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This paper studies theory and inference of an observation-driven

model for time series of counts. It is assumed that the observations

follow a Poisson distribution conditioned on an accompanying inten-

sity process, which is equipped with a two-regime structure accord-

ing to the magnitude of the lagged observations. Generalized from

the Poisson autoregression, it allows more flexible, and even negative

correlation, in the observations, which cannot be produced by the

single-regime model. Classical Markov chain theory and Lyapunov’s

method are utilized to derive the conditions under which the process

has a unique invariant probability measure and to show a strong law

of large numbers of the intensity process. Moreover the asymptotic

theory of the maximum likelihood estimates of the parameters is estab-

lished. A simulation study and a real data application are considered,

where the model is applied to the number of major earthquakes in the

world.

Keywords: Integer-valued GARCH; Invariant probability measure; Self-

excited threshold process; Strong law of large numbers; Time series of counts.

1 Introduction

There has been increasing interest in developing models for time series of

counts because of their wide range of applications, including epidemiology,
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finance, disease modeling and environmental science. The majority of these

models assume that the observations follow a Poisson distribution condi-

tioned on an accompanying intensity process that drives the dynamics of

the model, see Davis et al. (2003), Ferland et al. (2006), Fokianos et al.

(2009), Fokianos and Tjøstheim (2011), Davis and Liu (2012) and Doukhan

et al. (2012). According to whether the evolution of the intensity process

depends on the observations or solely on an external process, Cox (1981)

classified the models into observation-driven and parameter-driven. Com-

pared to parameter-driven models, an observation-driven model usually en-

joys a considerably easier and more straightforward estimation procedure,

however, it is difficult to establish stability properties, including stationarity

and mixing conditions of the model. This paper formulates and investigates

a self-excited threshold Poisson autoregression process, which belongs to the

class of observation-driven models.

One observation-driven model, the Poisson autoregression, also known

as the Poisson integer-valued GARCH (INGARCH), has already received

considerable study in the literature, see for example, Ferland et al. (2006),

Fokianos et al. (2009), Neumann (2011), Doukhan et al. (2012), Davis and

Liu (2012), and Fokianos and Tjøstheim (2012). For this model, it is assumed

that the observations {Yt} given the intensity process {λt} follow Poisson dis-

tribution, where λt follows the GARCH-like recursions λt = δ+αλt−1+βYt−1.
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The name GARCH associated with this model comes from Bollerslev (1986)

as the Poisson mean coincides with its variance, and is known for its capabil-

ity of capturing positive temporal dependence in the observations and it is

relatively easy to fit via maximum likelihood. Fokianos et al. (2009) studied

the model and established the asymptotic theory of the parameter estimates

by introducing a small perturbation. Neumann (2011) considered some con-

tracting dynamics of λt and derived mixing condition of the count process.

Davis and Liu (2012) generalized the conditional distribution of {Yt} to a

one-parameter exponential family and took advantage of the theory for iter-

ated random functions (Diaconis and Freedman, 1999; Wu and Shao, 2004)

to establish stationarity and absolute regularity of the process, as well as the

asymptotic distribution of the parameter estimates. Doukhan et al. (2012)

showed similar results by utilizing the concept of τ -weak dependence. More

recently, Blasques et al. (2012) considered a class of generalized autoregressive

score processes which includes Poisson autoregression as a special case and

used the Dudley entropy integral to obtain a wider non-degenerate parameter

region that guarantees the stationarity and ergodicity of the processes.

Despite many advantages that the Poisson autoregression model enjoys, it

is incapable of modeling negative serial dependence in the observations. This

can be seen through the fact that {Yt} can be represented as an ARMA(1, 1)

process with a sequence of martingale differences as innovations and with a
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positive autoregressive coefficient (see e.g., Davis and Liu (2012)). This con-

cern motivated Fokianos and Tjøstheim (2011) in part to study the so-called

log-linear Poisson autoregression. Our paper proposes a self-excited thresh-

old integer-valued Poisson autoregression model (SETPAR), which allows for

a more general modeling framework for the intensity process, including the

possibility of negative serial dependence in the data. The model assumes a

two-regime structure of the conditional mean process {λt} according to the

magnitude of the lagged observations. Such an extension to a model with

threshold has its own merits, on account of the successful modeling strategy

of a self-excited threshold autoregressive moving average process introduced

by Tong (1990).

Some studies have been directed to this model from different perspectives.

Woodard et al. (2011) discussed a large class of the so-called “generalized

autoregressive moving average models” which includes a similar threshold

model. The model was also found in another general study of observation-

driven time series models by Douc et al. (2013). Despite several similar

results found in their papers and ours, we adopt a different methodology,

which is well suited to these types of models. The difficulty with the theory

is that the Markov kernel associated with the model lacks proper continuity.

Woodard et al. (2011) adopted the existing approach of Fokianos et al. (2009)

which is based on a smoothed approximation of the Markov chain by adding
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an asymptotically vanishing noise. Douc et al. (2013) considered the model

directly and applied a coupling construction to prove the uniqueness of the

stationary distribution with the same conditions on model coefficients for the

ergodicity as ours (compare their Proposition 14 and our Theorem 2.3). We

studied the model directly using a different concept of e-chain (see Chapter 6,

Meyn and Tweedie (1993)), which has an asymptotic continuity property that

guarantees the uniqueness of a stationary distribution with mild additional

conditions. Regarding the coverage of the approaches, the coupling argument

applies to the log-linear Poisson autoregressions (Fokianos and Tjøstheim,

2011; Douc et al., 2013) as well. This is however not surprising since the

Markov chains in a log-linear Poisson autoregressions and SETPAR model

are very similar and our approach through e-chains can also be used for a

log-linear Poisson autoregression as well. In addition, we are able to establish

consistency and asymptotic normality of the maximum likelihood estimates

directly based on our discussion of the stability property of the model under

mild conditions on the parameters.

The organization of the paper is as follows. Section 2 formulates the model

and establishes its stability properties. Likelihood inference and asymptotic

theory of the estimates are investigated in Section 3. Some numerical results,

including a simulation study and a real data example are given in Section 4.

The model is applied to the counts of major earthquakes in the world, and
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some diagnostic tools for assessing and comparing model performance are

also given in this section. Section 5 discusses some problems which are worth

further study and concludes the paper. Proofs of the key results in Sections 2

and Section 3 are deferred to the Appendix.

2 The model and its properties

For ease of discussion, only the first order self-excited threshold Poisson au-

toregression is investigated in this paper. However, the generalization to

higher order model with multiple thresholds is also possible using similarly

stylized arguments.

Definition 2.1. A sequence of random observations {Yt, t ∈ Z} is said to

follow the self-excited threshold Poisson autoregression (SETPAR) model, if

L(Yt | Ft−1) = Poisson(λt), (1)

where Ft = σ {Ys, s ≤ t}, and

λt =





d1 + a1λt−1 + b1Yt−1, Yt−1 ≤ r,

d2 + a2λt−1 + b2Yt−1, Yt−1 > r,

(2)

with di > 0, ai > 0, bi > 0, i = 1, 2, and r ∈ N.

Let θ(i) = (di, ai, bi)
⊺ (i = 1, 2) be the regime-specific parameter vector. It

is reasonable to assume θ(1) 6= θ(2), since otherwise, the model is reduced to
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the ordinary Poisson autoregression. The intercept parameter di is restricted

to be positive to avoid a Poisson distribution with zero mean.

The dynamics of the process is governed by a two-regime scheme. In the

following context, if Yt−1 ≤ r then we say Yt lies in the lower regime, denoted

by Yt ∈ R1, where R1 = {0, . . . , r}; otherwise, Yt is in the upper regime,

denoted by Yt ∈ R2, R2 = N−R1.

