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Downregulation of E-cadherin in solid tumors with regional migration and systematic metastasis is well recognized. In view
of its significance in tumorigenesis and solid cancer progression, studies on the regulatory mechanisms are important for the
development of target treatment and prediction of clinical behavior for cancer patients. The vertebrate zinc finger E-box binding
homeobox (ZEB) protein family comprises 2 major members: ZEB1 and ZEB2. Both contain the motif for specific binding to
multiple enhancer boxes (E-boxes) located within the short-range transcription regulatory regions of the E-cadherin gene. Binding
of ZEB1 and ZEB2 to the spaced E-cadherin E-boxes has been implicated in the regulation of E-cadherin expression in multiple
human cancers.Thewidespread functions of ZEBproteins in humanmalignancies indicate their significance. Given the significance
of E-cadherin in the solid tumors, a deeper understanding of the functional role of ZEB proteins in solid tumors could provide
insights in the design of target therapy against the migratory nature of solid cancers.

1. Introduction

Epithelial cadherin (E-cadherin, cadherin type 1, CD324, or
CDH1) is involved in the cell cohesiveness and assembly of
identical or different cell types during tissue construction
and morphogenesis [1]. E-cadherin functions as adhesion
molecule at adherens junctions and binds cells through
homophilic interactions (i.e., E-cadherin on one cell binds to
another E-cadherin molecule on the neighboring cell) in a
Ca2+-depending manner. Removal of the calcium ion from
the extracellular environment will disrupt the homophilic
interactions between E-cadherin molecules, loose the con-
tact between adjacent cells, and promote degradation. Pre-
cise transcriptional control of E-cadherin gene expression
is essential during developmental reprogramming, cellular
differentiation, and cancer progression [2, 3]. Further, E-
cadherin suppression enhances the development of migra-
tory and invasive phenotype by increasing cell motility and
facilitating dissociation from the surrounding extracellular
matrix of the primary site. Hence, exploiting the fundamental
processes involved in E-cadherin suppression is thought
to have a significant implication in the context of cancer
prevention and migration inhibition.

Destruction of the cadherin-cadherin adhesion linkages
at the cell junction is the initial step for cell dissociation and
detachment. In solid cancers, cancer cells prompt to change
the degree of cell adhesiveness in order to disseminate from
the primary cancer site by altering E-cadherin expression [4].
Hereby cancer cells could acquire the mesenchymal pheno-
type which facilitates them to invade into the surrounding
tissues and through basement membranes [5]. This pro-
cess is referred to epithelial-mesenchymal transition (EMT)
and the motile mesenchymal-like cells are characterized
by repression of epithelial-associated genes and expression
of filopodia and lamellipodia [6]. With the advances in
molecular technique, it is now recognized that timely and
precise control of E-cadherin expression plays a pivotal role
in the molecular reprogramming during EMT and is closely
linked with cancer aggressiveness.

2. Enhancer Box (E-Box) at the Promoter
Region of E-Cadherin Encoding Gene

Transcription factors could bind to the cis-regulatory ele-
ments in the promoter region of eukaryotic genes [7].
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The 5 proximal promoter regions of E-cadherin gene contain
GC-rich sequence, palindromic sequence E-pal, and E-boxes
which allows direct binding of specific transcription regula-
tors [8–11]. Although the transcription regulationmechanism
of E-cadherin in cancer cells is not fully elucidated, emerging
evidence suggested that coordinated recruitment of different
transcription factors/repressors to the promoter region plays
a key role in controlling timely expression of E-cadherin
in different developmental stages. Enhancer box or E-box
motifs (5-CAnnTG-3) are palindromic sequence elements
which are the binding sites of basic helix-loop-helix (bHLH)
class of DNA-binding transcription factors [12, 13]. Using
serial 5 deletion constructs and mutated constructs con-
taining E-cadherin promoter, it has been demonstrated that
there are at least 2 E-box elements present in the promoter
region with the essential role in controlling E-cadherin
expression in both mouse and human genome [11, 14]. Theo-
retically, the binding of transcription activators or repressors
to the E-boxes of the E-cadherin gene could control gene
expression at transcription level by allowing the binding of
coregulatory proteins.

