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The Markov additive risk process under an Erlangized

dividend barrier strategy

Zhimin Zhang∗, Eric C.K. Cheung†

May 26, 2014

Abstract

In this paper, we consider a Markov additive insurance risk process under a randomized dividend
strategy in the spirit of Albrecher et al. (2011). Decisions on whether to pay dividends are only made
at a sequence of dividend decision time points whose intervals are Erlang(n) distributed. At a dividend
decision time, if the surplus level is larger than a predetermined dividend barrier, then the excess is
paid as a dividend as long as ruin has not occurred. In contrast to Albrecher et al. (2011), it is assumed
that the event of ruin is monitored continuously (Avanzi et al. (2013) and Zhang (2014)), i.e. the
surplus process is stopped immediately once it drops below zero. The quantities of our interest include
the Gerber-Shiu expected discounted penalty function and the expected present value of dividends
paid until ruin. Solutions are derived with the use of Markov renewal equations. Numerical examples
are given, and the optimal dividend barrier is identified in some cases.

Keywords: Markov additive process; Barrier strategy; Inter-dividend-decision times; Gerber-Shiu
function; Dividends; Markov renewal equation; Erlangization.

1 Introduction

In this paper, we model the surplus of an insurance company via a Markov additive process (MAP) with
downward jumps (e.g. Asmussen (2003, Chapter XI)). Let J = {Jt}t≥0 be the underlying environment
process, which is a homogeneous irreducible continuous-time Markov chain with finite state space E =
{1, 2, . . . , m} and representation (α, D0, D1). Here α is the initial probability row vector and D0 +D1 is
the intensity matrix. We shall write D0 = (D0,ij)m

i,j=1 and D1 = (D1,ij)m
i,j=1. The claim number process

N = {Nt}t≥0 of a MAP is controlled by J as follows:

(1) transition of J from state i to state j without any accompanying claim (where i 6= j) occurs at rate
D0,ij ≥ 0; and

(2) transition of J from state i to state j with an accompanying claim (with the possibility that i = j)
occurs at rate D1,ij ≥ 0.

Note that for D0 + D1 to be an intensity matrix, each diagonal element of D0 has to be negative and is
such that the sum of the elements on each row of D0 + D1 is zero. The bivariate Markov process (N, J)
is called Markovian arrival process. Although in the literature of applied probability, the abbreviation
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‘MAP’ is also used for Markovian arrival process, we will be using it to refer to the Markov additive
process that will be introduced below.

Let {Xk}∞k=1 be the sequence of individual claim severities which are positive continuous random
variables. It is assumed that the distribution of the claim severity is dependent on the states of the
environment process J immediately before and after transition of type (2). More precisely, whenever a
transition from i to j is accompanied by a claim, the resulting claim severity has density fij with mean
µij . For later use, we let f(x) = (fij(x))m

i,j=1. In order to account for small fluctuations of the insurer’s
surplus, we shall use a Brownian motion with zero mean as perturbation. Whenever J is in state i, we
assume that the insurer collects premium at rate ci > 0 and the diffusion volatility is σi > 0. Under these
assumptions, the surplus process U∞ = {U∞

t }t≥0 is defined as

U∞
t = u +

∫ t

0
cJsds−

Nt∑

k=1

Xk +
∫ t

0
σJsdBs, t ≥ 0. (1.1)

Here u ≥ 0 is the initial surplus, and {Bt}t≥0 is a standard Brownian motion starting at zero which is
independent of other processes. The process U∞ is a spectrally negative Markov additive process (MAP).
For notational convenience, we write Pu,i{·} = P{·|U∞

0 = u, J0 = i} and Eu,i[·] = E[·|U∞
0 = u, J0 = i] for

i ∈ E and u ≥ 0. The time of ruin of the surplus process U∞ is defined by τ∞ = inf{t > 0 : U∞
t < 0}

with the convention inf{∅} = ∞. The net profit condition is given by

m∑

i=1

πi


ci −

m∑

j=1

D1,ijµij


 > 0, (1.2)

where (π1, π2, . . . , πm) is the stationary probability row vector of J . Condition (1.2) ensures that the
process (1.1) drifts to infinity in the long run (see e.g. Asmussen (2003, Corollaries 2.7 and 2.9)).
Throughout this paper, it is assumed that (1.2) holds.

The class of MAP risk processes (1.1) is known to be very general as it includes the classical compound
Poisson risk model (e.g. Asumssen and Albrecher (2010, Section IV)), the Markov-modulated risk process
(e.g. Asumssen (1989) and Lu and Tsai (2007)), the semi-Markovian model by Albrecher and Boxma
(2005), and renewal risk process with phase-type inter-arrival times (e.g. Feng (2009a,b)) as special cases.
Recently, a lot of contributions have been made to the MAP risk model (with or without diffusion). For
example, Cheung and Landriault (2009, Section 4) studied a dividend barrier strategy in which the barrier
is allowed to depend on J ; whereas Zhang et al. (2011) investigated the absolute ruin problem under
debit interest. Moreover, Salah and Morales (2012) studied the Gerber-Shiu expected discounted penalty
function (Gerber and Shiu (1998)) in a more general spectrally negative MAP risk process; whereas
generalizations of the Gerber-Shiu function were analyzed by Cheung and Landriault (2010), Cheung
and Feng (2013), and Feng and Shimizu (2014). While the afore-mentioned papers involve analytic
derivations of the quantities of interest, we remark that MAP risk processes may also be studied using
a more probabilistic approach via connection to Markov-modulated fluid flow (MMFF) processes (e.g.
Badescu et al. (2005, 2007), Ahn and Badescu (2007), Ahn et al. (2007)).

In this paper, we shall implement a barrier type dividend strategy in the MAP risk process described
above. Recall that in the traditional dividend barrier strategy, the insurer pays dividends to its share-
holders immediately whenever the surplus process reaches a fixed barrier level if ruin has not yet occurred
(e.g. Gerber (1979), Lin et al. (2003) and Gerber and Shiu (2004)). However, when the surplus process
contains a diffusion component, dividend payments may occur many times in a small time interval due
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to the existence of small fluctuations. Following the ideas as in Albrecher et al. (2011), one way to
get around this problem is to assume that decisions are only made at discrete time points on whether
lump sum dividend payments are paid. More specifically, we let {Zi}∞i=1 be the sequence of dividend
decision times. At time Zi, if the surplus level x is larger than a given barrier b > 0, then a lump sum
dividend payment of size x− b is paid to the shareholders of the insurance company. To give the mathe-
matical descriptions of the modified surplus process U b = {U b

t }t≥0 with dividends, the auxiliary process
U∗

i = {U∗
i (t)}t≥0 is introduced for i = 1, 2, . . .. The dynamics of U b and U∗

i can be jointly described
recursively via

U∗
i (t) =

{
U∞

t , i = 1; t ≥ 0,

U b
Zi−1

+
∫ t
Zi−1

cJsds−∑Nt
k=NZi−1

+1 Xk +
∫ t
Zi−1

σJsdBs, i = 2, 3, . . . ; t ≥ Zi−1,

and for i = 1, 2, . . .,

U b
t =

{
U∗

i (t), Zi−1 < t < Zi,
min(U∗

i (Zi), b), t = Zi.

Without loss of generality, it is assumed that Z0 = 0− in the above definition, and therefore U b
0 = u even

if U∞
0 = u > b. This means that time 0 is not assumed to be a dividend decision time. Unlike Albrecher

et al. (2011, 2013) who assumed that the event of ruin is only checked at the times {Zi}∞i=1, Zhang
(2014) studied a variant of the model where solvency is monitored continuously as in the traditional case
(see also Avanzi et al. (2013) for the corresponding variant in a dual risk model). We shall adopt the
traditional definition of ruin in the sense that the surplus process is stopped immediately once it drops
below zero. Hence, the time of ruin of U b is defined by τ b = inf{t > 0 : U b

t < 0}. Let T1 = Z1 be the
first dividend decision time, and Ti = Zi − Zi−1 be the ith inter-dividend-decision time (i.e. the interval
between the (i − 1)th and the ith dividend decision times) for i = 2, 3, . . .. For the rest of the paper, it
is assumed that {Ti}∞i=1 forms a sequence of independent and identically distributed random variables
distributed as T with the Erlang(n) density

fT (t) =
βntn−1e−βt

(n− 1)!
, t > 0.

Here n is the shape parameter which is a positive integer, and β > 0 is the scale parameter. It is
assumed that {Ti}∞i=1 is independent of all the attributes of the barrier-free process U∞. The choice
of the Erlang(n) distribution is motivated by the Erlangization techniques proposed by Asmussen et al.
(2002) in solving finite-time ruin problems (see also e.g. Stanford et al. (2005, 2011) and Ramaswami
et al. (2008)). Indeed, if we fix the mean E[T ] = n/β = h and increase n (and β as well), then T
converges in distribution to a point mass at h. Hence, one can approximate the situation where the
inter-dividend-decision times are deterministic.

The Gerber-Shiu expected discounted penalty function, or Gerber-Shiu function in short, has been
analyzed extensively in increasingly complex risk models since its introduction by Gerber and Shiu (1998).
It unifies the study of various ruin-related quantities such as the time of ruin and the deficit at ruin. In
this paper, we are interested in the Gerber-Shiu function pertaining to U b defined as (given initial state
i ∈ E and initial surplus u ≥ 0)

φi(u; b) = Eu,i[e−δτb
w(|U b

τb |)]. (1.3)

Here δ ≥ 0 can be interpreted as the force of interest or the Laplace transform argument with respect to
τ b, and w : [0,∞) → [0,∞) is the so-called penalty function that depends on the deficit at ruin |U b

τb |.
It is assumed that w satisfies some mild integrability conditions. Note that the indicator of the event
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{τ b < ∞} is not necessary in the definition (1.3), since ruin occurs almost surely as the surplus can never
exceed level b at the dividend decision times. Because of the perturbation, ruin may occur due to a claim
or by diffusion. Thus, one may rewrite (1.3) as (e.g. Gerber and Landry (1998) and Tsai and Willmot
(2002))

φi(u; b) = w(0)Eu,i[e−δτb
1{Ub

τb=0}] + Eu,i[e−δτb
w(|U b

τb |)1{Ub
τb<0}], (1.4)

where 1A stands for the indicator function of the event A. It is clear from (1.4) that if we are only
interested in the contribution by ruin due to diffusion, one can simply let w(y) = 0 for y > 0. In contrast,
the case where ruin is caused by a claim can be retrieved by letting w(0) = 0. For later use, we also
let φi(u;∞) be the Gerber-Shiu function associated with the barrier-free model U∞. Another quantity
of interest in this paper is the expected discounted dividends paid until ruin defined by (for a force of
interest of δ > 0)

Vi(u; b) = Eu,i

[ ∞∑

i=1

e−δZi(U b
Zi− − b)+1{Zi<τb}

]
, (1.5)

where a+ = max(a, 0). In the corporate finance literature, the expectation of the present value of
dividends represents the value of the firm. Therefore, under the current barrier type dividend strategy,
the shareholders’ interest would be to find the optimal barrier b∗ that maximizes Vi(u; b) with respect to
b.