Let {Nt(·), t ∈ Z} be a sequence of independent Poisson processes with

unit intensity. As suggested by Fokianos et al. (2009), it is sometimes con-

venient to treat Yt in Eq (1) as the sampling value of Nt at time λt, i.e.,

Yt = Nt(λt), (3)

where λt is the same as in Eq (2).

Although the process {λt} as well as the joint one {(λt, Yt)} is a Markov

chain, it is difficult to investigate the properties of these processes, mainly due

to the fact that the real-valued intensity process λt is a function of the real-

valued λt−1 and the discrete-valued innovations Yt−1 (see also Fokianos et al.

(2009), Woodard et al. (2011)). In particular, it is easy to show that {λt} is

not a strong Feller chain even for the Poisson autoregression model without a

threshold, which implies that one needs to apply more nonstandard Markov

chain theory, such as Lyapunov’s method and e-chains, in order to establish

stability properties. Due to the importance of the concept of stability, its
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definition by Duflo (1997) is given below. Readers are referred to Sections

6.1-6.2 in Duflo (1997) and Section 6.4 in Meyn and Tweedie (1993) for

other corresponding definitions and relevant theory of Lyapunov’s method

and e-chains.

Definition 2.2. (Definition 6.1.1, Definition 6.1.4, Duflo (1997)) Suppose

that a random sequence {Xn} is defined on a metric space E together with

its Borel σ-field. {Xn} is said to be a stable model if there exists a probability

distribution µ on E such that, for almost all ω, the sequence of empirical

distributions

Λn(ω, ·) =
1

n+ 1

n∑

t=0

1 {Xt(ω) ∈ ·}

converges weakly to µ. The distribution µ is the stationary distribution for

the model.

A Markov chain is said to be stable if its state space is a metric space,

and for any initial distribution ν, the induced random sequence is stable with

a stationary distribution independent of ν.

We begin with the following theorem establishing the stability of {λt}.

Theorem 2.3. Consider the model in Definition 2.1. Assume a1 < 1 and

a2 + b2 < 1 , then

1. The Markov chain {λt} is stable and possesses a unique invariant prob-

ability measure µ, which has moments of all orders.
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2. For any µ-a.s. continuous function φ satisfying

|φ(λ)| ≤ c(1 + λk),

for some power k ≥ 0 and constant c, it holds that

1

n
[φ(λ1) + · · ·+ φ(λn)] → µ(φ), a.s.

for any initial value λ0.

The properties of the observed process {Yt} can be deduced from the

properties of {λt}, as stated in the following corollary.

Corollary 2.4. Suppose the assumptions of Theorem 2.3 hold, then the joint

process {(λt, Yt)} is stable and {Yt} has finite moments of all orders.

Similar to Theorem 2.3, the stability of the joint process ensures the law

of large numbers holds for polynomial functions of (λt, Yt), which serves an

important role in establishing the asymptotic theory of the estimators for the

parameters in next section.

As is claimed that this model can produce negative autocorrelation, we

conclude this section by some remarks on the autocorrelation function of this

model. It turns out that an explicit formula of its autocorrelation function is

very difficult to obtain, and to our best knowledge, no such result exists for

time series models with thresholds. Based on the stability of the model, the
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claim can be verified by Monte Carlo simulations, since the sample autocor-

relation is a consistent estimator for the theoretical autocorrelation. As to

the theoretical property of the autocorrelation function, it can be proved that

when b1 is large enough, E (λt|λt−1) is a decreasing function of λt−1. Thus, it

is likely that λt and λt−1 will vary in opposite directions with high probability

and the pair (Yt, Yt−1) will display a negative correlation as Yt = Nt(λt) and

Yt−1 = Nt−1(λt−1).

3 Parameter estimation by maximum likeli-

hood

Suppose we have a series of observations {Yt}nt=1 generated from the self-

excited threshold Poisson autoregression model and we want to estimate the

parameters. Feasible approaches include the least squares estimator and

the maximum likelihood estimator. Since the likelihood function for given

observations {Yt}nt=1 can be easily calculated with an initial value of λ1 and

the maximum likelihood estimator is likely to be more efficient than the least

square estimator, we only discuss the maximum likelihood estimator here.

Recall that θ(i) = (di, ai, bi)
⊺ is the parameter vector for the ith regime,

i = 1, 2. Then θ = (r, θ(1)⊺, θ(2)⊺)⊺ denotes the vector of all parameters. Let
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θ0 be the true parameter vector. Let λt,i = di + aiλt−1 + biYt−1 (i = 1, 2),

then λt =
∑

i λt,i1 {Yt ∈ Ri}. Since the λt’s have to be calculated recursively,

an initial value λ1 is needed.

Fix an arbitrary initial value of λ1, denoted by λ̃1. Let {λ̃t}nt=2 be the

sequence calculated by the recursive equation Eq (2) with the initial value λ̃1

and the observed data {Yt}nt=1. Then the log-likelihood function, apart from

a constant, is

ℓ̃(θ) =
n∑

t=1

ℓ̃t(θ),

where ℓ̃t = −λ̃t + Yt log(λ̃t).

The maximum likelihood estimator of θ is

θ̂ = arg max
θ∈([0,r∗]∩N)×D

ℓ̃(θ), (4)

where r∗ is some large positive integer and D is some compact subset of R6

which will be specified later.

To study the asymptotic behaviour of the estimator, we make the follow-

ing assumption about the underlying process and the parameter space.

Assumption:

(A1) The observed sequence {Yt}nt=1 is generated from the self-excited thresh-

old Poisson autoregression process, with true parameter θ0 ∈ ([0, r∗] ∩

N)×Do, whereDo is the interior ofD ⊂ Θ, andΘ = {(d1, a1, b1, d2, a2, b2)⊺ ∈
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R
6
+ : a1 < 1, b1 < 1, a2 + b2 < 1}, where R+ is the strictly positive

part of the real line.

Remark The assumptions are quite natural and broad. Note the restriction

of the parameters in the lower regime. Although it is shown in Corollary 2.4

that the joint process {(λt, Yt)} is stable for any b1 > 0, currently it is

necessary to assume b1 < 1 when proving the asymptotic properties of the

maximum likelihood estimators. We conjecture that the same asymptotic

properties would hold for parameters with b1 ≥ 1 under other assumptions

but leave it for future study. Nevertheless, the restricted parameter space

still contains some explosive lower regime in the sense that a1 + b1 > 1.

Bearing in mind that the calculation of the log-likelihood ℓ̃(θ) is based

on an initial value of λ1, in order to establish the asymptotic properties of

θ̂, we need to show that the effect of selecting different initial value λ̃1 is

asymptotically negligible.

To see this, note that the process can also be represented as a varying-

coefficient Poisson autoregression model in the sense that the coefficients of

the Poisson autoregression model vary with the past observation. Specif-

ically, for a given parameter vector θ, let dt =
∑2

i=1 di1 {Yt ∈ Ri}, at =

∑2
i=1 ai1 {Yt ∈ Ri} and bt =

∑2
i=1 bi1 {Yt ∈ Ri} (t = 1, . . . , n), assuming

that no ambiguity shall be caused by the notation of at and bt for t = 1, 2.
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Then λt = λt(θ) satisfies the recursive equation,

λt = dt−1 + bt−1Yt−1 + at−1λt−1 (5)

:= ct−1 + at−1λt−1 (6)

=
∞∑

k=1

k−1∏

j=1

at−jct−k. (7)

Eq (6) defines a recursive equation of λt assuming the process {Yt} and

the vector θ is given. Let λt = λt({Yt} , θ) (with the same abbreviation)

be the stationary solution as displayed in Eq (7). λ̃t can be regarded as a

stationary approximation, which is used in practical estimation. Let ℓt(θ) =

−λt(θ) + Yt log(λt(θ)) and ℓ = ℓ(θ) =
∑n

t=1 ℓt(θ) be the corresponding quan-

tities calculated from the stationary solution.