3. Zinc Finger E-Box Binding Homeobox
(ZEB) Protein Family

Binding of ZEB1 and ZEB2 to the E-cadherin E-boxes has
been implicated in the regulation of E-cadherin expression
in multiple human cancers [15]. ZEB proteins are sequence-
specific DNA-binding transcription factors. In upper verte-
brates, the ZEB belongs to the zfh family comprising ZEB1
(deltaEF1) and ZEB2 (Smad-interacting protein 1, SIP1) [16].
The zhf family members are characterized by the char-
acteristic flanking zinc finger clusters and homeodomain-
like domain in their protein with specific DNA-binding
ability [17, 18]. ZEB1 and ZEB2 contain the helix-loop-helix
motif allowing them to bind to the bipartite E-boxes within
the E-cadherin promoter region with high specificity [3].
Controlled expression of ZEB protein is critical based on
the fact that ZEB null mice will die shortly after birth
[19]. In normal tissues, expression of ZEB1 and ZEB2 is
observed in tissues undergoing differentiation such as T cell
differentiation and skeletal differentiation [20, 21]. In addi-
tion, expression of ZEB proteins is discriminative between
cancers with different grading and cancer types [22–25]. ZEB
expression is partly controlled by epigenetic mechanisms
based on the observation that the transcriptional functions
of ZEB are responsive to the HDAC inhibitor Trichostatin
A [26]. By recruiting different coactivators or corepressors,
ZEB proteins can perform different functions in the context
of chromatin remodeling [3, 27]. With the recruitment of
C-terminal binding protein CtBP, ZEB proteins function
as transcription repressors [28]. CtBP1 could interact with
histone deacetylase to attenuate gene expression by targeting
the promoter region [29]. CtBP2 could interact with the ZEB
proteins through the three PLDLS-like motifs and mediate
transcription suppression [30]. In the presence of CtBP1/2,
transcription repression effect was remarkable increased
[31]. However, it should be noted that CtBPs binding to

ZEB protein is not always necessary in the ZEB-mediated
transcription attenuation [32]. Sumoylation (addition of
ubiquitin-like modifier SUMO to the lysine residues) of ZEB
protein at Lys391 and Lys866 by the polycomb protein Pc2
could alleviate the E-cadherin repression mediated by ZEB
proteins [33]. Recent findings suggested that ZEB expression
is controlled by the microRNA which targets the ZEB
mRNA transcripts [34–36]. In addition, ZEB could control
the microRNA expression by interfering the microRNA
promoter activity forming a reciprocal feedback loop in
controlling EMT [37]. At present, the mechanism for ZEB
to switch from transcription repressors to activators remains
poorly understood. In oligodendrocytes, Sip1 can activate
Smad7 transcription and modulate various developmental
stages [38]. Further, it has been demonstrated that ZEB2
can form complexes with the coactivators p300 and pCAF
(p300/CBP associated factor) [39]. Evolutionary functional
analysis on vertebrate ZEB protein suggested that the ZEB
protein contains functional CtBP-interacting domain, Smad-
binding domain, homeodomain, and sumoylation siteswhich
could possibly be the potential sites for its regulation [40].

Dysregulation of ZEB1/2 and E-cadherin has been
involved in diverse tumorigenic processes resulting in the
development ofmesenchymal phenotype, stem-like cell char-
acter, resistance to therapeutic agents, aggressiveness during
EMT, adaptive stages under hypoxic microenvironment, and
cancer progression. Given the significance of E-cadherin in
the solid tumors, a deeper understanding of the properties
of ZEB proteins is critical. Here, we reviewed the current
evidence on transcription regulation of E-cadherin by ZEB1
and ZEB2 proteins in solid tumors.

4. Bladder and Renal Cancer

Downregulation of E-cadherin has been implicated in the
migration and invasion of bladder cancer cells [41]. In clin-
ical specimens, reduced E-cadherin expression accompanied
with increased CD10 (a membrane-bound zinc-dependent
metalloprotease) expression is observed in both transitional
cell carcinoma and squamous cell carcinoma [42]. In addi-
tion, the specific association of E-cadherin reduction with
urothelial cell carcinoma leading to the suggestion that loss
of E-cadherin is responsible for the progression, invasion,
and metastasis of cancer cells derived from the transitional
epithelium [42]. In plasmacytoid urothelial carcinoma, com-
plete loss of E-cadherin in the cellmembrane is found inmore
than 70% and nuclear accumulation is detected in 48% of the
patients [43]. In urothelial carcinoma, E-cadherin level is an
indicator of poor prognosis with linking to tumor recurrence
and disease-free survival rates [44]. Methylation analysis
showing that promoter DNA hypermethylation is a major
contributor, which attenuates transcription activity of the E-
cadherin gene. With the use of meta-analysis, it is shown
that E-cadherin hypermethylation in bladder cancer was
prevalent in the Asian populations in comparison with the
Caucasian populations [45]. Althoughmembrane E-cadherin
is frequently lost in the tumor cells, soluble E-cadherin
could be detected in the urine of bladder cancer patients
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and is correlated with the tumor size and lymph node
metastasis [46].