The remainder of this paper is structured as follows. In Section 2, some preliminary results and
notations that will be used throughout are presented. Expressions for the Gerber-Shiu function (1.3) and
the expected discounted dividends (1.5) are derived in Sections 3 and 4 respectively using Markov renewal
equations. Examples along with numerical illustrations are then given in Section 5. The Appendix is
concerned with the proofs of the continuity and smooth pasting conditions required in the derivations.

2 Preliminaries

In this paper, matrix notations will be used extensively. We shall use O to denote the zero matrix or
vector with appropriate dimension known from the context. For a positive integer k, let Ek be the identity
matrix of dimension k, and ek be a column vector of ones with length k. For two arbitrary square matrices
A = (aij)k

i,j=1 and B = (bij)k
i,j=1, the Hadamard product (i.e. entrywise multiplication) is defined as

A ◦ B = (aijbij)k
i,j=1. The notation A> denotes the transpose of a matrix or vector A. In addition,

we denote the Laplace transform of a function defined on [0,∞) (which is not necessarily a probability
density) by adding a hat on it. For example, for <(s) ≥ 0, one has f̂ij(s) =

∫∞
0 e−sxfij(x)dx. Any integral

with respect to a matrix-valued function is taken element-wise. For example, f̂(s) =
∫∞
0 e−sxf(x)dx =

(f̂ij(s))m
i,j=1.

The notion of the matrix Dickson-Hipp operator plays an important part in our analysis. The matrix
version of the Dickson-Hipp operator was first introduced by Feng (2009b) as an extension of the classical
scalar counterpart proposed by Dickson and Hipp (2001). For a square matrix A having eigenvalues on
the right-half of the complex plane, the matrix Dickson-Hipp operator TA is defined as

TAh(x) =
∫ ∞

x
e−A(y−x)h(y)dy =

∫ ∞

0
e−Ayh(x + y)dy, x ≥ 0, (2.1)

where h is a matrix-valued function with appropriate dimension (such that the multiplication Ah makes
sense) satisfying some integrability conditions (such that the above integral exists). When A reduces
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to a scalar r with non-negative real part, then Tr is the classical Dickson-Hipp operator. If x = 0 and
A = sEk for <(s) ≥ 0 and some positive integer k such that Ekh makes sense, then (2.1) is equivalent
to the Laplace transform of h with argument s, namely ĥ(s). An appealing property of the (matrix)
Dickson-Hipp operator is the commutative property. In particular, if the square matrices A1 and A2

commute (i.e. A1A2 = A2A1) and A1 −A2 is nonsingular, then Feng (2009b, Lemma 2.1) showed that

TA1TA2h(x) = TA2TA1h(x) = (A1 −A2)−1(TA2h(x)− TA1h(x)), x ≥ 0. (2.2)

Whenever a function under consideration has two arguments u and b, any derivative, Laplace transform
or Dickson-Hipp operator is assumed to be taken with respect to the first argument u by default.

Next, we introduce some preliminaries on MAP. Let ∆σ2 = diag(σ2
1, . . . , σ

2
m) and ∆c = diag(c1, . . . , cm).

From Asmussen (2003, Proposition XI.2.2), the matrix cumulant generating function of U∞ is given by

G(s) =
1
2
s2∆σ2 + s∆c + D0 + D1 ◦ f̂(s)

for s ∈ C such that the integral in the last term exists. Note that G(s) is well defined at least for
<(s) ≥ 0. There exists a matrix Qγ that satisfies, for a given γ ≥ 0,

1
2
Q2

γ∆σ2 + Qγ∆c − γEm + D0 +
∫ ∞

0
e−Qγx(D1 ◦ f(x))dx = O. (2.3)

The existence of Qγ is known from Breuer (2008, Theorems 1 and 2) and Feng and Shimizu (2014, Lemma
3.2); whereas the relation of Qγ to the intensity matrix of the time-reversed version of the MAP risk
model has been discussed by e.g. Zhang et al. (2011, Section 3) and Salah and Morales (2012, Section 4).
In particular, the matrix Qγ can be computed using either an iterative approach (Breuer (2008, Theorem
2)) or the more well-known eigenvalue/eigenvector method (e.g. Zhang et al. (2011, Lemma 1), and
Cheung and Feng (2013, Appendix)). We shall describe the latter method which is indeed linked to the
more classical form of the Lundberg’s equation (in ξ), namely

det(G(ξ)− γEm) = 0. (2.4)

It follows from Feng and Shimizu (2014, Lemma 3.2) that the above equation has exactly m roots with
non-negative real parts. These roots are denoted by ργ,1, . . . , ργ,m. Throughout this paper, we suppose
that Qγ is diagonalizable. A sufficient condition for Qγ to be diagonalizable is that ργ,1, . . . , ργ,m are
distinct. Then Qγ admits the representation Qγ = B−1

γ ∆ργBγ (see Zhang et al. (2011, Lemma 1)).
Here ∆ργ = diag(ργ,1, . . . , ργ,m) is the matrix of eigenvalues and Bγ = (b>γ,1, . . . , b

>
γ,m)> is the matrix

containing the corresponding eigenvectors. In particular, for each fixed i = 1, 2, . . . , m, the left eigenvector
bγ,i is a non-trivial solution of the equation (in b)

b[G(ργ,i)− γEm] = O.

It is instructive to note that since the situations in which there are multiple roots to the Lundberg’s
equation (2.4) are rare, the diagonalizability assumption imposed on Qγ is not restrictive. Interested
readers are referred to Ji and Zhang (2012) for the treatment of risk models with multiple Lundberg’s
roots.

3 The Gerber-Shiu function

This section aims at deriving the solution to the Gerber-Shiu function. Note that the Erlang(n) inter-
dividend-decision time T can be regarded as the sum of n independent and identically distributed ex-
ponential variables. To ease our analysis, for k = 1, 2, . . . , n we define φk,i(u; b) to be the Gerber-Shiu
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function under the same conditions as φi(u; b), except that the time until the first (not between all)
dividend decision time is Erlang(n−k +1) distributed. Obviously, one has that φi(u; b) = φ1,i(u; b). The
introduction of these auxiliary functions will enable us to capture the underlying phase-type structure of
the problem.

3.1 System of integro-differential equations

We can start by considering the competition between the state transition of J and the phase transition
of the first dividend decision time over a very small time interval [0, h] for i ∈ E and u > 0. For
k = 1, 2, . . . , n− 1, no dividends will be payable within the interval and one has

φk,i(u; b) = (1− (−D0,ii + β)h)e−δhE [φk,i(u + cih + σiBh; b)] +
m∑

j=1,j 6=i

D0,ijhe−δhE [φk,j(u + cih + σiBh; b)]

+
m∑

j=1

D1,ijhe−δhE [γk,ij(u + cih + σiBh; b) + ωij(u + cih + σiBh)]

+ βhe−δhE [φk+1,i(u + cih + σiBh; b)] + o(h), (3.1)

where γk,ij(u; b) =
∫ u
0 φk,j(u − x; b)fij(x)dx and ωij(u) =

∫∞
u w(x − u)fij(x)dx. Applying Taylor’s

expansion to (3.1), dividing by h, letting h → 0 and rearranging terms, we obtain

0 =
σ2

i

2
φ′′k,i(u; b) + ciφ

′
k,i(u; b)− (δ + β)φk,i(u; b) +

m∑

j=1

D0,ijφk,j(u; b) +
m∑

j=1

D1,ij(γk,ij(u; b) + ωij(u))

+ βφk+1,i(u; b), k = 1, 2, . . . , n− 1. (3.2)

For k = n, the analysis is essentially the same, except that dividends will be paid if the surplus is above
b when the first dividend decision time occurs. This leads us to

0 =
σ2

i

2
φ′′n,i(u; b) + ciφ

′
n,i(u; b)− (δ + β)φn,i(u; b) +

m∑

j=1

D0,ijφn,j(u; b) +
m∑

j=1

D1,ij(γn,ij(u; b) + ωij(u))

+ β(φ1,i(u; b)1{0<u≤b} + φ1,i(b; b)1{u>b}). (3.3)

Define φk(u; b) = (φk,1(u; b), . . . , φk,m(u; b))> for k = 1, 2, . . . , n. The integro-differential equations (3.2)
and (3.3) can then be rewritten in matrix form as

O =
(

1
2
∆σ2

d2

du2
+ ∆c

d

du
− (δ + β)Em + D0

)
φk(u; b) +

∫ u

0
(D1 ◦ f(x))φk(u− x; b)dx + βφk+1(u; b)

+ ζ(u), k = 1, 2, . . . , n− 1, (3.4)

and

O =
(

1
2
∆σ2

d2

du2
+ ∆c

d

du
− (δ + β)Em + D0

)
φn(u; b) +

∫ u

0
(D1 ◦ f(x))φn(u− x; b)dx + βφ1(u; b)1{0<u≤b}

+ βφ1(b; b)1{u>b} + ζ(u), (3.5)

where ζ(u) = (D1 ◦ ω(u))em and ω(u) = (ωij(u))m
i,j=1.

A trivial boundary condition for the system comprising (3.4) and (3.5) is given by

φk(0; b) = w(0)em, k = 1, 2, . . . , n, (3.6)
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since ruin occurs immediately with zero initial surplus. In addition, we assert that the continuity condition

φk(b−; b) = φk(b+; b), k = 1, 2, . . . , n, (3.7)

and the smooth pasting condition

φ′k(b−; b) = φ′k(b+; b), k = 1, 2, . . . , n, (3.8)

hold at the barrier b . See Appendix for further discussions of (3.7) and (3.8).