The first major result is the strong consistency of θ̂ in Eq (4) under the

two assumptions about the process.

Theorem 3.1. Under the assumption (A1), θ̂ is strongly consistent, i.e.,

θ̂ → θ0 a.s.

Since the threshold r is integer-valued, the consistency of r̂ implies that

r̂ = r eventually. Therefore, the efficiency of the other estimates with the

threshold being estimated together is asymptotically the same as that when

the threshold is known. We henceforth remove r from the parameter vector

θ and only consider a central limit theorem for the maximum likelihood
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estimator with known threshold r. Under this setting, ℓ̃ is differentiable with

respect to θ, and the score function can be calculated using the varying-

coefficient representation of λt as in Eq (5).

The score function is

S̃n(θ) =
∂ℓ̃(θ)

∂θ
=

n∑

t=1

(
Yt

λ̃t

− 1)
∂λ̃t

∂θ
,

where

∂λ̃t

∂θ
=




∂λ̃t

∂θ(1)

∂λ̃t

∂θ(2)


 , (8)

and

∂λ̃t

∂θ(i)
= (1, λ̃t−1, Yt−1)

⊺1 {Yt−1 ∈ Ri}+ at−1
∂λ̃t−1

∂θ(i)
, for i = 1, 2. (9)

Let

G = E

[
1

λt

(
∂λt

∂θ

)(
∂λt

∂θ

)
⊺
]
,

then we state the asymptotic normality of the maximum likelihood estimator

in the following theorem.

Theorem 3.2. Under the assumption (A1) except that the threshold r is

known, the maximum likelihood estimator θ̂ = ((θ̂(1))⊺, (θ̂(2))⊺)⊺ is asymptoti-

cally normal,

√
n(θ̂ − θ0)

d−→ N(0, G−1).
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Furthermore, the matrix G can be estimated consistently by

Ĝ =
1

n

n∑

i=1

1

λ̃t

(
∂λ̃t

∂θ

)(
∂λ̃t

∂θ

)
⊺

. (10)

Remark Since r ∈ N, ℓ̃ is not differentiable with respect to the threshold

variable r. In practice, the maximization of the log-likelihood function can

be done in the following two steps.

Step (1): For each r ∈ [0, r∗] ∩ N, find θ
(i)
r such that

(θ̂(1)r , θ̂(2)r ) = arg max
(θ(1),θ(2))∈D

ℓ̃(r, θ(1), θ(2)).

Step (2): The threshold is estimated by searching over all candidates

r̂ = arg max
r∈[0,r∗]∩N

ℓ̃(r, θ̂(1)r , θ̂(2)r ),

and the final estimate for θ(i) is θ̂
(i)
r̂ (i = 1, 2).

Remark Since the threshold is searched over the set of candidates [0, r∗],

the upper bound r∗ should be large enough so that the set includes the true

threshold. However, since the computation time of the estimation procedure

increases approximately linearly with respect to the number of candidates,

r∗ cannot be too large when computation resource is limited. Also, when

the bound is too broad, there might not be enough number of observations

to ensure consistent estimation. A strategy frequently used in practice is to

replace the upper bound r∗ as well as the lower bound 0 by some numbers
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determined based on the data (cf. Cheng et al. (2011)). Specifically, fix

α1 < α2 ∈ (0, 1) and find the empirical αi-th quantile for Yt, q̂i. Then the

interval [0, r∗] is replaced by [q̂1, q̂2]. The choice of the pair (α1, α2) can be

(0.2, 0.8) or more conservatively (0.1, 0.9).

4 Simulation study and real data analysis

We report the simulation study with two sets of parameters and one real

data analysis in this section.

A two-step estimation procedure is applied as indicated in Section 3. First

we fix α1 = 0.2 and α2 = 0.8 and find the empirical αi-quantile of {Yi}ni=1,

q̂i (i = 1, 2). Then, for a given threshold candidate, r ∈ [q̂1, q̂2] ∩ N, we

supply the negative log-likelihood function and its gradient to E04UCF, a

NAG Fortran subroutine designed to minimize a smooth function subject to

constraints, to obtain the parameter estimate θ̂r for the given r. The final

estimate is obtained by selecting r and the corresponding θ̂r which minimizes

the negative log-likelihood function.

4.1 Simulation study

Two sets of parameters are considered in our simulation. The true parameter

values are listed under Table 2 and Table 3 respectively. The first parameter
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Lag 1 2 3 4 5

ACF −0.158 −0.031 0.011 −0.022 0.004

Table 1: The autocorrelation function of a sample path simulated with the

second parameter set and 10000 observations.

set has both regimes stationary, while the second one has an explosive lower

regime and negative serial dependence, as illustrated in Table 1.

We are interested in checking the following points. The estimated thresh-

old is expected to be identical to the true value when sample size is sufficiently

large. The parameters for each regime are consistent and asymptotically nor-

mal, so we would like to see whether its sample mean and sample variance

are close to the true ones. However, since no explicit form for the asymptotic

variance is available, its inverse is estimated by Ĝ as in Eq (10). For each

set of parameters, 1000 sample paths are simulated. Then for each sample

path, one estimate of θ, θ̂, and one copy of the asymptotic covariance matrix

Ĝ−1 are obtained. By the asymptotic result and the law of large numbers

we have ncov(θ̂) ≈ Ĝ−1, where Ĝ−1 is the sample mean of Ĝ−1 over the 1000

replications. The sample covariance matrix is of course dependent on the

length of sample path, however, ncov(θ̂) and Ĝ−1 should be approximately

equal to a constant matrix independent of n provided that n is sufficiently

large.
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The simulation results for the two sets of parameters are reported in

Table 2 and Table 3 respectively. Some interesting observations can be made.

In general, r̂ converges to r very fast. However the speed of this convergence

seems to depend on other parameters. For the first set of parameters, even

when n is as large as 3000, r̂ does not equal to r in rare samples. However,

r̂ is identical to the true value when sample size is 500 for the second set of

parameters, which is a moderate sample size for a threshold model.

The consistency and asymptotic variance of the other parameters are

confirmed in both examples. The average estimated parameters are close

to the true values and the accuracy increases as the sample size increases.

However, the intercept parameters di seem to have large variances, comparing

to the other parameters. This phenomenon is also found in the Poisson

autoregression model (Fokianos et al., 2009). In the first example, ncov(θ̂)

and Ĝ−1 match each other reasonably well. Such phenomenon is not so

apparent in the second example, especially for di. This might be due to the

fact that the lower regime is explosive in the second example.
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Sample size Description r d1 a1 b1 d2 a2 b2

θ0 7 0·50 0·70 0·20 0·30 0·40 0·50

n = 500

θ̂ 6·80 0·63 0·69 0·18 0·83 0·37 0·47

ncov(θ̂) 1100 53 2·34 1·76 416 7·69 6·45

Ĝ−1 N/A 40·8 2·03 2·32 444 6·45 5·60

n = 1000

θ̂ 7·00 0·56 0·70 0·19 0·60 0·38 0·48

ncov(θ̂) 503·5 34·5 1·85 2·21 433 6·84 6·01

Ĝ−1 N/A 28·9 1·73 1·79 405 5·16 5·46

n = 2000

θ̂ 7·02 0·53 0·70 0·20 0·42 0·39 0·49

ncov(θ̂) 123 26·2 1·72 1·90 288 4·80 4·76

Ĝ−1 N/A 25·6 1·62 1·63 349 4·78 5·18

n = 3000

θ̂ 7·00 0·52 0·70 0·20 0·37 0·40 0·50

ncov(θ̂) 5 26·8 1·76 1·76 266 5·33 4·99

Ĝ−1 N/A 24·5 1·61 1·61 332 4·64 5·05

Table 2: Simulation 1. The true parameters are in the row with description

θ0. For each sample size, 1000 replications are simulated. Then the mean of

estimates, sample size times the variance of estimates and mean of asymptotic

variances (if available) are reported respectively.
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Sample size Description r d1 a1 b1 d2 a2 b2