ZEB dysregulation is involved in the TGF-𝛽1-induced
EMT in renal tubular epithelial cancer cells and is closely
associated with the microRNA-200 family [47, 48]. ZEB1
expression is higher in the high-grade urothelial carcinoma
in comparison with the low-grade counterparts [24]. In con-
trast, ZEB2 expression is significantly higher in infiltrating
carcinoma than high-grade urothelial carcinoma [24]. It has
been suggested that ZEB1 expression is regulated by nuclear
𝛽-catenin upon stimulation [49]. In bladder cancer,𝛽-catenin
signaling cascades can be activated by various routes. In
which, many evidence pointed to the glycogen synthase
kinase 3𝛽- (GSK3𝛽-) ZEB1 cascade which was triggered
through phosphatidylinositol 3-kinase (PI3 K)/Akt pathways
[49–51]. Further, noncoding RNA including microRNA-23b
and long noncoding RNAMALAT-1 has also been suggested
to be the transcriptional regulator of ZEB1 and ZEB2 in
bladder cancers [52, 53].

5. Brain Cancer

In intracranial cancers, glioblastoma is the most common
form [54]. At present, there is still no effective curative
treatment for malignant glioblastoma and the survival time
is <1 year upon diagnosis. The 5-year survival rate is less
than 5% if the cancer is treated with radiotherapy alone [55].
Although E-cadherin suppression is observed in the brain
cancer tissues, the functions of E-cadherin in the tumor cells
remain to be verified as another cadherin member, and N-
cadherin seems to plays a more significant role in brain
cancer aggressiveness. Low E-cadherin expression is found
in most of the glioblastoma tissues and is associated with
the differentiation status of the glioblastoma [56, 57]. In
comparison with the tumor tissues, E-cadherin expression
is rare in the glioblastoma cell lines [58, 59]. Locking down
E-cadherin expression in the E-cadherin expression glioma
cells will have a negative impact on cell proliferation and
migration [59]. It has been suggested that E-cadherin plays
a different role in the glioblastoma tissues (in comparison
with the epithelial cancers) based on the observation that E-
cadherin expression in the glioblastoma could possibly be
associated with the poor clinical outcomes [59]. At present,
little is known about the regulatorymechanism of E-cadherin
in brain cancer. In medulloblastoma, the methylation fre-
quency of E-cadherin gene was not high (8%) [60]. In the
context of ZEB suppression, binding of ZEB1 to the E-
cadherin promoter was dependent on the activation of NF-
𝜅B in glioblastoma [61]. In the glioblastoma cell lines, it has
been demonstrated that high ZEB2 levels could suppress E-
cadherin, thereby regulating cancer cell differentiation [62].

6. Breast Cancer

Loss of E-cadherin is characterized in the aggressive breast
cancers including aggressive lobular carcinoma and lobular
carcinoma in situ in comparison with the less invasive tumor
type such as ductal cancers [63]. This led to the suggestion

that E-cadherin is involved in mediating tumor progression
and metastasis in the breast cancers. Three E-box elements
have been suggested to be involved in E-cadherin silencing
[9]. It has been shown that the ZEB1 expression is upregulated
by steroid hormones such as progesterone [64]. A subpopu-
lation of breast cancer cells with CD44+/CD24− phenotype
displays characteristic behavior of stem/progenitor cell and
EMT features showing high invasive ability and high expres-
sion of ZEB1 and ZEB2 [65]. Naturally occurring agents such
asGarcinol (extracts fromGarcinia indica) targeting the EMT
pathways could function by downregulating ZEB1 and ZEB2
leading to E-cadherin upregulation [66].

