂ ŝt+1

]
= trace

((
F TRF − 2F TW

)
Σ
)

+ βEt

[
s∗Tt+1Ps

∗
t+1 − ŝTt+1P̂ ŝt+1

]
= trace

((
F TRF − 2F TW

)
Σ
)

+ βEt

[
s∗Tt+1Ps

∗
t+1 − sTt+1Pst+1 + sTt+1Pst+1 − ŝTt+1P̂ ŝt+1

]
Given the LQ setting, Et

[
sTt Pst

]
− ŝTt P̂ ŝt is a constant. Call this constant M . Then

M = Et
[
sTt Pst

]
− ŝTt P̂ ŝt = trace

((
F TRF − 2F TW

)
Σ
)

+ βEt
[
s∗Tt+1Ps

∗
t+1 − sTt+1Pst+1

]
+ βM,

which means that

(1− β)M = trace
((
F TRF − 2F TW

)
Σ
)

+ βEt
[
s∗Tt+1Ps

∗
t+1 − sTt+1Pst+1

]
.
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Using the definitions of s∗t+1 and st+1, we obtain

(1− β)M = trace
((
F TRF − 2F TW

)
Σ
)

+ βEt

 (
sTt − ŝTt

)
F TBTPBF (st − ŝt)

+2
(
sTt − ŝTt

)
F TBTP (Ast −BFŝt + εt+1)


= trace

([
F TRF − 2F TW + β

(
F TBTPBF + F TBTPA+ATPBF

)]
Σ
)

= trace (ZΣ) ,

where Z is a constant matrix.

6.2 Deriving the Conditional Welfare Gap

Given the value functions under RE and RI in the main tex, we have

∆ (Σ,K) = Et [v (st)− v̂ (ŝt)] (78)

= −(R− 1)R

2
Et
[
s2
t

]
+RcEt [st]−

1

2
R

(
1

R− 1
c2 + ω2

ζ

)
−
{
−(R− 1)R

2
ŝ2
t +Rcŝt −

1

2
R

(
1

R− 1
c2 + ω2

η

)}
= −(R− 1)R

2

(
var t [st] + ŝ2

t

)
− 1

2
Rω2

ζ −
[
−(R− 1)R

2
ŝ2
t −

1

2
Rω2

η

]
= −(R− 1)R

2
var t [st]−

1

2
R
(
ω2
ζ − ω2

η

)
= −(R− 1)R

2
Σ +

1

2
R

[
θ

1− (1− θ)R2
− 1

]
ω2
ζ ,

which is just the expression for the welfare loss in the main text. The above expression can be

further simplified as follows:

∆ (Σ,K) = −(R− 1)R

2
Σ− 1

2
R
(
ω2
ζ − ω2

η

)
= −(R− 1)R

2
Σ +

1

2
R

[
θ

1− (1− θ)R2
− 1

]
ω2
ζ

=
1

2
ω2
ζ (R− 1)

(1− θ)R2

1− (1− θ)R2
,

where we use that the fact that Σ =
ω2ζ

1/(1−θ)−R2 and ω
2
η = θ

1−(1−θ)R2ω
2
ζ .
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