θ0 6 0·50 0·80 0·70 0·20 0·20 0·10

n = 500

θ̂ 6·00 0·47 0·82 0·69 0·32 0·19 0·09

ncov(θ̂) 0 28·17 3·36 2·56 64·96 1·57 1·74

Ĝ−1 N/A 34·05 3·52 2·52 133·27 1·73 1·48

n = 1000

θ̂ 6·00 0·50 0·81 0·70 0·28 0·20 0·09

ncov(θ̂) 0 30·29 3·35 2·40 75·55 1·61 1·27

Ĝ−1 N/A 33·65 3·48 2·52 133·54 1·73 1·47

n = 2000

θ̂ 6·00 0·50 0·80 0·70 0·23 0·20 0·10

ncov(θ̂) 0 29·36 3·28 2·47 82·68 1·46 1·21

Ĝ−1 N/A 33·32 3·45 2·50 133·90 1·74 1·47

n = 3000

θ̂ 6·00 0·50 0·80 0·70 0·22 0·20 0·10

ncov(θ̂) 0 32·56 3·64 2·53 98·93 1·57 1·43

Ĝ−1 N/A 33·12 3·44 2·50 133·65 1·73 1·48

Table 3: Simulation 2. The true parameters are in the row with description

θ0. For each sample size, 1000 replications are simulated. Then the mean of

estimates, sample size times the variance of estimates and mean of asymptotic

variances (if available) are reported respectively.
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4.2 Analysis of annual counts of major earthquakes in

the world

In this example we study the series of annual counts of major earthquakes

with magnitude 7 (inclusive) or above during 1900 – 2010, which is plotted

in Figure 2. The data from 1900 to 2006 can be found in page 4 of Zucchini

and MacDonald (2009), and the rest is extracted from the website of U.S.

Geological Survey. The sample mean and sample variance are 19·30 and 50·37

respectively, showing considerable over-dispersion. The marginal distribution

of {Yt} in a self-excited threshold Poisson autoregression is highly expected

to be non-Poissonian. It also displays strong positive serial dependence, as

can be seen in Figure 1.

The series has been studied with hidden Markov models with discrete

states by Zucchini and MacDonald (2009). Here we would like to compare

the performances of the Poisson autoregression (PAR) versus the self-excited

threshold Poisson autoregression for this data set. In order to compare the

out-of-sample performances, the first 100 observations are used to estimate

the parameters, while the last 11 are used to calculate the out-of-sample

mean square error (MSE), serving as an assessment to model performance.

The estimation results are shown in Table 4.

The self-excited threshold Poisson autoregression outperforms the ordi-
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Figure 1: ACF of the earthquake data.

nary Poisson autoregression according to AIC, in-sample MSE, and out-of-

sample MSE. By BIC the Poisson autoregression seems to be better, which

is understandable, since BIC is very conservative when selecting models with

more parameters. In the threshold case, all parameter estimates are sig-

nificantly different from zero, except that d2 is marginally significant and

b2=0·001, which in fact is the lower bound for b2 in our algorithm for esti-

mating the parameters. The same threshold model with b2 = 0 is also fitted,

but the result remains almost the same, as can be seen in Table 4. The basic

statistics of the Pearson’s residual which is defined as (Yt − λ̂t)/
√
λ̂t under

the self-excited threshold Poisson autoregression model are summarized in

Table 5, and its ACF is plotted in Figure 3, which shows that there is no
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virtually significant serial dependence in the residual sequence.

The original data and the fitted series by the two models are plotted in

Figure 2. It is observed that the threshold model fits the data better when

Yt is large, i.e., its improvement are mainly in the upper regime. If more

data were available, a Poisson autoregression with two or more thresholds

might be considered. However, insufficiency of data is very likely to result

in unreliable parameter estimates, so we content ourselves with the present

model.

A closer look at the fitted parameters reveals the possible different dy-

namics of the underlying process according to the threshold. Note that the

estimated threshold is 25, which is quite large. The difference between the

intercepts, d1=3·27 versus d2=14·33, implies that large number of major

earthquakes in one year is very likely to be followed by a lot of earthquakes

during the following year. Another notable feature is that b2 = 0, showing

that once a large number is observed, the conditional mean of the process

would be stably large with less fluctuations comparing to the lower regime

in which the conditional mean depends on both the latent mean process and

the realized observations. For the earthquake data, this means that more

earthquakes will be expected in the next few years once a large number of

major earthquakes are observed in a year, as during the years 1942 – 1950

and 1968 – 1970.
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PAR SETPAR SETPAR (with b2 = 0)

d1 2·96 (1·21) 3·27 (1·36) 3·27 (1·36)

a1 0·47 (0·11) 0·49 (0·12) 0·49 (0·12)

b1 0·39 (0·07) 0·33 (0·10) 0·33 (0·10)

d2 14·30 (7·45) 14·33 (7·45)

a2 0·52 (0·20) 0·52 (0·20)

b2 0·001 (0·26)

r 25 25

Average log-likelihood 39·85 39·89 39·89

AIC -7883·5 -7885·1 -7887·1

BIC -7875·7 -7866·9 -7871·5

In-sample MSE 33·12 30·7 30·7

Out-of-sample MSE 13·4 12·8 12·8

Table 4: Summary of model estimates. Standard errors (if available) are in

parenthesis.

Mean Standard error Skewness Excess kurtosis

-0·02 1·219 0·537 0·429

Table 5: Statistics summary of the Pearson residuals of the earthquake data

fitted by the self-excited threshold Poisson autoregression model.
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5 Discussion

There are some open problems deserving further investigation. The asymp-

totic properties of the maximum likelihood estimator derived in Theorem 3.2

might be extended to the case without the constraint that b1 < 1. An-

other question is to test the self-excited threshold Poisson autoreregression

model against the original Poisson autoregression model. Lastly, beyond the

self-excited threshold Poisson model discussed in this paper, the following

extension with multiple thresholds can be considered. For given integers 0 =

r0 < r1 · · · < rn−1 < rn = ∞, it is assumed that L(Yt | Ft−1) = Poisson(λt) ,
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where

λt =
n∑

i=1

(di + aiλt−1 + biYt−1)1{Yt−1 ∈ [ri−1, ri)},

and di > 0, ai > 0, bi > 0 (i = 1, . . . , n).

Results similar to Theorem 2.3,Theorem 3.1, and Theorem 3.2 can be

established in a similar manner.

6 Appendix

In the following proofs, without explicit specification, C denotes a generic

positive constant, and ρ a generic constant such that ρ ∈ (0, 1). ‖X‖p

denotes the Lp-norm of a random variable X. The transition probabil-

ity kernel of {λt} is denoted by P. For any function V : R → R, let

PV (λ) = E(V (λ1)|λ0 = λ).

6.1 Proof of Theorem 2.3

Proof. We first prove some lemmas.

Lemma 6.1. For a Poisson process {N(u), u ≥ 0} with unit rate,

1. lim
u→∞

N(u)/u = 1 almost surely.

2. The family of random variables {(N(u)
u

)s, u ≥ 1} is uniformly integrable

for any integer s ≥ 1.
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Proof. The first assertion is clearly correct for integer-valued u’s following

the law of large numbers. For arbitrary u, let ⌊u⌋ be the integer part of u,

then ⌊u⌋ ≤ u < ⌊u⌋+ 1, and N(⌊u⌋) ≤ N(u) ≤ N(⌊u⌋+ 1). The conclusion

follows.