3.2 The case 0 < u < b

In this subsection, we will solve (3.4) and (3.5) when 0 < u < b apart from some unknown constants.
Using the notion of Kronecker product, we define the square matrices ∆̃σ2 = En⊗∆σ2 , ∆̃c = En⊗∆c,
D̃1 = En ⊗D1, f̃(x) = En ⊗ f(x), and

D̃0 =




D0 − βEm βEm O · · · O
O D0 − βEm βEm · · · O
...

...
. . . . . .

...
O O O · · · βE

βEm O O · · · D0 − βEm




,

all of dimension mn. (The above matrix is understood to be D0 when n = 1.) Further define the column
vectors φ(u; b) = (φ>1 (u; b), . . . , φ>n (u; b))> and ζ(u) = en ⊗ ζ(u). Then (3.4) and (3.5) can be neatly
combined to yield
(

1
2
∆̃σ2

d2

du2
+ ∆̃c

d

du
− δEmn + D̃0

)
φ(u; b) +

∫ u

0
(D̃1 ◦ f̃(x))φ(u− x; b)dx + ζ(u) = O, 0 < u < b,

(3.9)
which is a non-homogeneous matrix integro-differential equation. From the theory of integro-differential
equations, the general solution of (3.9) can be expressed in terms of one of its particular solution plus
a fundamental set of solutions of the homogeneous system. Hence we first identify a particular solution
as follows. Define φ(u;∞) = (φ1(u;∞), . . . , φm(u;∞))> for the barrier-free model U∞. Note that the
integro-differential equation satisfied by φ(u;∞) can be obtained from (3.5) by setting n = 1 and taking
the limit b →∞. Thus, we have

(
1
2
∆σ2

d2

du2
+ ∆c

d

du
− δEm + D0

)
φ(u;∞) +

∫ u

0
(D1 ◦ f(x))φ(u− x;∞)dx + ζ(u) = O, u > 0,

from which one can easily deduce that φ(u;∞) = en ⊗ φ(u;∞) is a particular solution of (3.9), i.e.

(
1
2
∆̃σ2

d2

du2
+ ∆̃c

d

du
− δEmn + D̃0

)
φ(u;∞) +

∫ u

0
(D̃1 ◦ f̃(x))φ(u− x;∞)dx + ζ(u) = O, u > 0.

(3.10)
Next, let vδ(u) be a vector valued function of length mn such that vδ(0) = O and it satisfies the
homogeneous version of (3.9), namely

(
1
2
∆̃σ2

d2

du2
+ ∆̃c

d

du
− δEmn + D̃0

)
vδ(u) +

∫ u

0
(D̃1 ◦ f̃(x))vδ(u− x)dx = O, u > 0. (3.11)
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By taking Laplace transforms on both sides of (3.11), we obtain
(

1
2
s2∆̃σ2 + s∆̃c − δEmn + D̃0 + D̃1 ◦ ̂̃

f(s)
)

v̂δ(s) =
1
2
∆̃σ2v′δ(0),

leading to

vδ(u) = Lδ(u)
(

1
2
∆̃σ2v′δ(0)

)
, u ≥ 0, (3.12)

where

Lδ(u) =




Lδ,1,1(u) · · · Lδ,1,n(u)
...

. . .
...

Lδ,n,1(u) · · · Lδ,n,n(u)


 = L−1

((
1
2
s2∆̃σ2 + s∆̃c − δEmn + D̃0 + D̃1 ◦ ̂̃

f(s)
)−1

)
.

(3.13)
Here each sub-matrix Lδ,i,j(u) is a square matrix of dimension m, and L−1 represents the inverse Laplace
transform operator.

Now, by taking the difference of (3.9) and (3.10), we note that φ(u; b)−φ(u;∞) satisfies (3.11) for 0 <
u < b. Moreover, using φ(0;∞) = w(0)emn and (3.6), it is clear that the condition φ(0; b)−φ(0;∞) = O
holds true. Thus, (3.12) implies that we must have

φ(u; b) = φ(u;∞) + Lδ(u)(k>1 , . . . , k>n )>, 0 ≤ u ≤ b, (3.14)

where k1, . . . ,kn are unknown column vectors of constants, each of length m, that are to be determined
later (as in (3.48)). It remains to derive exact expressions for φ(u;∞) and Lδ(u). The derivation relies
on the fact that

1
2
s2∆̃σ2 + s∆̃c + D̃0 + D̃1 ◦ ̂̃

f(s)

is the matrix cumulant generating function of a certain MAP with intensity matrix D̃0 + D̃1. Hence, it
follows from Section 2 (see (2.3)) that there exists a matrix Q̃δ (assumed to be diagonalizable) such that

1
2
Q̃

2
δ∆̃σ2 + Q̃δ∆̃c − δEmn + D̃0 +

∫ ∞

0
e−Q̃δx(D̃1 ◦ f̃(x))dx = O, (3.15)

and the eigenvalues of Q̃δ are all on the right-half of the complex plane. The solution to Lδ(u) is first
given in the next Proposition.

Proposition 1 Let

M̃ δ(u) =
∫ u

0
2∆̃

−1
σ2 e−(Q̃δ+2∆̃c∆̃

−1

σ2 )(u−x)eQ̃δxdx (3.16)

and
g̃δ(x) =

∫ x

0
2∆̃

−1
σ2 e−(Q̃δ+2∆̃c∆̃

−1

σ2 )(x−y)TQ̃δ
(D̃1 ◦ f̃(y))dy. (3.17)

Then we have
Lδ(u) = M̃ δ(u) +

∫ u

0
S̃δ(x)M̃ δ(u− x)dx, u ≥ 0, (3.18)

where

S̃δ(x) =
∞∑

i=1

g̃∗iδ (x). (3.19)

Here the i-fold convolution is defined recursively as g̃∗iδ (x) =
∫ x
0 g̃

∗(i−1)
δ (x − y)g̃δ(y)dy for i = 2, 3, . . .,

with the starting point g̃∗1δ (x) = g̃δ(x).
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Proof. Because the left-hand side of (3.15) represents a zero matrix by definition, by subtraction we
obtain

1
2
s2∆̃σ2 + s∆̃c − δEmn + D̃0 + D̃1 ◦ ̂̃

f(s)

=
1
2
((sEmn)2 − Q̃

2
δ)∆̃σ2 + (sEmn − Q̃δ)∆̃c +

∫ ∞

0
(e−sEmnx − e−Q̃δx)(D̃1 ◦ f̃(x))dx

= (sEmn − Q̃δ)
(

1
2
(sEmn + Q̃δ)∆̃σ2 + ∆̃c − TsEmnTQ̃δ

(D̃1 ◦ f̃(0))
)

, (3.20)

where the second step follows from the commutative property (2.2) of Dickson-Hipp operators. Note
from (3.13) that the matrix inverse of the above expression is the Laplace transform of Lδ(u), namely
L̂δ(s). Hence, by simple manipulations we have that

(
Emn −

(
1
2
(sEmn + Q̃δ)∆̃σ2 + ∆̃c

)−1

TsEmnTQ̃δ
(D̃1 ◦ f̃(0))

)
L̂δ(s)

=
(

1
2
(sEmn + Q̃δ)∆̃σ2 + ∆̃c

)−1

(sEmn − Q̃δ)
−1. (3.21)

Because (
1
2
(sEmn + Q̃δ)∆̃σ2 + ∆̃c

)−1

= 2∆̃
−1
σ2

(
sEmn + Q̃δ + 2∆̃c∆̃

−1
σ2

)−1
,

inverting the Laplace transforms with respect to s in (3.21) yields the Markov renewal equation

Lδ(u) =
∫ u

0
g̃δ(x)Lδ(u− x)dx + M̃ δ(u), u ≥ 0, (3.22)

where M̃ δ(u) and g̃δ(x) are defined in (3.16) and (3.17), respectively. The matrix
∫∞
0 g̃δ(x)dx is known

to be strictly substochastic (see Feng and Shimizu (2014, Appendix D)), and therefore (3.22) can be
regarded as a matrix version of defective renewal equation. By Markov renewal theory (e.g. Çinlar
(1969, Section 3a) or Asmussen (2003, Section VII.4)), the solution of (3.22) is given by (3.18).

We remark that the Gerber-Shiu function φ(u;∞) in the absence of dividends can in principle be
obtained from Feng and Shimizu (2014, Theorem 3.1 and Remark 5.1) via some tedious algebra. Nonethe-
less, the solution to φ(u;∞) is given in the next Proposition to keep this paper self-contained. We provide
a direct proof because some of the techniques will be used later on as well.

Proposition 2 Let

Z̃δ(u) = w(0)∆̃
−1
σ2 e−(Q̃δ+2∆̃c∆̃

−1

σ2 )u∆̃σ2emn +
∫ u

0
2∆̃

−1
σ2 e−(Q̃δ+2∆̃c∆̃

−1

σ2 )(u−x)TQ̃δ
ζ(x)dx. (3.23)

Then we have
φ(u;∞) = Z̃δ(u) +

∫ u

0
S̃δ(x)Z̃δ(u− x)dx, u ≥ 0, (3.24)

where S̃δ(x) is defined in (3.19).

Proof. Taking Laplace transforms in (3.10) along with the use of φ(0;∞) = w(0)emn gives
(

1
2
s2∆̃σ2 + s∆̃c − δEmn + D̃0 + D̃1 ◦ ̂̃

f(s)
)

φ̂(s;∞) =
1
2
∆̃σ2φ′(0;∞)+w(0)

(
1
2
s∆̃σ2 + ∆̃c

)
emn−ζ̂(s).

