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On the discounted aggregate claim costs until ruin in

dependent Sparre Andersen risk processes

Eric C.K. Cheung∗ and Jae-Kyung Woo∗†

February 24, 2014

Abstract

In this paper, a dependent Sparre Andersen risk process in which the joint density of the inter-
claim time and the resulting claim severity satisfies the factorization as in Willmot and Woo (2012)
is considered. We study a generalization of the Gerber-Shiu function (i) whose penalty function fur-
ther depends on the surplus level immediately after the second last claim before ruin (Cheung et al.
(2010a)); and (ii) which involves the moments of the discounted aggregate claim costs until ruin. The
generalized discounted density with a moment-based component proposed in Cheung (2013) plays a key
role in deriving recursive defective renewal equations. We pay special attention to the case where the
marginal distribution of the interclaim times is Coxian, and the required components in the recursion
are obtained. A reverse type of dependency structure where the claim severities follow a combination
of exponentials is also briefly discussed, and this leads to a nice explicit expression for the expected
discounted aggregate claims until ruin. Our results are applied to generate some numerical examples
involving (i) the covariance of the time of ruin and the discounted aggregate claims until ruin; and
(ii) the expectation, variance and third central moment of the discounted aggregate claims until ruin.

Keywords: Dependent Sparre Andersen risk model; Discounted aggregate claims until ruin; Discounted
densities; Coxian distribution; Higher moments; Covariance.

1 Introduction

Let us consider the surplus process {U(t)}t≥0 of an insurance company, where U(t) denotes the insurer’s
surplus level at time t given by

U(t) = u + ct−
N(t)∑

i=1

Yi, t ≥ 0.

Here u = U(0) ≥ 0 is the initial surplus and c > 0 is the premium collected per unit time. We assume that
the claim number process {N(t)}t≥0 is a renewal process corresponding to the sequence of independent
and identically distributed (i.i.d.) positive continuous interclaim times {Vi}∞i=1 (with generic random
variable V ). In particular, V1 is the time of the first claim and Vi is the time between the (i − 1)-th
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and the i-th claims for i = 2, 3, . . .. Moreover, Yi denotes the size of the i-th claim for i = 1, 2, . . ., and
{Yi}∞i=1 is assumed to form an i.i.d. sequence of positive continuous random variables having the same
distribution as Y . Defining the time of ruin to be τ = inf{t ≥ 0 : U(t) < 0} (with τ = ∞ if U(t) ≥ 0 for
all t ≥ 0), it is known that the positive security loading condition cE[V ] > E[Y ] ensures that the ruin
probability ψ(u) = Pr{τ < ∞|U(0) = u} is strictly less than 1 (e.g. Prabhu (1998, Part I)).

In the traditional Sparre Andersen or renewal risk model (Sparre Andersen (1957)), the i.i.d. sequences
{Vi}∞i=1 and {Yi}∞i=1 are typically assumed to be mutually independent. Recently, there has been increased
research interests in the more general class of dependent Sparre Andersen risk processes which only
assumes that the pairs {(Vi, Yi)}∞i=1 are i.i.d., i.e. the i-th claim severity Yi is allowed to possibly depend
on the elapsed time Vi since the last claim. Under such a relaxation, the surplus process {U(t)}t≥0

still retains a random walk structure at claim instants since the increments {cVi − Yi}∞i=1 form an i.i.d.
sequence. Various general results in dependent Sparre Andersen risk models are available in the literature.
For example, asymptotic expressions concerning (finite-time) ruin probabilities for light-tailed claims were
given by Albrecher and Teugels (2006); whereas Cheung et al. (2010b) studied the structural properties
of the Gerber-Shiu function (Gerber and Shiu (1998)) with a generalized penalty. Some of the latter
results were further extended to the delayed (Woo (2010)) and discrete (Woo (2012)) processes as well
as models with surplus-dependent premium (Cheung (2011)). For the study of ruin-related quantities
in dependent Sparre Andersen models under specific distributional assumptions on the interclaim time
V and/or the claim severity Y , we refer interested readers to e.g. Boudreault et al. (2006), Cossette et
al. (2008, 2010), Ambagaspitiya (2009), Badescu et al. (2009), Chadjiconstantinidis and Vrontos (2012),
Willmot and Woo (2012), Zhang et al. (2012), and Landriault et al. (2013). In this paper, we are mostly
concerned with the dependency structure proposed by Willmot and Woo (2012), who assumed that the
joint density of the generic pair (V, Y ) at (t, y) admits the factorization form

p(t, y) =
r∑

i=1

mi∑

j=1

kij(t) bij(y), t, y > 0. (1.1)

The above double indexing, though not strictly necessary, will facilitate presentation in Section 3. Note
that kij(·) and bij(·) are not necessarily probability density functions, as long as p(·, ·) is a valid joint
probability density. The joint Laplace transform of (V, Y ) is defined by

p̃(s1, s2) =
r∑

i=1

mi∑

j=1

k̃ij(s1) b̃ij(s2), (1.2)

where k̃ij(s) =
∫∞
0 e−stkij(t) dt and b̃ij(s) =

∫∞
0 e−sybij(y) dy. For later use, we also write p(t, y) =

pt(y) k(t), where k(·) is the density of V and pt(·) is the conditional density of Y given V = t, i.e.
pt(y) = P ′

t(y) with Pt(y) = Pr(Y ≤ y|V = t). Also define the Laplace transforms k̃(s) =
∫∞
0 e−stk(t) dt

and p̃t(s) =
∫∞
0 e−sypt(y) dy.