For the second assertion, since N(u) has a Poisson distribution with mean

u, its q-th order moment is a polynomial function of u of degree q. Therefore

there exists a constant C such that

E

(
N(u)

u

)q

≤ C, u ≥ 1.

For given order s ≥ 1, using the bound with q > s the uniformly integrability

of the family {[N(u)/u]s, u ≥ 1} is proved.

Lemma 6.2. For s ≥ 1, let V (λ) = λs. Then

lim
λ→∞

PV (λ)

V (λ)
= (a2 + b2)

s.

Proof. We have

PV (λ)

V (λ)
=

E [V (λ1) | λ0 = λ]

V (λ)

= E

[(
d1
λ

+ a1 + b1
Y0

λ

)s

1{Y0≤r} +

(
d2
λ

+ a2 + b2
Y0

λ

)s

1{Y0>r}

]

:= E[h(λ, ω)] .

For fixed ω and when λ → ∞, since by Lemma 6.1, Y0/λ = N0(λ)/λ → 1

a.s., 1{Y0≤r} → 0. Therefore h(λ, ω) → (a2 + b2)
s a.s. as λ → ∞.
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Next we check the uniform integrability condition. Using (a + b)s ≤

2s−1(as + bs) for s ≥ 1, a, b ≥ 0, it is clear that for all λ ∈ [1,∞),

0 ≤ h(λ, ω) ≤ c(s)

(
1 +

(
Y0

λ

)s)
,

for some constant c(s) independent of λ (but depending on s and the param-

eters). By Lemma 6.1, the family {(Y0/λ)
s, λ ≥ 1} is uniformly integrable,

so is the family {h(λ, ω), λ ≥ 1}. We thus obtain the announced limit.

Lemma 6.3. The Markov chain {λt} is weakly Feller.

Proof. To make the dependence on Poisson processes explicit, we write the

state equation Eq (2) in the form λt = F (λt−1, Nt−1) with Yt−1 replaced by

Nt−1 (λt−1), using the representation of Yt−1 = Nt−1(λt−1) in Eq (3). Let

g : R+ → R be any continuous and bounded function. We need to prove that

Pg(x) = E[g(λ1) | λ0 = x] is continuous. Let ε > 0 and first choose η > 0

such that 2‖g‖∞(1− e−2η) ≤ ε/2. Consider a neighbourhood (x0 − η, x0 + η]

of some x0 ∈ R+. Define the event

A = { the Poisson process N0 has no jumps in (x0 − η, x0 + η] } .

Clearly, P (A) = e−2η. Write

Pg(x)−Pg(x0) =E [g(F (x,N0))− g(F (x0, N0))]

=E [{g(F (x,N0))− g(F (x0, N0))} 1A]

+ E [{g(F (x,N0))− g(F (x0, N0))} 1Ac ] .
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On Ac, we have

|E {g(F (x,N0))− g(F (x0, N0))} 1Ac | ≤ 2‖g‖∞P (Ac) = 2‖g‖∞(1−e−2η) ≤ ε/2.

And on the event A, N0(x) = N0(x0), for any x ∈ (x0 − η, x0 + η]. The

mapping x 7→ F (x,N0) is continuous, so is x 7→ g(F (x,N0))1A which is also

bounded. Thus by Lebesgue’s dominated convergence theorem,

E [{g(F (x,N0))− g(F (x0, N0))} 1A] → 0, x → x0.

We can then choose η1 < η such that for |x− x0| < η1,

|E {g(F (x,N0))− g(F (x0, N0))} 1A| ≤ ε/2 .

Finally for |x− x0| < η1, by collecting these two estimates,

|Pg(x)−Pg(x0)| ≤ ε.

The proof is complete.

Lemma 6.4. The Markov chain {λt} is an e-chain provided that a1 < 1 and

a2 + b2 < 1.

Proof. It suffices to show that for any continuous function f with compact

support and ǫ > 0, there exists an η > 0 such that |Pkf(x) − Pkf(z)| < ǫ,

for any |x− z| < η and all k ≥ 1, where Pkf(·) = E(f(λk) | λ0 = ·).

Without loss of generality, assume |f | ≤ 1. Take ǫ′ and η sufficiently small

such that ǫ′+4η/(1−ā) < ǫ, where ā = max{a1, a2} < 1, and |f(x1)−f(z1)| <
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ǫ′ whenever |x1 − z1| < η. Denote p(· | x) as the probability mass function

of a Poisson distribution with intensity x. Then for the case when k = 1,

|Pf(x1)−Pf(z1)|

≤ |
r∑

i=0

f(d1 + a1x1 + b1i)p(i | x1)−
r∑

i=0

f(d1 + a1z1 + b1i)p(i | z1)|

+|
∞∑

j=r+1

f(d2 + a2x1 + b2j)p(j | x1)−
∞∑

j=r+1

f(d2 + a2z1 + b2j)p(j | z1)|

:= I + II.

For x1 ≥ z1,

∞∑

i=0

|p(i | x1)− p(i | z1)| =
∞∑

i=0

|x
i
1e

−x1

i!
− zi1e

−z1

i!
|

≤
∞∑

i=0

(xi
1 − zi1)e

−x1

i!
+

∞∑

i=0

zi1(e
−z1 − e−x1)

i!

= 2(1− e−|x1−z1|).

The same inequality holds for x1 < z1 by symmetry. Hence for any x1

and z1, we have

∞∑

i=0

|p(i | x1)− p(i | z1)| ≤ 2(1− e−|x1−z1|). (11)

It follows that

I ≤
r∑

i=0

|f(d1 + a1x1 + b1i)− f(d1 + a1z1 + b1i)|p(i | x1)

+
r∑

i=0

|f(d1 + a1z1 + b1i)||p(i | x1)− p(i | z1)|

≤ ǫ′F (r | x1) + 2(1− e−|x1−z1|),
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where F (r | x1) =
∑r

i=0 p(i | x1). The last inequality follows from Eq (11),

|f | ≤ 1, and the fact that |(d1+a1x1+b1i)−(d1+a1z1+b1i)| = a1|x1−z1| < η.

It follows from a similar argument that II ≤ ǫ′(1−F (r | x1))+2(1−e−|x1−z1|).

Hence we have

|Pf(x1)−Pf(z1)| ≤ ǫ′ + 4(1− e−|x1−z1|), (12)

for |x1 − z1| < η. For the case when k = 2, it follows from

E{f(λ2) | λ0 = x} = E{E[f(λ2) | λ1]
∣∣λ0 = x}

that

|P2f(x1)−P2f(z1)| = |P(Pf)(x1)−P(Pf)(z1)|

≤ |
r∑

i=0

p(i | x1)Pf(x
(1)
2 )−

r∑

i=0

p(i | z1)Pf(z
(1)
2 )|

+|
∞∑

j=r+1

p(j | x1)Pf(x
(2)
2 )−

∞∑

j=r+1

p(j | z1)Pf(z
(2)
2 )|

:= III + IV,

where x
(1)
2 = d1+ a1x1+ b1i, x

(2)
2 = d2+ a2x1+ b2j, z

(1)
2 = d1+ a1z1+ b1i, and

z
(2)
2 = d2 + a2z1 + b2j. Then

III ≤
r∑

i=0

p(i | x1)|Pf(x
(1)
2 )−Pf(z

(1)
2 )|+

r∑

i=0

|Pf(z
(1)
2 )||p(i | x1)− p(i | z1)|

≤
{
ǫ′ + 4

(
1− e−|x(1)

2 −z
(1)
2 |
)}

F (r | x1) + 2
(
1− e−|x1−z1|) ,

which follows from (11) and (12). Similarly, we have

IV ≤
{
ǫ′ + 4(1− e−|x(2)

2 −z
(2)
2 |)
}
(1− F (r | x1)) + 2

(
1− e−|x1−z1|) .
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Since |x(1)
2 − z

(1)
2 | = a1|x1− z1| and |x(2)

2 − z
(2)
2 | = a2|x1− z1|, so by letting

ā = max{a1, a2}, we have

|P2f(x1)−P2f(z1)| ≤ ǫ′ + 4
(
1− e−ā|x1−z1|)+ 4

(
1− e−|x1−z1|) .