(3.25)
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Note that the term φ′(0;∞) appearing in the above equation is unknown. Following the same arguments
as in the proof of Theorem 2 in Zhang et al. (2011), we omit the straightforward algebra and obtain

O =
1
2
∆̃σ2φ′(0;∞) + w(0)

(
1
2
Q̃δ∆̃σ2 + ∆̃c

)
emn −

∫ ∞

0
e−Q̃δuζ(u)du. (3.26)

By subtraction and property (2.2) of Dickson-Hipp operators, the right-hand side of (3.25) can be rep-
resented as

1
2
∆̃σ2φ′(0;∞) + w(0)

(
1
2
s∆̃σ2 + ∆̃c

)
emn − ζ̂(s)

=
1
2
w(0)(sEmn − Q̃δ)∆̃σ2emn +

∫ ∞

0
(e−Q̃δu − e−sEmnu)ζ(u)du

= (sEmn − Q̃δ)
(

1
2
w(0)∆̃σ2emn + TsEmnTQ̃δ

ζ(0)
)

. (3.27)

Substitution of (3.20) and (3.27) into (3.25) yields
(

Emn −
(

1
2
(sEmn + Q̃δ)∆̃σ2 + ∆̃c

)−1

TsEmnTQ̃δ
(D̃1 ◦ f̃(0))

)
φ̂(s;∞)

=
(

1
2
(sEmn + Q̃δ)∆̃σ2 + ∆̃c

)−1 (
1
2
w(0)∆̃σ2emn + TsEmnTQ̃δ

ζ(0)
)

.

Upon Laplace transform inversion, this leads to the (defective) Markov renewal equation

φ(u;∞) =
∫ u

0
g̃δ(x)φ(u− x;∞)dx + Z̃δ(u), u ≥ 0,

with Z̃δ(u) defined in (3.23). Then the solution (3.24) follows immediately.

Remark 1 For a Markov additive risk process under the traditional dividend barrier strategy, Cheung
and Landriault (2009) provided the representations of the expected discounted dividends, the higher
moments of discounted dividends and the Gerber-Shiu function in their equations (11), (22) and (37),
respectively. These formulas were expressed in terms of a homogeneous solution (which the authors
denoted by vB(u)) and the barrier-free Gerber-Shiu function. However, general solutions for these two
components were not given. While the barrier-free Gerber-Shiu function can be obtained from our
Proposition 2 (with n = 1), the quantity vB(u) is related to the results in Proposition 1 (under n = 1)
via vB(u) = (1/2)Lδ(u)∆σ2 . ¤

3.3 The case u > b

In this subsection, we consider the case u > b for (3.4) and (3.5), which will eventually lead to the full
solution to φ(u; b) = (φ>1 (u; b), . . . ,φ>n (u; b))> for u ≥ 0 as in Theorem 1. When u > b, we note that for
k = 1, 2, . . . , n − 1 the equation (3.4) involves both φk(u; b) and φk+1(u; b); whereas (3.5) only involves
φn(u; b) as the unknown function. Therefore, our solution procedure is to solve (3.4) for φk(u; b) in terms
of φk+1(u; b) recursively for k = 1, 2, . . . , n− 1, with the starting point φn(u; b) obtained as the solution
of (3.5).
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First, by some straightforward calculations, we obtain (for <(s) > 0)
∫ ∞

b
e−sEm(u−b)

(
1
2
∆σ2

d2

du2
+ ∆c

d

du
− (δ + β)Em + D0

)
φk(u; b)du

=
(

1
2
s2∆σ2 + s∆c − (δ + β)Em + D0

)
TsEmφk(b; b)−

1
2
∆σ2φ′k(b; b)−

(
1
2
s∆σ2 + ∆c

)
φk(b; b).

Moreover, by a change of order of integrations, it can be shown that
∫ ∞

b
e−sEm(u−b)

∫ u

0
(D1 ◦ f(x))φk(u− x; b)dxdu

= (D1 ◦ f̂(s))TsEmφk(b; b) +
∫ b

0
(TsEm(D1 ◦ f(b− x)))φk(x; b)dx.

Hence, multiplying both sides of (3.4) by e−sEm(u−b) and performing integration with respect to u from
b to ∞ , we arrive at

(
1
2
s2∆σ2 + s∆c − (δ + β)Em + D0 + D1 ◦ f̂(s)

)
TsEmφk(b; b)

=
1
2
∆σ2φ′k(b; b) +

(
1
2
s∆σ2 + ∆c

)
φk(b; b)− βTsEmφk+1(b; b)− TsEmζ(b)

−
∫ b

0
(TsEm(D1 ◦ f(b− x))) φk(x; b)dx, k = 1, 2, . . . , n− 1. (3.28)

With the use of the matrix Qγ defined in Section 2 (under γ = δ + β), analogous to (3.20) one has
(

1
2
s2∆σ2 + s∆c − (δ + β)Em + D0 + D1 ◦ f̂(s)

)

= (sEm −Qδ+β)
(

1
2
(sEm + Qδ+β)∆σ2 + ∆c − TsEmTQδ+β

(D1 ◦ f(0))
)

. (3.29)

Similar to (3.26), the matrix Qδ+β can also be used to determine the condition

O =
1
2
∆σ2φ′k(b; b) +

(
1
2
Qδ+β∆σ2 + ∆c

)
φk(b; b)− βTQδ+β

φk+1(b; b)− TQδ+β
ζ(b)

−
∫ b

0

(
TQδ+β

(D1 ◦ f(b− x))
)

φk(x; b)dx, k = 1, 2, . . . , n− 1.

Thus, as in (3.27), the right-hand side of (3.28) can be expressed as

1
2
∆σ2φ′k(b; b) +

(
1
2
s∆σ2 + ∆c

)
φk(b; b)− βTsEmφk+1(b; b)− TsEmζ(b)

−
∫ b

0
(TsEm(D1 ◦ f(b− x))) φk(x; b)dx

= (sEm −Qδ+β)
(

1
2
∆σ2φk(b; b) + βTsEmTQδ+β

φk+1(b; b) + TsEmTQδ+β
ζ(b)

+
∫ b

0
(TsEmTQδ+β

(D1 ◦ f(b− x)))φk(x; b)dx

)
, k = 1, 2, . . . , n− 1. (3.30)
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Plugging (3.29) and (3.30) into (3.28) gives
(

Em −
(

1
2
(sEm + Qδ+β)∆σ2 + ∆c

)−1

TsEmTQδ+β
(D1 ◦ f(0))

)
TsEmφk(b; b)

=
(

1
2
(sEm + Qδ+β)∆σ2 + ∆c

)−1 (
1
2
∆σ2φk(b; b) + βTsEmTQδ+β

φk+1(b; b) + TsEmTQδ+β
ζ(b)

+
∫ b

0
(TsEmTQδ+β

(D1 ◦ f(b− x)))φk(x; b)dx

)
, k = 1, 2, . . . , n− 1. (3.31)

Using the fact that the Dickson-Hipp transform Tsh(b) can be regarded as the Laplace transform (with
argument s) of the shifted function h(b+ ·) (which extends to matrix quantities), one can perform Laplace
transform inversion in the above equation. Together with the application of (3.14) and the continuity
condition (3.7), this leads to

φk(b+u; b) =
∫ u

0
gδ+β(x)φk(b+u−x; b)dx+W φ,k(u)+Rφ,k(u)+

n∑

j=1

Hk,j(u)kj , k = 1, 2, . . . , n−1;u ≥ 0,

(3.32)
where

gδ+β(x) = 2∆−1
σ2

∫ x

0
e−(Qδ+β+2∆c∆

−1

σ2 )(x−y)TQδ+β
(D1 ◦ f(y))dy,

W φ,k(u) = 2β∆−1
σ2

∫ u

0
e−(Qδ+β+2∆c∆

−1

σ2 )(u−x)TQδ+β
φk+1(b + x; b)dx,

Rφ,k(u) = ∆−1
σ2 e−(Qδ+β+2∆c∆

−1

σ2 )u∆σ2φ(b;∞) + 2∆−1
σ2

∫ u

0
e−(Qδ+β+2∆c∆

−1

σ2 )(u−x)TQδ+β
ζ(b + x)dx

+ 2∆−1
σ2

∫ u

0
e−(Qδ+β+2∆c∆

−1

σ2 )(u−y)
∫ b

0
(TQδ+β

(D1 ◦ f(b + y − x)))φ(x;∞)dxdy, (3.33)

and

Hk,j(u) = ∆−1
σ2 e−(Qδ+β+2∆c∆

−1

σ2 )u∆σ2Lδ,k,j(b)

+ 2∆−1
σ2

∫ u

0
e−(Qδ+β+2∆c∆

−1

σ2 )(u−y)
∫ b

0
(TQδ+β

(D1 ◦ f(b + y − x)))Lδ,k,j(x)dxdy, j = 1, 2 . . . , n.

(3.34)

Clearly, (3.32) is a Markov renewal equation satisfied by φk(b + ·; b) (and again
∫∞
0 gδ+β(x)dx is strictly

substochastic). Note that the non-homogeneous term depends on φk+1(b + x; b) for x > 0 via W φ,k(u).
Upon defining the quantity Sδ+β(x) =

∑∞
i=1 g∗iδ+β(x) with the obvious definition of i-fold convolution,

by renewal theory and some tedious but straightforward calculations, we arrive at

φk(b + u; b) = W φ,k(u) + Rφ,k(u) +
n∑

j=1

Hk,j(u)kj

+
∫ u

0
Sδ+β(u− z)

(
W φ,k(z) + Rφ,k(z) +

n∑

j=1

Hk,j(z)kj

)
dz

=
∫ ∞

0
Zδ,β(u, y)φk+1(b + y; b)dy + Kφ,k(u) +

n∑

j=1

P k,j(u)kj , k = 1, 2, . . . , n− 1;u ≥ 0,

(3.35)
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where

Zδ,β(u, y) = 2β∆−1
σ2

∫ min(u,y)

0
e−(Qδ+β+2∆c∆

−1

σ2 )(u−x)e−Qδ+β(y−x)dx

+ 2β

∫ u

0

∫ min(z,y)

0
Sδ+β(u− z)∆−1

σ2 e−(Qδ+β+2∆c∆
−1

σ2 )(z−x)e−Qδ+β(y−x)dxdz, , (3.36)

Kφ,k(u) = Rφ,k(u) +
∫ u

0
Sδ+β(u− z)Rφ,k(z)dz, (3.37)

and
P k,j(u) = Hk,j(u) +

∫ u

0
Sδ+β(u− z)Hk,j(z)dz, j = 1, 2 . . . , n. (3.38)

Note from (3.33) that Rφ,1 ≡ Rφ,2 ≡ · · · ≡ Rφ,n−1 and therefore (3.37) implies Kφ,1 ≡ Kφ,2 ≡ · · · ≡
Kφ,n−1. We adopt the seemingly redundant subscript to ease presentation later on, as we consider the
case k = n next.