7. Cervical Cancer

In normal cervix, E-cadherin expression is found on the
cell membrane of the basal and parabasal cells [67]. Loss
of E-cadherin is linked with the high-risk human papil-
lomaviruses early oncoproteins E5 [68]. Forced expression
of E-cadherin in the keratinocyte cell line immortalized
with HPV-16 E6 and E7 proteins could reverse the invasive
phenotype [69].The E-cadherin gene is subjected to aberrant
DNA hypermethylation and the hypermethylated DNA is
detectable in serum of cervical cancer patients with high
risk for relapse [70]. E-cadherin expression in cervical cancer
could be reactivated using HDAC inhibitor valproic acid
(VPA) suggesting that histone modification and chromatin
remodeling are involved in the regulation of E-cadherin in
cervical cancers [71]. In thewidely used cervical cancermodel
Hela, E-cadherin expression is undetectable [72]. Expression
analysis shows that the loss and the resulting migration
property are regulated by ZEB1 [73]. Low-dose radiation
treatment will suppress E-cadherin expression in cervical
cancer cell lines [74]. Although hypoxic has been suggested
to be involved in E-cadherin suppression in solid tumors,
the oxygenation status (measured by microelectrodes) has
no direct correlation with the tumor E-cadherin levels in
the squamous cell carcinoma of uterine cervix [75]. At
present, whether ZEB1 and ZEB2 involved in the cervical
cancers remained to be explored in further details. Clinically,
ZEB1 expression was found in over 95% cervical cancer and
the expression level was significantly associated with Inter-
national Federation of Gynecology and Obstetrics (FIGO)
stages and regional lymph node metastasis [67].

8. Colon Cancer

The intestinal epithelium has even expression of E-cadherin
in the intestinal crypts or surface epithelium [76]. E-cadherin
suppression will affect the phenotypic characteristics and
physiological state of colon cancer cells by reducing cell-cell
adhesiveness [77]. Targeting E-cadherin inhibits glandular
differentiation accounting for the undifferentiated phenotype
[78]. Poorly differentiated colon cancer cells with E-cadherin
expression will have an epithelial-like morphology, elevated
Ca2+-dependent cell-cell aggregation, increased cell adhe-
siveness, and reduced cell motility [79]. In adenocarcinoma,
there is an about 2-fold reduction in the E-cadherin transcript
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level in comparison with the normal colon tissues [80].
Soluble E-cadherin with the 75–85 kDa extracellular domains
could be detected in the urine of colon cancer patients [81].
The association between ZEB1 with E-cadherin expression
has been reported in the colon cancer cells [82, 83].

9. Endometrial Cancer

The association between E-cadherin loss and the invasive
endometrial cancer is demonstrated by immunohistochem-
ical staining [84]. Loss of E-cadherin has strong association
with the histological subtypes of endometrial cancer. The
loss is more prevalent in poorly differentiated (International
Federation of Gynecology and Obstetrics (FIGO) Grade
III) uterine endometrioid adenocarcinomas in comparison
with the uterine serous carcinoma [85]. It is suggested that
loss of E-cadherin is an early step in endometrioid cancer
metastasis and the expression patterns has strong prognostic
association with overall morality, disease progression, and
extrapelvic recurrence [84, 86]. The loss is partly linked with
E-cadherin gene hypermethylation with higher incidence in
the high stage tumor [87]. In the context of ZEB expression,
ZEB1 expression is not detected in the normal endometrial
epithelium [19]. Exclusive expression of ZEB1 (without ZEB2)
is reported in human uterus [88]. ZEB1 expression is altered
in the aggressive endometrial cancer including FIGO grade 3
endometrioid adenocarcinomas, uterine serous carcinomas,
andmalignantmixedMüllerian tumors [89]. In differentiated
Ishikawa cell line, increased ZEB1 expression could trigger
the development of migratory phenotype [89]. In mouse
uterine stroma and myometrium, ZEB1 protein upregulation
is partly controlled by estrogen and progesterone. In the
estrogen-treated mouse uterus, colocalization of ER and
ZEB1 is observed [19]. Based on the expression patterns of
ZEB1 in human endometrial biopsies collected at menstrual
cyclewith high proliferation rate, it is postulated that estrogen
and progesterone could control the ZEB1 expression in
human myometrial cells [19].