Inductively, one can show that for any k ≥ 1,

|Pkf(x1)−Pkf(z1)| ≤ ǫ′ + 4
k−1∑

s=0

(
1− e−ās|x1−z1|)

≤ ǫ′ + 4
∞∑

s=0

ās|x1 − z1|

≤ ǫ′ +
4η

1− ā
< ǫ,

where the second inequality holds since 1−e−x ≤ x. Hence {λt} is an e-chain.

Proof of Theorem 2.3 By Lemma 6.2, for any initial value λ0 = x, the

sequence of transition probabilities

πn(x, dy) =
1

n
{P(x, dy) + · · ·+Pn(x, dy)}

is tight (Duflo, 1997, Proposition 2.1.6). Moreover, using the weak Feller

property established in Lemma 6.3, we know that the weak limit of any

subsequence of {πn(x, dy)} is an invariant probability measure of P.

Then note that λ∗ = d1/(1−a1) is a reachable state by letting Y1 = Y2 =

. . . = Yt = 0 for large t. Combined with the fact that {λt} is an e-chain, it

follows that the stationary distribution is unique.
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The fact that µ(|x|s) < ∞ for all s ≥ 0 directly results from the Lya-

pounov property established in Lemma 6.2. The strong law of large numbers

also follows from this method, see Proposition 6.2.12 and the remarks in

Section 6.2.2 in Duflo (1997). The proof is complete.

6.2 Proof of Corollary 2.4

Proof. The stability of the joint process is clear. To see Yt ∈ Ls, for all s > 0,

it suffices to note that λt ∈ Ls for all s > 0 and the following fact

E(Yt)
s = E[E{(Yt)

s | λt}] = (E(Poly(λt, s)) < ∞,

where Poly(λt, s) is the polynomial of λt of order s which represents the sth

moment of a Poisson random variable with mean λt.

6.3 Proof of Theorem 3.1

Proof. Since the log-likelihood ℓ̃ is calculated with a given initial value λ̃1,

we first show that the log-likelihood ℓ̃ is asymptotically independent of λ̃1.

Using the varying-coefficient representation in Eq (5), we have

λt(λ1) =
t−2∑

k=1

k−1∏

j=1

at−jct−k +
t−1∏

j=1

at−jλ1,
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which implies

sup
θ∈D

|λt(λ1)− λ̃t(λ̃1)| = sup
θ∈D

|
t−1∏

j=1

at−j(λ1 − λ̃1)| ≤ Kρt,

where ρ = supθ∈D max {a1, a2} < 1 and K = |λ1 − λ̃1|/ρ.

Then the difference between the log-likelihoods based on arbitrary initial

value and on the stationary initial one is

sup
θ∈D

| 1
n
(ℓ(λ1)− ℓ(λ̃1)| =sup

θ∈D
| 1
n

n∑

t=1

Yt(log(λt)− log(λ̃t))− (λt − λ̃t)|

=sup
θ∈D

| 1
n

n∑

t=1

Yt log(1 +
λt − λ̃t

λ̃t

)− (λt − λ̃t)|

≤ sup
θ∈D

1

n

n∑

t=1

Yt|
λt − λ̃t

λ̃t

|+ |λt − λ̃t|

≤ sup
θ∈D

1

n

n∑

t=1

|λt − λ̃t|(
Yt

d0
+ 1)

≤ 1

n

n∑

t=1

Kρt(
Yt

d0
+ 1)

→0, a.s.

where d0 = infθ∈D min{d1, d2} > 0.

The a.s. limit holds because of the Cesàro lemma and the observation

that ρtYt → 0, a.s. (see also Francq and Zaköıan (2004)).

Secondly, we prove that E[ℓt(θ)] is continuous in θ. Since r is discrete, we

need only to prove the following property. For any θ ∈ D, let Vη(θ) = B(θ, η)
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be an open ball centered at θ with radius η, then

E

(
sup

θ̃∈Vη(θ)

|ℓt(θ̃)− ℓt(θ)|
)

→ 0, as η → 0. (13)

To see this, observe that

|ℓt(θ̃)− ℓt(θ)| ≤ (
Yt

λt(θ̃)
+ 1)|λt(θ̃)− λt(θ)|,

and

|λt(θ)− λt(θ̃)| =|
∑

k

k−1∏

j=1

at−jct−k −
k−1∏

j=1

ãt−j c̃t−k|

=|
∑

k

(
k−1∏

j=1

at−j −
k−1∏

j=1

ãt−j)ct−k +
k−1∏

j=1

ãt−j(ct−k − c̃t−k)|

≤Cη
∑

k

ρk(1 + Yt−k).

Then

E

(
sup

θ̃∈Vη(θ)

|ℓt(θ̃)− ℓt(θ)|
)

≤‖Yt

d0
+ 1‖2‖λt − λ̃t‖2

≤Cη‖Yt

d0
+ 1‖2

∑

k

ρk‖Yt‖2

→0, as η → 0.

Next, we check the model identifiability. By Jensen inequality, we have

E [ℓt(θ)− ℓt(θ0)] =E

[
E

(
log

φ(Yt | λt(θ))

φ(Yt | λt(θ0))
| Ft−1

)]

≤E

[
log E

(
φ(Yt | λt(θ))

φ(Yt | λt(θ0))
| Ft−1

)]

=E(log(1)) = 0,
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where φ(· | y) denotes the Poisson distribution function with mean y, and

the equality holds iff λt(θ) = λt(θ0) a.s. Ft−1.

Suppose that θ̃ satisfies λ̃t = λt(θ̃) = λt(θ0) a.s. Ft−1. Without loss of

generality, assume r̃ ≥ r. For ease of notation, let λt = λt(θ0) temporarily,

then conditional on Ft−2, we have λ̃t−1 = λt−1 a.s., and almost surely

λ̃t − λt =(d̃t−1 + b̃t−1Yt−1 + ãt−1λ̃t−1)− (dt−1 + bt−1Yt−1 + at−1λt−1)

=[(d̃1 − d1) + (b̃1 − b1)Yt−1 + (ã1 − a1)λt−1]1 {Yt−1 ≤ r}

+ [(d̃1 − d2) + (b̃1 − b2)Yt−1 + (ã1 − a2)λt−1]1 {r < Yt−1 ≤ r̃}

+ [(d̃2 − d2) + (b̃2 − b2)Yt−1 + (ã2 − a2)λt−1]1 {r̃ < Yt−1} . (14)

Note that Ft−1 = σ {Yt−1,Ft−2}, Yt | λt ∼ Poisson(λt), it can be seen

from Eq (14) that if λ̃t − λt = 0 a.s. Ft−1, we must have θ̃ = θ0.

Now we are ready to prove the consistency. Consider an arbitrary (small)

open neighbourhood of θ0, say V , then for any ϑ ∈ V c∩D, we have E[ℓt(ϑ)] <

E[ℓt(θ0)], since V c ∩ D is compact and E[ℓt(θ)] is continuous in θ, we have

κ = E[ℓt(θ0)]− supθ∈V c∩D E[ℓt(θ)] > 0. And for any θ ∈ V c ∩ D, there exists

ηθ > 0 such that E[supϑ∈Vηθ
(θ) ℓt(θ)] < E[ℓt(θ)]+

1
6
κ. Also by the compactness

of V c ∩ D, there exists a finite open cover of V c ∩ D, say, {Vηθj
(θj), j =
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1, . . . ,m}. For any θ ∈ D and k ≫ 0,

lim
n→∞

sup
θ∗∈V1/k(θ)∩Θ

1

n
ℓ̃(θ∗)

≤ lim
n→∞

sup
θ∗∈V1/k(θ)∩Θ

1

n
ℓ(θ∗) + lim

n→∞
sup

θ∗∈V1/k(θ)∩Θ

1

n
|ℓ(θ∗)− ℓ̃(θ∗)|

≤ lim
n→∞

1

n

n∑

t=1

sup
θ∗∈V1/k(θ)∩Θ

ℓt(θ
∗).