For k = n, multiplying both sides of (3.5) by e−sEm(u−b) and integrating from b to ∞ yields
(

1
2
s2∆σ2 + s∆c − (δ + β)Em + D0 + D1 ◦ f̂(s)

)
TsEmφn(b; b)

=
1
2
∆σ2φ′n(b; b) +

(
1
2
s∆σ2 + ∆c

)
φn(b; b)− βs−1φ1(b; b)− TsEmζ(b)

−
∫ b

0
(TsEm(D1 ◦ f(b− x)))φn(x; b)dx. (3.39)

We now look at the right-hand side of the above equation. Using the same arguments leading to (3.30)
and omitting the details, we obtain

1
2
∆σ2φ′n(b; b) +

(
1
2
s∆σ2 + ∆c

)
φn(b; b)− βs−1φ1(b; b)− TsEmζ(b)

−
∫ b

0
(TsEm(D1 ◦ f(b− x)))φn(x; b)dx

= (sEm −Qδ+β)
(

1
2
∆σ2φn(b; b) + β(sQδ+β)−1φ1(b; b) + TsEmTQδ+β

ζ(b)

+
∫ b

0
(TsEmTQδ+β

(D1 ◦ f(b− x)))φn(x; b)dx

)
.

This helps us convert (3.39) into
(

Em −
(

1
2
(sEm + Qδ+β)∆σ2 + ∆c

)−1

TsEmTQδ+β
(D1 ◦ f(0))

)
TsEmφn(b; b)

=
(

1
2
(sEm + Qδ+β)∆σ2 + ∆c

)−1 (
1
2
∆σ2φn(b; b) + β(sQδ+β)−1φ1(b; b) + TsEmTQδ+β

ζ(b)

+
∫ b

0
(TsEmTQδ+β

(D1 ◦ f(b− x)))φn(x; b)dx

)
. (3.40)

Similar to (3.32), inversion of Laplace transforms yields the defective Markov renewal equation

φn(b + u; b) =
∫ u

0
gδ+β(x)φn(b + u− x; b)dx + Rφ,n(u) +

n∑

j=1

Hn,j(u)kj , u ≥ 0, (3.41)
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where

Rφ,n(u) = ∆−1
σ2 e−(Qδ+β+2∆c∆

−1

σ2 )u∆σ2φ(b;∞) + 2β∆−1
σ2

∫ u

0
e−(Qδ+β+2∆c∆

−1

σ2 )xQ−1
δ+βφ(b;∞)dx

+ 2∆−1
σ2

∫ u

0
e−(Qδ+β+2∆c∆

−1

σ2 )(u−x)TQδ+β
ζ(b + x)dx

+ 2∆−1
σ2

∫ u

0
e−(Qδ+β+2∆c∆

−1

σ2 )(u−y)
∫ b

0
(TQδ+β

(D1 ◦ f(b + y − x)))φ(x;∞)dxdy, (3.42)

and

Hn,j(u) = ∆−1
σ2 e−(Qδ+β+2∆c∆

−1

σ2 )u∆σ2Lδ,n,j(b) + 2β∆−1
σ2

∫ u

0
e−(Qδ+β+2∆c∆

−1

σ2 )xQ−1
δ+βLδ,1,j(b)dx

+ 2∆−1
σ2

∫ u

0
e−(Qδ+β+2∆c∆

−1

σ2 )(u−y)
∫ b

0
(TQδ+β

(D1 ◦ f(b + y − x)))Lδ,n,j(x)dxdy, j = 1, 2 . . . , n.

(3.43)

As a result, the application of Markov renewal theory gives

φn(b + u; b) = Kφ,n(u) +
n∑

j=1

P n,j(u)kj , u ≥ 0, (3.44)

where the definitions (3.37) and (3.38) are now extended to k = n.

Note that (3.35) for k = 1, 2, . . . , n − 1 forms an iterative system with the starting value given by
(3.44). By some straightforward algebra, one can put the iteration in nicer form as

φn−k+1(b + u; b) = Bφ,n−k+1(u) +
n∑

j=1

Cn−k+1,j(u)kj , k = 1, 2, . . . , n;u ≥ 0, (3.45)

where Bφ,n−k+1(u) and Cn−k+1,j(u) are evaluated recursively (for increasing k) as
{

Bφ,n(u) = Kφ,n(u),
Bφ,n−k+1(u) = Kφ,n−k+1(u) +

∫∞
0 Zδ,β(u, y)Bφ,n−k+2(y)dy, k = 2, 3, . . . , n,

(3.46)

and for each fixed j = 1, 2, . . . , n,
{

Cn,j(u) = P n,j(u).
Cn−k+1,j(u) = P n−k+1,j(u) +

∫∞
0 Zδ,β(u, y)Cn−k+2,j(y)dy, k = 2, 3, . . . , n.

(3.47)

Furthermore, setting Bφ(u) = (B>
φ,1(u), . . . , B>

φ,n(u))> and

C(u) =




C1,1(u) · · · C1,n(u)
...

. . .
...

Cn,1(u) · · · Cn,n(u)


 ,

(3.45) can be rewritten as

φ(b + u; b) = Bφ(u) + C(u)(k>1 , . . . ,k>n )>, u ≥ 0.
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Except for (k>1 , . . . ,k>n )>, the above equation gives the exact solution for the Gerber-Shiu function in
the upper layer. The unknown vector (k>1 , . . . , k>n )> can be obtained using the smooth pasting condition
(3.8) together with (3.14), giving

(k>1 , . . . ,k>n )> =
(
L′δ(b)−C ′(0)

)−1 (
B′

φ(0)− φ′(b;∞)
)
. (3.48)

The main results of this section are summarized in the following Theorem.

Theorem 1 Suppose that the matrices Q̃δ and Qδ+β are diagonalizable. Then

φ(u; b) = φ(u;∞) + Lδ(u)
(
L′δ(b)−C ′(0)

)−1 (
B′

φ(0)− φ′(b;∞)
)
, 0 ≤ u ≤ b, (3.49)

and

φ(u; b) = Bφ(u− b) + C(u− b)
(
L′δ(b)−C ′(0)

)−1 (
B′

φ(0)− φ′(b;∞)
)
, u > b. (3.50)

In particular, the Gerber-Shiu function φ(u; b) can be computed by the following procedure.

• Step 1: Compute the matrices Q̃δ and Qδ+β using one of the methods discussed in Section 2.

• Step 2: Compute Lδ(u) and φ(u;∞) by Propositions 1 and 2, respectively.

• Step 3: Compute Rφ,k(u) by (3.33) and (3.42); and Hk,j(u) by (3.34) and (3.43).

• Step 4: Compute Zδ,β(u, y) by (3.36); and Kφ,k(u) and P k,j(u) by (3.37) and (3.38), respectively.

• Step 5: Compute Bφ,k(u) and Ck,j(u) recursively via (3.46) and (3.47), respectively.

• Step 6: Compute φ(u; b) via (3.49) and (3.50).

Remark 2 If one is interested in the limit behavior of the Gerber-Shiu function as u → ∞, it suffices
to consider the case u > b. Applying the Final Value Theorem for Laplace transforms, we have

lim
u→∞φk(u; b) = lim

u→∞φk(b + u; b) = lim
s→0

sTsEmφk(b; b).

Hence, application of (3.28) gives the iterative expression

lim
s→0

sTsEmφk(b; b) =

(
lim
s→0

(
1
2
s2∆σ2 + s∆c − (δ + β)Em + D0 + D1 ◦ f̂(s)

)−1
)

×
(

lim
s→0

s

(
1
2
∆σ2φ′k(b; b) +

(
1
2
s∆σ2 + ∆c

)
φk(b; b)− βTsEmφk+1(b; b)− TsEmζ(b)

−
∫ b

0
(TsEm(D1 ◦ f(b− x))) φk(x; b)dx

))

= β ((δ + β)Em −D0 −D1)
−1 lim

s→0
sTsEmφk+1(b; b), k = 1, 2, . . . , n− 1.

Similarly, (3.39) leads to the starting point

lim
s→0

sTsEmφn(b; b) = β ((δ + β)Em −D0 −D1)
−1 φ1(b; b).

Combining all the above, we arrive at the asymptotic formula, for each k = 1, 2, . . . , n,

φk(u; b) ∼ βn−k+1 ((δ + β)Em −D0 −D1)
−(n−k+1) φ1(b; b) as u →∞. (3.51)
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It can be verified that∫ ∞

0
e−δtfT (t)e(D0+D1)tdt = βn ((δ + β)Em −D0 −D1)

−n .

The (i, j)th element of the above expression is E[e−δT1{JT =j}|J0 = i], namely the expected present value
of a dollar payable at the first dividend decision time T1 if J is in state j at time T1, given that J starts
in state i. Then (3.51) at k = 1 can be interpreted probabilistically as follows. Suppose J0 = i. When
the initial surplus U b

0 = u is very large, it is highly likely that the surplus process U b is above b at time
T1 (before dividends) and ruin has not occurred in the interim, regardless of the initial environmental
state J0 = i. If J is in state j at time T1, this first gives rise to the discount factor E[e−δT1{JT =j}|J0 = i]
from time T1 to time 0. Then the payment of dividend will cause the surplus to drop to the level b, from
which the expected discounted penalty onward is φ1,j(b; b). Since the state j is arbitrary, summing over
j explains (3.51) at k = 1. Similarly, (3.51) for k = 2, 3, . . . can be interpreted by replacing T1 with an
Erlang(n − k + 1) random variable in the above arguments. See Avanzi et al. (2013, Remark 2.3) for
related intuitions in the context of a dual risk model. ¤

4 Expected present value of dividends paid until ruin

This section is concerned with the full solution to the dividend function Vi(u; b) defined by (1.5). Since
the derivations closely resemble those in Section 3, we mostly present the key steps involved with omission
of some algebraic details. As in Section 3, we define Vk,i(u; b) (for k = 1, 2, . . . , n) to be the expected
present value of total dividends paid until ruin, given that the time until the first dividend decision time is
distributed as Erlang(n− k +1). Clearly, Vi(u; b) = V1,i(u; b). Let V k(u; b) = (Vk,1(u; b), . . . , Vk,m(u; b))>

for k = 1, 2, . . . , n. Then, applying the same arguments used to obtain (3.4) and (3.5), we arrive at the
matrix integro-differential equations