10. Gastric Cancer

Alteration of E-cadherin gene expression is common in
gastric cancers. Reduced/loss of E-cadherin expression could
be caused by promoter hypermethylation induced by the
microaerophilic gram-negative bacteria, Helicobacter pylori
[90–92]. Helicobacter pylori induced E-cadherin hyperme-
thylation could be reversed if the bacteria are eradicated with
antibiotics in the early stages [92, 93]. Helicobacter pylori
can induce the mesenchymal phenotype in gastric epithelial
cell lines after 24 h in contact with elongated phenotype
and loosen intercellular junctions [94]. Further, ZEB1 tran-
scripts were increased and the corresponding protein was
accumulated in the nucleus when the gastric epithelial cells
are in contact with the wild type Helicobacter pylori [94].
ZEB1 expression level was correlated with the mesenchymal
phenotype displayed by the gastric cancer [5]. In comparison
with other EMT markers including Snail-1 and vimentin,

aberrant expression of ZEB1 is more common in gastric
cancers [95]. In human gastric cell lines, treatment with
ZEB1 siRNA could effectively abrogate the mobility of cancer
cells [5]. Strong expression correlation between ZEB2 and E-
cadherinmRNA has been demonstrated in gastric carcinoma
[96]. Gastric cancer stem cell will express a specific surface
marker CD44. CD44 expression is absent in the normal
epithelium and the expression will increase when the cancer
progress into advanced stages [95]. CD44 expression was
correlated with ZEB1 expression and was inversely correlated
with the E-cadherin levels in the gastric cancer [95]. Apart
from Helicobacter pylori, the nicotine in tobacco could
also induce E-cadherin suppression by upregulating ZEB1
through the alpha7 nicotinic acetylcholine receptor in gastric
cancer cells [97]. Further, continuous exposure to the low-
oxygen environment could also be a contributing factor in
ZEB1 and ZEB2 upregulation in gastric cancer [98].

11. Head and Neck Cancers

In head and neck cancers, loss of cell-cell adhesion resulting
in stromal and vascular invasion as a consequence of E-
cadherin dysregulation is well documented [99]. Loss of E-
cadherin is common in the tumor borders in comparison
with the tumor center [100]. In head and neck cancer cell
lines, reduced E-cadherin expression will lead to the loss of
epithelioid cell morphology [101]. E-cadherin expression is
suppressed in laryngeal carcinoma, especially in supraglottic
carcinoma, with significant association to poor differentia-
tion, nodal metastasis, and advanced clinical stages [102, 103].
E-cadherin is suggested to be useful in identifying false
clinically negative nodes (occult metastases) in laryngeal
carcinoma patients [104]. E-cadherin could be suppressed by
DNA hypermethylation or the oncoprotein expressed by the
human papilloma virus [105, 106]. In addition, the loss is
possibly linked with the inflammation response. Treatment
with proinflammatory mediator Interleukin-1𝛽 on the head
and neck squamous cell carcinoma cell lines will promote
ZEB1 binding to the promoter region of E-cadherin [107].
The expression level of ZEB2 is correlated with delayed neck
metastasis in stage I/II tongue squamous cell carcinoma
patients [108].

Undifferentiated nasopharyngeal carcinoma is a unique
head and neck cancer with extremely high sensitivity to ion-
izing radiation. Hence, radiotherapy is the first line treatment
for the primary NPC patients especially when the cancer
is still in the early stages. However, it is also noticed that
ionizing radiation treatment may promote residual cancer
migration and invasion by controlling E-cadherin expression
[109]. Cancer cells with low E-cadherin level tend to be
resistant to the radiation with higher clonogenic survival
rate after exposing to 𝛾-irradiation [109]. Further, E-cadherin
loss is associated with the heterogeneous tumor microenvi-
ronment. Under hypoxic condition, E-cadherin expression is
suppressed.The suppressionwas reversible uponoxygenation
[109]. Suppressing E-cadherin expression by increasing ZEB1
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expression using AKT inhibitor GSK690693 could enhance
the sensitive of nasopharyngeal carcinoma cells to ionizing
radiation [110].

12. Liver and Pancreatic Cancer

In mouse liver cancer models, loss of E-cadherin will result
in metastasis [111]. Downregulation of E-cadherin could
induce migration and promote EMT in liver cancer and
pancreatic ductal adenocarcinoma [112, 113]. In human liver
cancer, E-cadherin repression is more common in poorly
differentiated cases with increased intrahepatic metastasis
and poor prognosis [114]. E-cadherin suppression could be
induced by the hepatitis C virus via the induced expression
of osteopontin [115]. The tumor suppressing effects of E-
cadherin are illustrated in liver-specific E-cadherin knockout
mice. E-cadherin knockout mice will develop spontaneous
liver cancer and the loss will promote chemical induced (with
diethylnitrosamine) liver cancer with strong expression of
stem cell marker CD44 and EMT marker vimentin [116].
Upregulation of ZEB1 is associated with thrombomodulin,
a cell surface-expressed glycoprotein that is involved in
inflammation and thrombosis and Claudin-1, an integral
membrane protein [117, 118]. In addition, the tumor suppres-
sor p53 could suppress ZEB1 and ZEB2 expression in the liver
cancer cell lines by controlling their targetmicroRNA expres-
sion [119]. Increase in ZEB1 expression is associated with
the advanced TNM stages, intrahepatic metastasis, vascular
invasion, and frequent early recurrence [120]. The inverse
correlation between ZEB1 and E-cadherin has been reported
in metastatic liver cancer cell lines and pancreatic tumor cell
lines [113]. In pancreatic cancer, E-cadherin suppression is
significantly correlated with ZEB1 and ZEB2 expression level
and poor prognosis [121].