By Corollary 2.4 and as in Francq and Zaköıan (2004), we have almost

surely for n ≫ 0 and j = 1, . . . ,m,

sup
θ∈V ηθj (θj)

1

n

n∑

t=1

ℓ̃t(θ) ≤ sup
θ∈V ηθj (θj)

1

n

n∑

t=1

ℓt(θ) +
1

6
κ

≤ 1

n

n∑

t=1

sup
θ∈V ηθj (θj)

ℓt(θ) +
1

6
κ

≤ E

(
sup

θ∈V ηθj (θj)

ℓt(θ)

)
+

1

3
κ

≤ E[lt(θ0)]−
2

3
κ.

And

sup
θ∈V

1

n

n∑

t=1

ℓ̃t(θ) ≥
1

n

n∑

t=1

ℓ̃t(θ0) ≥
1

n

n∑

t=1

ℓt(θ0)−
1

6
κ ≥ E[ℓt(θ0)]−

1

3
κ.

Therefore, for any (small) neighbourhood of θ0, V , for n ≫ 0, we have almost

surely

sup
θ∈V ηθj (θj)

1

n

n∑

t=1

ℓ̃t(θ) ≤ sup
θ∈V

1

n

n∑

t=1

ℓ̃t(θ),

which implies θ̂ ∈ V .
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6.4 Proof of Theorem 3.2

We here only give an outline of the proof, a detailed proof can be found in

the supplementary material.

Proof. By Taylor’s expansion, for j = 1, . . . , 6, there exists some θ(j) between

θ0 and θ̂ such that

0 =
1√
n

n∑

t=1

∂ℓ̃t(θ̂)

∂θj
=

1√
n

n∑

t=1

∂ℓ̃t(θ0)

∂θj
+

(
1

n

n∑

t=1

∂2ℓ̃t(θ(j))

∂θj∂θ⊺

)
√
n(θ̂ − θ0).

The theorem follows if it can be proved that

1√
n

n∑

t=1

∂ℓ̃t(θ0)

∂θ

d−→ N(0, G),

and

1

n

n∑

t=1

∂2ℓ̃t(θ
∗)

∂θ∂θ⊺
p−→ −G,

for all θ∗ between θ0 and θ̂.

To show these, we prove the following statements,

(S1). 1√
n

∑n

t=1
∂ℓt(θ0)

∂θ

d−→ N(0, G).

(S2). ‖ 1√
n

∑n

t=1(
∂ℓt(θ0)

∂θ
− ∂ℓ̃t(θ0)

∂θ
)‖ p−→ 0.

(S3). There exists a neighbourhood of θ0, V (θ0), such that for all i, j, k ∈

{1, . . . , 6},

E

(
sup

θ∈V (θ0)

| ∂3ℓt(θ)

∂θi∂θj∂θk
|
)

< ∞.
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(S4). For the neighbourhood V (θ0) specified above,

sup
θ∈V (θ0)

‖ 1
n

n∑

t=1

(
∂2ℓt(θ)

∂θ∂θ⊺
− ∂2ℓ̃t(θ)

∂θ∂θ⊺

)
‖ p−→ 0.

(S5). 1
n

∑n

t=1
∂2ℓt(θ∗)
∂θ∂θ⊺

a.s.−−→ −G, uniformly for all θ∗ between θ0 and θ̂.
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Supplementary material

Complementary for establishing the statements in the

proof of Theorem 3.2

We write λt as in Eq (5), then

∂ℓt
∂θ

= (
Yt

λt

− 1)
∂λt

∂θ
,

and

∂λt

∂θ
=




∂λt

∂θ(1)

∂λt

∂θ(2)


 , (15)

with

∂λt

∂θ(i)
=




1

λt−1

Yt−1




1 {Yt−1 ∈ Ri}+ at−1
∂λt−1

∂θ(i)
(i = 1, 2).

The derivative in Eq (15) can be written in a compact form as

∂λt

∂θ
:=νt−1 + at−1

∂λt−1

∂θ
=
∑

k≥1

(
k−1∏

j=1

at−j)νt−k.

By assumption at ≤ max {a1, a2} = aM < 1, then

∂λt

∂θ
≤
∑

k

ak−1
M νt−k.

In particular, we have

∂λt

∂di
=
∑

k≥1

(
k−1∏

j=1

at−j)1 {Yt−1 ∈ Ri} ≤
∑

k≥1

ak−1
M ≤ 1

1− aM
. (16)
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Writing λt =
∑

k≥1(
∏k−1

j=1 at−j)ct−k with ct = dt + btYt, we have

∂λt

∂bi
=
∑

k≥1

(
k−1∏

j=1

at−j)
∂bt−k

∂bi
Yt−k =

∑

k≥1

(
k−1∏

j=1

at−j)1 {Yt−k ∈ Ri}Yt−k,

which implies

‖∂λt

∂bi
‖2 ≤‖Yt‖2

∑

k≥1

akM . (17)

Also,

∂λt

∂ai
=
∑

k≥1

∂(
∏k−1

j=1 at−j)

∂ai
ct−k ≤

∑

k≥1

k − 1

ai
(
k−1∏

j=1

at−j)ct−k,

implies

E

(
∂λt

∂ai

)
≤
∑

k≥1

k − 1

ai
ak−1
M (dM + bME(Yt)) < ∞, (18)

where dM = max {d1, d2} , bM = max {b1, b2}, and

‖∂λt

∂ai
‖2 ≤

∑

k≥1

k − 1

ai
ak−1
M (dM + bM‖Yt‖2) < ∞. (19)

Note that

E

[
∂ℓt(θ0)

∂θ

]
= E

[(
Yt

λt

− 1

)
∂λt

∂θ

]
= E

[
E

(
Yt

λt

− 1

)
∂λt

∂θ
|Ft−1

]
= 0.

Since λt is bounded from zero, λt ≥ d0 = min {d1, d2}, with the results in
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Eq (16), Eq (17), Eq (18), and Eq (19) we have

var

[
∂ℓt(θ0)

∂θ

]
=E

[(
Yt

λt

− 1

)2(
∂λt

∂θ

)(
∂λt

∂θ

)
⊺
]

=E

[
E

{(
Yt

λt

− 1

)2(
∂λt

∂θ

)(
∂λt

∂θ

)
⊺

| Ft−1

}]

=E

[
1

λt

(
∂λt

∂θ

)(
∂λt

∂θ

)
⊺
]

=G < ∞.

It can be seen that G is non-degenerate (cf. Francq and Zaköıan (2004)).

Since {∂ℓt(θ0)/∂θ} is a L4 martingale difference, by the Cramér-Wold

device and the central limit theorem in Theorem 18.1 of Billingsley (1999)

we have the weak convergence,

1√
n

n∑

t=1

∂ℓt(θ0)

∂θ

d−→ N(0, G).