O =
(

1
2
∆σ2

d2

du2
+ ∆c

d

du
− (δ + β)Em + D0

)
V k(u; b) +

∫ u

0
(D1 ◦ f(x))V k(u− x; b)dx + βV k+1(u; b),

k = 1, 2, . . . , n− 1, (4.1)

and

O =
(

1
2
∆σ2

d2

du2
+ ∆c

d

du
− (δ + β)Em + D0

)
V n(u; b) +

∫ u

0
(D1 ◦ f(x))V n(u− x; b)dx + βV 1(u; b)1{0<u≤b}

+ β ((u− b)em + V 1(b; b))1{u>b}. (4.2)

One has the trivial boundary condition

V k(0; b) = O, k = 1, 2, . . . , n, (4.3)

as well as the continuity and the smooth pasting conditions given by

V k(b−; b) = V k(b+; b), k = 1, 2, . . . , n, (4.4)

and
V ′

k(b−; b) = V ′
k(b+; b), k = 1, 2, . . . , n. (4.5)

Setting V (u; b) = (V >
1 (u; b), . . . ,V >

n (u; b))>, (4.1) and (4.2) in the lower layer can be collectively written
as (

1
2
∆̃σ2

d2

du2
+ ∆̃c

d

du
− δEmn + D̃0

)
V (u; b) +

∫ u

0
(D̃1 ◦ f̃(x))V (u− x; b)dx = O, 0 < u < b.
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With the boundary condition (4.3), it follows from Section 3.2 that

V (u; b) = Lδ(u)(y>1 , . . . ,y>n )>, 0 ≤ u ≤ b, (4.6)

where y1, . . . ,yn are m-dimensional column vectors to be determined. For u > b, multiplying (4.1) and
(4.2) by e−sEm(u−b) and integrating from b to ∞, we obtain

(
1
2
s2∆σ2 + s∆c − (δ + β)Em + D0 + D1 ◦ f̂(s)

)
TsEmV k(b; b)

=
1
2
∆σ2V ′

k(b; b) +
(

1
2
s∆σ2 + ∆c

)
V k(b; b)− βTsEmV k+1(b; b)−

∫ b

0
(TsEm(D1 ◦ f(b− x)))V k(x; b)dx,

k = 1, 2, . . . , n− 1, (4.7)

and
(

1
2
s2∆σ2 + s∆c − (δ + β)Em + D0 + D1 ◦ f̂(s)

)
TsEmV n(b; b)

=
1
2
∆σ2V ′

n(b; b) +
(

1
2
s∆σ2 + ∆c

)
V n(b; b)− βs−1V 1(b; b)− βs−2em

−
∫ b

0
(TsEm(D1 ◦ f(b− x)))V n(x; b)dx. (4.8)

Remark 3 As a by-product of (4.7) and (4.8), analogous to (3.51) we can obtain the asymptotic result,
for each k = 1, 2, . . . , n,

V k(u; b) ∼ βn−k+1 ((δ + β)Em −D0 −D1)
−(n−k+1) emu as u →∞. (4.9)

The above formula can be interpreted as in Remark 2. See also Avanzi et al. (2013, Remark 3.2). ¤

Following the same steps used to transform (3.28) and (3.39) to (3.31) and (3.40), equations (4.7)
and (4.8) respectively become

(
Em −

(
1
2
(sEm + Qδ+β)∆σ2 + ∆c

)−1

TsEmTQδ+β
(D1 ◦ f(0))

)
TsEmV k(b; b)

=
(

1
2
(sEm + Qδ+β)∆σ2 + ∆c

)−1 (
1
2
∆σ2V k(b; b) + βTsEmTQδ+β

V k+1(b; b)

+
∫ b

0
(TsEmTQδ+β

(D1 ◦ f(b− x)))V k(x; b)dx

)
, k = 1, 2, . . . , n− 1, (4.10)

and
(

Em −
(

1
2
(sEm + Qδ+β)∆σ2 + ∆c

)−1

TsEmTQδ+β
(D1 ◦ f(0))

)
TsEmV n(b; b)

=
(

1
2
(sEm + Qδ+β)∆σ2 + ∆c

)−1 (
1
2
∆σ2V n(b; b) + β(sQδ+β)−1V 1(b; b) + βs−1Q−2

δ+βem + βs−2Q−1
δ+βem

+
∫ b

0
(TsEmTQδ+β

(D1 ◦ f(b− x)))V n(x; b)dx

)
. (4.11)
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Upon inversion of Laplace transforms in (4.10) along with the use of the representation (4.6) and the
continuity condition (4.4), we obtain the defective Markov renewal equation

V k(b + u; b) =
∫ u

0
gδ+β(x)V k(b + u− x; b)dx + W V,k(u) +

n∑

j=1

Hk,j(u)yj , k = 1, 2, . . . , n− 1;u ≥ 0,

(4.12)
where Hk,j(u) is defined in (3.34), and

W V,k(u) = 2β∆−1
σ2

∫ u

0
e−(Qδ+β+2∆c∆

−1

σ2 )(u−x)TQδ+β
V k+1(b + x; b)dx.

Similarly, (4.11) leads to

V n(b + u; b) =
∫ u

0
gδ+β(x)V n(b + u− x; b)dx + RV (u) +

n∑

j=1

Hn,j(u)yj , u ≥ 0, (4.13)

where Hn,j(u) is given by (3.43), and

RV (u) = 2β∆−1
σ2

∫ u

0
e−(Qδ+β+2∆c∆

−1

σ2 )xQ−2
δ+βemdx + 2β∆−1

σ2

∫ u

0
e−(Qδ+β+2∆c∆

−1

σ2 )(u−x)xQ−1
δ+βemdx.

(4.14)
It is instructive to note that (4.12) and (4.13) are structurally similar to (3.32) and (3.41), respectively.
Consequently, in parallel to (3.35) and (3.44), their solutions are

V k(b + u; b) =
∫ ∞

0
Zδ,β(u, y)V k+1(b + y; b)dy +

n∑

j=1

P k,j(u)yj , k = 1, 2, . . . , n− 1;u ≥ 0, (4.15)

and

V n(b + u; b) = KV (u) +
n∑

j=1

P n,j(u)yj u ≥ 0. (4.16)

Here the function P k,j(u) has the same definition as in (3.38), and

KV (u) = RV (u) +
∫ u

0
Sδ+β(u− x)RV (x)dx. (4.17)

On the grounds of the iterative system that consists of (4.15) and (4.16), we obtain

V n−k+1(b + u; b) = BV,n−k+1(u) +
n∑

j=1

Cn−k+1,j(u)yj , k = 1, 2, . . . , n; u ≥ 0, (4.18)

where Cn−k+1,j(u) follows the definition (3.47), and BV,n−k+1(u) can be computed recursively via
{

BV,n(u) = KV (u).
BV,n−k+1(u) =

∫∞
0 Zδ,β(u, y)BV,n−k+2(y)dy, k = 2, 3, . . . , n.

(4.19)

Letting BV (u) = (B>
V,1(u), . . . , B>

V,n(u))>, we can rewrite (4.18) as

V (b + u; b) = BV (u) + C(u)(y>1 , . . . ,y>n )>, u ≥ 0.

Finally, we further apply (4.6) and the smooth pasting condition (4.5) to determine the unknown vector
as

(y>1 , . . . , y>n )> =
(
L′δ(b)−C ′(0)

)−1
B′

V (0).

We summarize the main results in the following Theorem.
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Theorem 2 Suppose that the matrices Q̃δ and Qδ+β are diagonalizable. Then

V (u; b) = Lδ(u)
(
L′δ(b)−C ′(0)

)−1
B′

V (0), 0 ≤ u ≤ b, (4.20)

and
V (u; b) = BV (u− b) + C(u− b)

(
L′δ(b)−C ′(0)

)−1
B′

V (0), u > b. (4.21)

In particular, the expected discounted dividends paid until ruin V (u; b) can be computed by the following
procedure.

• Step 1: Compute the matrices Q̃δ and Qδ+β using one of the methods discussed in Section 2.

• Step 2: Compute Lδ(u) by Proposition 1.

• Step 3: Compute RV (u) by (4.14); and Hk,j(u) by (3.34) and (3.43).

• Step 4: Compute Zδ,β(u, y) by (3.36); and KV (u) and P k,j(u) by (4.17) and (3.38), respectively.

• Step 5: Compute BV,k(u) and Ck,j(u) recursively via (4.19) and (3.47), respectively.

• Step 6: Compute V (u; b) via (4.20) and (4.21).

5 Numerical examples

5.1 Brownian motion risk model

In this subsection, we consider the Brownian motion risk model (i.e. m = 1 and there are no claims at
all). Writing c = c1 and σ1 = σ, the cumulant generating function of the barrier-free process U∞ is given
by

1
t

lnE[esU∞t ] =
1
2
σ2s2 + cs.

Since there is only one environmental state, we also let φ(u; b) = φ1(u; b) and V (u; b) = V1(u; b). Note
that ruin can only be caused by diffusion because there are no claims. Hence, without loss of generality
we let w(0) = 1, and then φ(u; b) actually represents the Laplace transform of the time of ruin.

We first assume that the inter-dividend-decision times follow an exponential distribution, i.e. n = 1.
In this simplest case, the results for φ(u; b), V (u; b) and the optimal dividend barrier are very explicit.
For the Gerber-Shiu function φ(u; b), it follows from (3.5) that

1
2
σ2φ′′(u; b) + cφ′(u; b)− (δ + β)φ(u; b) + βφ(u; b)1{0<u≤b} + βφ(b; b)1{u>b} = 0.

Due to the simplicity of the problem, instead of using Theorem 1 one can proceed to solve the above
piecewise differential equation subject to the conditions

φ(0; b) = 1, φ(b−; b) = φ(b+; b), φ′(b−; b) = φ′(b+; b),

as well as the fact that φ(u; b) ≤ 1. Following similar notations as in Gerber and Shiu (2004), for γ ≥ 0
we define sγ < 0 and rγ ≥ 0 to be the roots of the quadratic equation (in ξ)

1
2
σ2ξ2 + cξ − γ = 0.
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Omitting the straightforward algebra, we arrive at

φ(u; b) =
(rδ − δ

δ+β sδ+β)e−sδ(b−u) − (sδ − δ
δ+β sδ+β)e−rδ(b−u)

(rδ − δ
δ+β sδ+β)e−sδb − (sδ − δ

δ+β sδ+β)e−rδb
, 0 ≤ u ≤ b, (5.1)

and

φ(u; b) = φ(b; b)
(

β

δ + β
+

δ

δ + β
esδ+β(u−b)

)
, u > b.