13. Lung Cancer

In lung cancer, genetic mutation of E-cadherin is the primary
reason for E-cadherin inactivation [122]. Loss of E-cadherin
is associated with the differentiation status and regional
lymph node status [123, 124]. Activation of nuclear factor-
𝜅B (NF-𝜅B) signaling pathways is an important regulation
mechanism for E-cadherin expression in lung cancers. In
alveolar type II epithelial carcinoma cell line, regulation of
E-cadherin expression is partly controlled by Tank-binding
kinase-1 (TBK1), inhibitor 𝜅B (I𝜅B) kinase-related kinase,
through activating NF-𝜅B [125]. Knocking down E-cadherin
in non-small cell lung cancer cells will activate the epidermal
growth factor receptor (EGFR)-MEK/ERK signaling cas-
cade, which subsequently induce matrix metalloproteinase 2
expressions [126]. Apart from transcription regulation, it has
been reported that the non-small cell lung cancer cell aber-
rantly expressed a misspliced (exon 11) E-cadherin transcript
which was rapidly degraded by the nonsense mediated decay
pathway [127]. In addition, epigenetic modification of the
E-cadherin genes including DNA methylation and histone
modification has been implicated in E-cadherin expression.
Treatment of lung cancer cells with histone deacetylase

inhibitor will inhibit the suppressing function by hindering
the binding to the target sequence [128, 129]. The E-cadherin
levels could be restored with the use of HDAC inhibitor Tri-
chostatin A (7-[4-(dimethylamino)phenyl]-N-hydroxy-4,6-
dimethyl-7-oxohepta-2,4-dienamide) or DNMT inhibitor 5-
Aza-deoxycytidine and the effects are partly linked with
the suppression of ZEB1 in the non-small cell lung can-
cers [130]. ZEB1 could inhibit E-cadherin expression by
recruiting histone deacetylases to the promoter regions [131].
ZEB1 upregulation in lung cancer could be controlled by
cyclooxygenase-2 [132]. The expression level of E-cadherin
and ZEB1 is a useful indicator of cancer cell sensitive to target
therapy including epidermal growth factor receptor (EGFR)
tyrosine kinase inhibitors, gefitinib, and erlotinib [131]. In
addition, ZEB1 is also involved in the radiation-induced
epithelial-mesenchymal transition [125]. ZEB1 expression
level could also be a predictor to therapeutic responses such
as resistance to epidermal growth factor receptor inhibitors
for lung cancers [128].

14. Conclusions

The exact timing of ZEB1 and ZEB2 upregulation during
malignant transformation is not clear yet. It is evidenced
that ZEB1 and ZEB2 expression is induced by a sudden
changes in the tumor microenvironment such as varying
oxygen tensions, exposing to ionizing radiation, contacting
with chemotherapeutic agents, and or demethylating agents.
In several virus-associated cancers, it was found that ZEB1
and ZEB2 expression is controlled by the viral oncoproteins.
In view of the fact that E-cadherin expression could coun-
teract the migratory or invasive property of cancer cells,
treatment methods targeting the suppressing mechanisms
and triggering the reexpression of E-cadherin are potentially
useful in controlling regional and distant metastasis. Hence,
molecular dissection of the underlying mechanisms and the
pathological consequence of ZEB protein upregulation in E-
cadherin suppression will be useful in ameliorating theses
effects in the future.
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[8] A. Cano, M. A. Pérez-Moreno, I. Rodrigo et al., “The transcrip-
tion factor Snail controls epithelial-mesenchymal transitions by
repressing E-cadherin expression,” Nature Cell Biology, vol. 2,
no. 2, pp. 76–83, 2000.

[9] K. M. Hajra and E. R. Fearon, “The SLUG zinc-finger protein
represses E-cadherin in breast cancer,” Cancer Research, vol. 62,
no. 6, pp. 1613–1618, 2002.
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