Then we shall prove Statement (S2). To show this, note that for i = 1, 2,

∂λ̃t

∂di
=

t−2∑

k≥1

(
k−1∏

j=1

at−j)1 {Yt−k ∈ Ri}+
k−1∏

j=1

at−j

∂λ̃1

∂di
, (20)

∂λ̃t

∂ai
=

t−2∑

k=1

∂(
∏k−1

j=1 at−j)

∂ai
ct−k +

t−1∏

j=1

at−j

∂λ̃1

∂ai
, (21)

∂λ̃t

∂bi
=

t−2∑

k=1

(
k−1∏

j=1

at−j)Yt−k1 {Yt−k ∈ Ri}+
t−1∏

j=1

at−j

∂λ̃1

∂bi
. (22)

Since ∂λ̃1/∂θ can be regarded as a fixed value, we have

sup
θ∈D

‖∂λ̃t

∂θ
− ∂λt

∂θ
‖ ≤ Cρt, a.s.
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Note that we also have |λt − λ̃t| ≤ Cρt, which implies | 1
λt
− 1

λ̃t
| ≤ Cρt, for λt

and λ̃t are bounded from 0. Note that

∂ℓt(θ0)

∂θ
− ∂ℓ̃t(θ0)

∂θ
=

(
Yt

λt(θ0)
− 1

)
∂λt(θ0)

∂θ
−
(

Yt

λ̃t(θ0)
− 1

)
∂λ̃t(θ0)

∂θ

=Yt

[(
1

λt

− 1

λ̃t

)
∂λt

∂θ
+

1

λ̃t

(
∂λt

∂θ
− ∂λ̃t

∂θ

)]
−
(
∂λt

∂θ
− ∂λ̃t

∂θ

)
.

Then it is readily seen that

‖∂ℓt(θ0)
∂θ

− ∂ℓ̃t(θ0)

∂θ
‖ ≤Cρt

[
1 + Yt

(
1 + ‖∂λt

∂θ
‖
)]

.

Note that E(Yt‖∂λt(θ0)/∂θ‖) < ∞, then for any ε > 0,

pr

(
‖ 1√

n

n∑

t=1

(
∂ℓt(θ0)

∂θ
− ∂ℓ̃t(θ0)

∂θ

)
‖ > ε

)
≤ 1√

nε

n∑

t=1

Cρt
[
1 + E(Yt) + E

(
‖Yt

∂λt

∂θ
‖
)]

→0, as n → ∞.

Next we will prove Statement (S3). Through direct calculation, we obtain

∂3ℓt(θ)

∂θi∂θj∂θk
=

(
−Yt

λ2
t

)(
∂2λt

∂θi∂θj

∂λt

∂θk
+

∂2λt

∂θi∂θk

∂λt

∂θj
+

∂2λt

∂θj∂θk

∂λt

∂θi

)

+ 2
Yt

λ3
t

∂λt

∂θi

∂λt

∂θj

∂λt

∂θk
+

(
Yt

λt

− 1

)
∂3λt

∂θi∂θj∂θk
. (23)

Consider, for example, ∂3ℓt(θ)/∂a
3
1. Write λt =

∑
k

∏k−1
j=1 at−jct−k, then

for i = 1, 2, 3,

∂iλt(θ)

∂ai1
=
∑

k≥1

∂i(
∏k−1

j=1 at−j)

∂ai1
ct−k ≤

∑

k≥1

(k − 1) · · · (k − i)

ai1
(
k−1∏

j=1

at−j)ct−k.
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We may select V (θ0) small enough such that aM = supθ∈V (θ0) max{a1, a2} <

1, and am = infθ∈V (θ0) min{a1, a2} > 0, then

∂iλt(θ)

∂ai1
≤
∑

k≥1

(k − 1) · · · (k − i)

aim
ak−1
M ct−k (i = 1, 2, 3).

Recall that ct = dt + atYt, then it is easily seen that there exist constants

ζt,i > 0, such that
∑

t ζt,i < ∞, and

sup
θ∈V (θ0)

∂iλt(θ)

∂ai1
≤ ζ0,i +

∑

k≥1

ζk,iYt−k := µt,i.

From Eq (23), we have

E

(
sup

θ∈V (θ0)

| ∂3ℓt(θ̃)

∂θi∂θj∂θk
|
)

≤ E

[
3
Yt

d2m
µt,2µt,1 + 2

Yt

d3m
µ3
t,1 +

(
Yt

dm
+ 1

)
µt,3

]
.

The expression on the right-hand-side of the inequality can be proved to

be finite, if µt,3 ∈ L2, µt,1 ∈ L6, µt,2 ∈ L4, which can be verified by Minkowski

inequality and the fact that Yt ∈ Lp, for all p > 0.

As for the second order derivative in Statement (S4), note that similar to

the case for the first order derivative, we can prove

sup
θ∈Θ

‖ ∂2λt

∂θ∂θ⊺
− ∂2λ̃t

∂θ∂θ⊺
‖ ≤ Cρt. (24)

It is easily seen that

∂2ℓt
∂θ∂θ⊺

=

(
Yt

λt

− 1

)
∂2λt

∂θ∂θ⊺
− Yt

λ2
t

(
∂λt

∂θ

)(
∂λt

∂θ

)
⊺

,

and

E

(
∂2ℓt(θ0)

∂θ∂θ⊺

)
= −G.
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Then

∂2ℓt
∂θi∂θk

− ∂2ℓ̃t
∂θi∂θk

=Yt

[(
1

λt

− 1

λ̃t

)
∂2λt

∂θi∂θk
+

1

λ̃t

(
∂2λt

∂θi∂θk
− ∂2λ̃t

∂θi∂θk

)
+

(
1

λ2
t

− 1

λ̃2
t

)
∂λt

∂θi

∂λt

∂θk

+
1

λ̃2
t

{
∂λt

∂θi

(
∂λt

∂θj
− ∂λ̃t

∂θj

)
+

∂λ̃t

∂θj

(
∂λt

∂θi
− ∂λ̃t

∂θi

)}]
+

(
∂2λt

∂θi∂θk
− ∂2λ̃t

∂θi∂θk

)
.

Thus, we have

| ∂2ℓt
∂θi∂θk

− ∂2ℓ̃t
∂θi∂θk

| ≤ C

[
1 + Yt

(
∂2λt

∂θi∂θk
+

∂λt

∂θi

∂λt

∂θk
+

∂λt

∂θi
+

∂λt

∂θk

)]
ρt.

Let

Γt =
∂2λt

∂θi∂θk
+

∂λt

∂θi

∂λt

∂θk
+

∂λt

∂θi
+

∂λt

∂θk
,

then it can be seen that around a neighbourhood of θ0, without loss of gen-

erality, assuming the same V (θ0), we have supθ∈V (θ0) E (ΓtYt) < ∞.

Similar as in the argument for Statement (S3), we can obtain the following

by Markov inequality,

sup
θ∈Θ

| 1
n

n∑

t=1

(
∂2ℓt

∂θi∂θj
− ∂2ℓ̃t

∂θi∂θj

)
| p−→ 0. (25)

Lastly, we prove Statement (S5). Recall that θ∗ lies between θ0 and θ̂.

Consider the Taylor expansion of the second-order derivatives of ℓt at θ0, we

have

1

n

∑

t

∂2ℓt(θ
∗)

∂θi∂θj
=

1

n

∑

t

∂2ℓt(θ0)

∂θi∂θj
+

1

n

∑

t

∂3ℓt(θ̃)

∂θi∂θj∂θ
(θ∗ − θ0),
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for some θ̃ between θ0 and θ∗. Then the almost sure convergence of θ̃ to θ0,

the ergodic theorem in Corollary 2.4, and Statement (S3) imply that

lim sup
θ∈V (θ0)

‖ 1
n

∑

t

1

n

∂3ℓt(θ)

∂θi∂θj∂θ
‖ < ∞, a.s.

Then we have

lim
n→∞

1

n

∑

t

∂2ℓt(θ
∗)

∂θi∂θj
= lim

n→∞

1

n

∑

t

∂2ℓt(θ0)

∂θi∂θj
= −G(i, j) a.s.

The proof is complete.
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