For the expected discounted dividends paid until ruin V (u; b), we obtain from (4.2) that

1
2
σ2V ′′(u; b) + cV ′(u; b)− (δ + β)V (u; b) + βV (u; b)1{0<u≤b} + β(u− b + V (b; b))1{u>b} = 0.

It can be solved using the conditions

V (0; b) = 0, V (b−; b) = V (b+; b), V ′(b−; b) = V ′(b+; b),

and the fact that V (u; b) is asymptotically linear in u (see Remark 3). This yields

V (u; b) =
β

δ+β (1− csδ+β

δ+β )(erδu − esδu)

(rδ − δ
δ+β sδ+β)erδb − (sδ − δ

δ+β sδ+β)esδb
, 0 ≤ u ≤ b, (5.2)

and

V (u; b) = V (b; b)
(

β

δ + β
+

δ

δ + β
esδ+β(u−b)

)
+

β

δ + β

(
u− b +

c

δ + β
(1− esδ+β(u−b))

)
, u > b. (5.3)

Apart from explicit expressions for φ(u; b) and V (u; b), we are also interested in the optimal dividend
barrier b∗ maximizing the dividend function V (u; b) with respect to b. All else being equal, on average
a lower (higher) barrier leads to more (less) dividends at early times but less (more) dividends in the
long run due to earlier (later) ruin. Hence, choosing b∗ can somehow be regarded as striking a balance
between the timing of dividend payments (because of discounting) and the total (non-discounted) amount
of dividends paid. The value of b∗ can be obtained by solving

∂

∂b
V (u; b) = 0.

From (5.2), one readily obtains

b∗ =
1

rδ − sδ
ln

sδ(sδ − δ
δ+β sδ+β)

rδ(rδ − δ
δ+β sδ+β)

, (5.4)

which maximizes V (u; b) as long as 0 ≤ u ≤ b∗. It can also be checked that the above b∗ is also a turning
point of the expression (5.3), and therefore it indeed maximizes V (u; b) for all u ≥ 0. In parallel to Avanzi
et al. (2013, Section 4.3) who considered the optimal barrier in a dual risk model with exponential jumps
in the absence of diffusion, we can verify that V ′(b∗; b∗) = 1. This leads to

∂

∂b
[u− b + V (b; b)]

∣∣∣
b=b∗

= 0.

The above equation means that the optimal barrier is still b∗ even if we declare time 0 to be a dividend
decision time.
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Remark 4 Since sδ+β = (−c −
√

c2 + 2σ2(δ + β))/σ2, it is clear that limβ→∞ sδ+β = −∞ and
limβ→∞ sδ+β/(δ + β) = 0. Thus, the limits of (5.1) and (5.2) as β → ∞ are identical to equations
(3.7) and (2.11) of Gerber and Shiu (2004), respectively. This is expected because the inter-dividend-
decision times tend to zero as β → ∞, and we are back to the traditional barrier strategy in which
dividend decisions are made continuously. Moreover, the optimal barrier (5.4) reduces to the one from
Gerber and Shiu (2004, equation (6.2)) at the limit. It can also be verified analytically that (5.4) is an
increasing concave function of β and the details are omitted here. ¤
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Figure 1: The Laplace transform of the time of ruin (a) as a function of u; and (b) as a function of b.
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Figure 2: The expected discounted dividends (a) as a function of u; and (b) as a function of b.

Based on the explicit formulas derived above, we look at a numerical example by setting c = 0.2,
σ2 = 0.3, δ = 0.01 and β = 0.05. Figures 1(a) and (b) show the behaviour of the Laplace transform
of the time of ruin φ(u; b) when either u or b varies. It can be seen that φ(u; b) is decreasing in both u
and b. This is because for larger initial surplus u or larger barrier level b, ruin is likely to happen at a
later time, and therefore the present value of a dollar payable at ruin is worth less. Note that for each
fixed b, the curve in Figure 1(a) flattens out as u increases, which can be attributed to the asymptotic
formula (3.51). Similarly, the plots of the expected discounted dividends V (u; b) with respect to u and b
are depicted in Figures 2(a) and (b). For each fixed b, Figure 2(a) illustrates that V (u; b) is an increasing
function of u, and the relationship is almost linear as u increases due to (4.9). However, from Figure
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2(b), for each fixed u the dividend function V (u; b) is first increasing and then decreasing in b, and there
is a unique optimal barrier b∗. In particular, the value of b∗ = 3.237 is independent of the initial surplus
u, which is consistent with our theoretical findings.
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Figure 3: The optimal dividend barrier b∗ as a function of β = 1/E[T ].

Next, we still retain the same parameters except that the value of β is varied in order to study its
impact on the optimal barrier b∗. In accordance with Remark 4, Figure 3 shows that b∗ is increasing
concave in β, converging to the classical optimal barrier of 4.692 as β →∞. When β increases, the inter-
dividend-decision times are shorter (since β = 1/E[T ]). If the barrier value remains the same, a larger
amount of early dividends would be paid at the expense of earlier ruin as dividend decisions are made
more frequently, shifting the balance between the timing and the total amount of dividend payments to
the former. Thus, the optimal barrier b∗ should increase to counterbalance the effect of larger β.
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Figure 4: The expected discounted dividends (a) as a function of u when b = 3; and (b) as a function of
b when u = 3.
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So far exponential inter-dividend-decision times have been assumed in this subsection. For general
Erlang(n) inter-dividend-decision times with n > 1, expressions for φ(u; b) and V (u; b) still involve ex-
ponential and linear functions in u and b only, but the optimal barrier b∗ can no longer be represented
in explicit form. Instead of directly solving ordinary differential equations, we can use the algorithms
provided in Theorems 1 and 2 to get exact values of φ(u; b) and V (u; b). For numerical illustrations, we
only look at V (u; b) since this will give insights to the optimal barrier. We still let c = 0.2, σ2 = 0.3 and
δ = 0.01. To see the effect of Erlangization, we increase n from 1 to 5 while fixing E[T ] = n/β = 20 (i.e.
increasing β). Figures 4(a) and (b) show that V (u; 3) as a function of u and V (3; b) as a function of b
are of the same shape as in the case n = 1 even if we increase n. In addition, for fixed values of u and b,
the dividend function V (u; b) appears to be increasing and converging as n increases. More importantly,
we observe from Figure 4(b) that for each fixed n the optimal barrier b∗ exists. We have further carried
out some numerical checking using different values of initial surplus (which is not reproduced here), and
found that for each fixed n the optimal barrier b∗ is independent of u. The values of b∗ are given by
3.237, 3.299, 3.300, 3.331, 3.337 respectively when n = 1, 2, 3, 4, 5.

5.2 Bivariate MAP risk model

This subsection aims at providing further numerical examples for bivariate MAP risk models. First, we
consider a bivariate Markov-modulated Brownian risk model (i.e. there are no claims). We set

∆c =
(

0.1 0
0 0.25

)
, ∆σ2 =

(
0.1 0
0 0.2

)
, D0 =

( −0.06 0.06
0.03 −0.03

)
, D1 = O.

It is assumed that the inter-dividend-decision times follow the Erlang(2) distribution with β = 0.05 and
the force of interest is δ = 0.01.
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Figure 5: (a) V1(u; b) as a function of u; and (b) V2(u; b) as a function of u.

From Figure 5, the expected present values of dividends given different initial states, namely V1(u; b)
and V2(u; b), show similar behaviour as in Figure 2(a), i.e. they both increase in u for each fixed b and
then essentially grow linearly as u increases further. For each fixed u, Figure 6 shows that V1(u; b) and
V2(u; b) first increase and then decrease in b. Interestingly, using the exact dividend values calculated via
Theorem 2, it is found that regardless of the initial surplus level u, the optimal dividend barriers that
maximize V1(u; b) and V2(u; b) coincide and are both given by b∗ = 1.935. In other words, the optimal
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dividend barrier b∗ appears to be independent of the initial surplus and the initial environmental state.
The latter also implies that b∗ is the same for the unconditional process U b under any initial probability
row vector α of the Markov chain J .
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Figure 6: (a) V1(u; b) as a function of b; and (b) V2(u; b) as a function of b.
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Figure 7: (a) F1(z|u; 4) as a function of u and z; and (b) F2(z|u; 4) as a function of u and z.

Next, we look at a perturbed Markov-modulated risk model with two states. Let

∆c =
(

0.04 0
0 0.03

)
, ∆σ2 =

(
0.01 0
0 0.05

)
(5.5)

and

D0 =
( −0.06 0.03

0.1 −0.2

)
, D1 =

(
0.03 0
0 0.1

)
.

The claim severities are assumed to be exponentially distributed such that

f11(x) = e−x, f22(x) = 5e−5x,

so that µ11 = 1 and µ22 = 0.2 (and the loading condition (1.2) is satisfied). In addition, the inter-dividend-
decision times are assumed to be exponential with β = 0.1. We are interested in the distribution of the
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deficit at ruin, which is denoted by F (z|u; b) = (F1(z|u; b), F2(z|u; b)). For i = 1, 2, the quantity Fi(z|u; b)
can be retrieved from φi(u; b) by letting δ = 0 and w(y) = 1{y≤z}. Figure 7 depicts F (z|u; b) under b = 4.
Note that both F1(z|u; 4) and F2(z|u; 4) have probability masses at z = 0 because ruin may be caused by
oscillation. Furthermore, we observe that F1(z|u; 4) and F2(z|u; 4) tend to 1 as z increases, which is due
to the fact that ruin is certain under this Erlangized dividend barrier strategy. Except for small values of
u where there is higher chance of early ruin by oscillation, the values of F1(z|u; 4) and F2(z|u; 4) appear
to be not very sensitive to change in the initial surplus level.

Finally, we study a bivariate MAP risk process in which ∆c and ∆σ2 are still given by (5.5) and the
inter-dividend-decision times are exponential with β = 0.1. However, the generators are now assumed to
be

D0 =
( −0.06 0.03

0.01 −0.02

)
, D1 =

(
0.02 0.01
0 0.01

)
.

Furthermore, the claim densities are

f11(x) = 2e−2x, f12(x) = e−x, f22(x) = 0.3(2e−2x) + 0.7(5e−5x).

Compared to the previous example, the current specification of D1 allows a transition from state 1 to
state 2 to be accompanied by a claim (that follows a mixture of two exponentials). We are interested in
the Laplace transform of the ruin time given initial state i, which can be retrieved from the Gerber-Shiu
function φi(u; b) by letting w ≡ 1. Under a Laplace transform argument of δ = 0.01, the quantities
φ1(u; b) and φ2(u; b) are plotted against the initial surplus u for each fixed b = 1, 2, 3, 4, 5 in Figure 8.
Similar behaviour as in Figure 1 is observed, and the same interpretation therein applies.
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Figure 8: (a) φ1(u; b) as a function of u; and (b) φ2(u; b) as a function of u.
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A Appendix on continuity and smooth pasting

In this appendix, we demonstrate how to check the continuity conditions (3.7) and (4.4) as well as the
smooth pasting conditions (3.8) and (4.5), which have been used to derive full solutions to the Gerber-Shiu
function and the expected discounted dividends until ruin. To begin, we need some auxiliary functions.
For i ∈ E and u ≥ 0, we define the stopping time τu

i = inf{t > 0 : u + cit + σiBt < 0} and the associated
resolvent measure, for q ≥ 0,

R(q)
i (u, dx) =

∫ ∞

0
e−qtP{u + cit + σiBt ∈ dx, t < τu

i }dt.

Further let η
(q)
1i ≥ 0 and η

(q)
2i < 0 be the roots of the quadratic equation (in ξ)

1
2
σ2

i ξ
2 + ciξ − q = 0.

It follows from Theorem 8.7 and Corollary 8.8 in Kyprianou (2006) that the above resolvent measure
admits a density, which is such that R(q)

i (u, dx) = r
(q)
i (u, x)dx and given by

r
(q)
i (u, x) = e−η

(q)
1i xW

(q)
i (u)−W

(q)
i (u− x).

Here W
(q)
i is a q-scale function defined as W

(q)
i (x) = 0 for x < 0 and

W
(q)
i (x) =

eη
(q)
1i x − eη

(q)
2i x

σ2
i
2 (η(q)

1i − η
(q)
2i )

, x ≥ 0.

More explicitly, we have

r
(q)
i (u, x) =





eη
(q)
2i

(u−x)−eη
(q)
2i

u−η
(q)
1i

x

σ2
i
2

(η
(q)
1i −η

(q)
2i )

, 0 ≤ x ≤ u,

eη
(q)
1i

(u−x)−eη
(q)
2i

u−η
(q)
1i

x

σ2
i
2

(η
(q)
1i −η

(q)
2i )

, x > u.
(A.1)

It is also well known that the Laplace transform of τu
i is (see e.g. Borodin and Salminen (2002, p.295))

H(q)
i (u) = E[e−qτu

i ] = eη
(q)
2i u.

The key to proving continuity and smooth pasting is the derivation of appropriate integral equations
as follows. Suppose that for the process U b, the initial surplus is u ≥ 0, the initial state is J0 = i ∈ E , and
the time until the next dividend decision time is Erlang(n− k + 1) distributed for some k = 1, 2, . . . , n.
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Let C1 be the time until the first phase change of the dividend decision time. Clearly, C1 is always
exponentially distributed with mean 1/β. Define Ei to be the time until the first event of the bivariate
Markov process (N, J) occurs. Then Ei is an exponential random variable with mean −1/D0,ii. Three
situations need to be distinguished: (1) τ b < Ei ∧C1; (2) Ei < τ b ∧C1; and (3) C1 < τ b ∧Ei. Note that
under Pu,i, U b is distributed as the process {u+cit+σiBt} for 0 ≤ t < Ei∧C1. In addition, {u+cit+σiBt}
and the random variables Ei and C1 are mutually independent. Therefore, for the Gerber-Shiu function
we arrive at

φk,i(u; b) = w(0)E[e−δτu
i 1{τu

i <Ei,τu
i <C1}]

+
∫ ∞

0
e−(δ+β−D0,ii)t

m∑

j=1,j 6=i

D0,ij

∫ ∞

0
φk,j(x; b)P{u + cit + σiBt ∈ dx, t < τu

i }dt

+
∫ ∞

0
e−(δ+β−D0,ii)t

m∑

j=1

D1,ij

∫ ∞

0
(γk,ij(x; b) + ωij(x))P{u + cit + σiBt ∈ dx, t < τu

i }dt

+
∫ ∞

0
βe−(δ+β−D0,ii)t

∫ ∞

0
φk+1,i(x; b)P{u + cit + σiBt ∈ dx, t < τu

i }dt, k = 1, 2, . . . , n− 1.

(A.2)

Because

E[e−δτu
i 1{τu

i <Ei,τu
i <C1}] = E[E[e−δτu

i 1{τu
i <Ei,τu

i <C1}|τu
i ]] = E

[
e−δτu

i

(∫ ∞

τu
i

(−D0,ii)eD0,iitdt

)(∫ ∞

τu
i

βe−βxdx

)]

= E[e−(δ+β−D0,ii)τ
u
i ] = H(δ+β−D0,ii)(u),

using the resolvent measure we can rewrite (A.2) as

φk,i(u; b) = w(0)H(δ+β−D0,ii)(u) +
m∑

j=1,j 6=i

D0,ij

∫ ∞

0
φk,j(x; b)r(δ+β−D0,ii)

i (u, x)dx

+
m∑

j=1

D1,ij

∫ ∞

0
(γk,ij(x; b) + ωij(x))r(δ+β−D0,ii)

i (u, x)dx + β

∫ ∞

0
φk+1,i(x; b)r(δ+β−D0,ii)

i (u, x)dx,

k = 1, 2, . . . , n− 1. (A.3)

Similarly, for k = n we have

φn,i(u; b) = w(0)H(δ+β−D0,ii)(u) +
m∑

j=1,j 6=i

D0,ij

∫ ∞

0
φn,j(x; b)r(δ+β−D0,ii)

i (u, x)dx

+
m∑

j=1

D1,ij

∫ ∞

0
(γn,ij(x; b) + ωij(x))r(δ+β−D0,ii)

i (u, x)dx + β

∫ b

0
φ1,i(x; b)r(δ+β−D0,ii)

i (u, x)dx

+ β

∫ ∞

b
φ1,i(b; b)r

(δ+β−D0,ii)
i (u, x)dx. (A.4)

Concerning the expected present value of dividends paid until ruin, we have

Vk,i(u; b) =
m∑

j=1,j 6=i

D0,ij

∫ ∞

0
Vk,j(x; b)r(δ+β−D0,ii)

i (u, x)dx
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+
m∑

j=1

D1,ij

∫ ∞

0

(∫ x

0
Vk,j(x− y; b)fij(y)dy

)
r
(δ+β−D0,ii)
i (u, x)dx

+ β

∫ ∞

0
Vk+1,i(x; b)r(δ+β−D0,ii)

i (u, x)dx, k = 1, 2, . . . , n− 1, (A.5)

and

Vn,i(u; b) =
m∑

j=1,j 6=i

D0,ij

∫ ∞

0
Vn,j(x; b)r(δ+β−D0,ii)

i (u, x)dx

+
m∑

j=1

D1,ij

∫ ∞

0

(∫ x

0
Vn,j(x− y; b)fij(y)dy

)
r
(δ+β−D0,ii)
i (u, x)dx

+ β

∫ b

0
V1,i(x; b)r(δ+β−D0,ii)

i (u, x)dx + β

∫ ∞

b
(x− b + V1,i(b; b))r

(δ+β−D0,ii)
i (u, x)dx. (A.6)

Continuity and smooth pasting can be shown based on (A.3)-(A.6). For illustrative purposes, we only
focus on Vn,i(u; b) since the other functions can be checked analogously. Letting

ϑi(x) =
m∑

j=1,j 6=i

D0,ijVn,j(x; b) +
m∑

j=1

D1,ij

∫ x

0
Vn,j(x− y; b)fij(y)dy

+ βV1,i(x; b)1{0<x≤b} + β(x− b + V1,i(b; b))1{x>b}, (A.7)

(A.6) can be rewritten as

Vn,i(u; b) =
∫ ∞

0
ϑi(x)r(δ+β−D0,ii)

i (u, x)dx

=
∫ u

0
ϑi(x)

eη̃2i(u−x) − eη̃2iu−η̃1ix

σ2
i
2 (η̃1i − η̃2i)

dx +
∫ ∞

u
ϑi(x)

eη̃1i(u−x) − eη̃2iu−η̃1ix

σ2
i
2 (η̃1i − η̃2i)

dx. (A.8)

Here (A.1) has been used in the second equality, and we define η̃1i = η
(δ+β−D0,ii)
1i and η̃2i = η

(δ+β−D0,ii)
2i

for convenience. From the above representation, it is clear that Vn,i(0; b) = 0 and Vn,i(u; b) is a continuous
function in u for all u ≥ 0. Similarly, one can deduce from (A.5) that Vk,i(u; b) is continuous in u for
each k = 1, 2, . . . , n− 1. Consequently, ϑi(x) is continuous as well, as evident from (A.7). Hence, taking
derivative of (A.8) with respect to u gives

V ′
n,i(u; b) =

∫ u

0
ϑi(x)

η̃2ie
η̃2i(u−x) − η̃2ie

η̃2iu−η̃1ix

σ2

2 (η̃1i − η̃2i)
dx +

∫ ∞

u
ϑi(x)

η̃1ie
η̃1i(u−x) − η̃2ie

η̃2iu−η̃1ix

σ2

2 (η̃1i − η̃2i)
dx.

Therefore, V ′
n,i(u; b) is continuous in u for all u ≥ 0. Indeed, by further differentiating the above equation

with respect to u (or by inspecting (4.2) and using the fact that Vn,i(u; b) and V ′
n,i(u; b) are continuous in

u), one can observe that V ′′
n,i(u; b) is also continuous in u for all u ≥ 0. However, higher order derivatives

are in general not continuous at u = b.
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