It is well known that the Gerber-Shiu expected discounted penalty function proposed by Gerber
and Shiu (1998) involves three random variables, namely the time of ruin τ , the surplus immediately
prior to ruin U(τ−), and the deficit at ruin |U(τ)|. While the time τ appears through a discount
factor, the variables U(τ−) and |U(τ)| are incorporated into the so-called penalty function. Our goal
is to analyze a Gerber-Shiu type function which additionally depends on two variables. First, define
Ri = u +

∑i
j=1(cVj − Yj) to be the surplus level immediately after the i-th claim for i = 1, 2, . . . with

R0 = u. In the spirit of Cheung et al. (2010a), we shall further incorporate the surplus immediately
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after the second last claim before ruin, namely RN(τ)−1, into the penalty function. As illustrated by e.g.
Cheung et al. (2011), the variable RN(τ)−1 can be used to study the last interclaim time before ruin due
to the relationship VN(τ) = (U(τ−) − RN(τ)−1)/c. Next, denoting the occurrence time of the i-th claim
by Ti =

∑i
j=1 Vj for i = 1, 2, . . . (with the convention T0 = 0), we are also interested in the discounted

aggregate claim costs until ruin Zδ(τ), where

Zδ(t) =
N(t)∑

i=1

e−δTif(Yi), t ≥ 0.

Here f(·) can be interpreted as the ‘cost function’ that determines the cost of each claim. Under the clas-
sical compound Poisson and the phase-type renewal models, Cai et al. (2009, Section 6) and Feng (2009a,
Section 4.2, and 2009b, Section 5.2) respectively studied the expectation of Zδ(τ). Higher moments of
Zδ(τ) were also considered by Cheung and Feng (2013, Section 2.1) when claims occur according to a
Markovian arrival process (e.g. Asmussen (2003, Chapter XI.1)) and by Cheung (2013) for a traditional
Sparre Andersen model. (Note that the class of risk processes with Markovian claim arrivals and the class
of dependent Sparre Andersen risk processes considered in this paper are not special cases of each other.)
With the above descriptions, we shall analyze the Gerber-Shiu type function defined by, for n = 0, 1, . . .,

φδ1,δ2,n(u) = φδ12,n(u) = E
[
e−δ1τZn

δ2(τ) w(U(τ−), |U(τ)|, RN(τ)−1) I{τ < ∞}
∣∣∣U(0) = u

]
, u ≥ 0,

(1.3)
where w is the three-variable penalty function satisfying mild integrable condition; I{A} is the usual
indicator function of the event A; δ1 ≥ 0 can either be viewed as a force of interest or a Laplace
transform argument with respect to τ ; δ2 ≥ 0 is the force of interest used for discounting the claim costs;
and n is a non-negative integer representing the order of moment of Zδ2(τ). The special case of (1.3) in
which δ1 = n1δ2 for some non-negative integer n1 and w(x, y, v) only depends on y was first proposed by
Cheung (2013, Equation (1.1)), who also discussed various choices of f(·) (e.g. in relation to the number
of claims until ruin N(τ)). The present use of different δ’s in e−δ1τ and Zδ2(τ) will facilitate the study
of the covariance of τ and Zδ2(τ) (see Section 5). Moreover, the calculations of the moments of Zδ2(τ)
allow the possibility to estimate the distribution of Zδ2(τ) (see e.g. Lindsay et al. (2000)). For notational
convenience, we shall write φδ12,n(·) instead of φδ1,δ2,n(·) whenever this does not cause any confusion.
Similar abbreviations will be adopted for other related functions as well. For simplicity, the variables
Zδ2(τ), U(τ−), |U(τ)| and RN(τ)−1 will sometimes be denoted by Zδ2 , U−, |U | and R respectively.

The rest of this paper is organized as follows. In Section 2, we begin by introducing the moment-based
discounted densities associated to the variables (τ, Zδ2 , U

−, |U |, R). These will be used to derive recursive
defective renewal equations satisfied by the Gerber-Shiu function φδ12,n(·) for n = 0, 1, . . . under a general
setting of risk process. In addition, recursive formulas for the generalized discounted densities will be
given. The components required in the above recursions are identified for Coxian interclaim times in
Section 3. Section 4 revisits a reverse dependency structure in which the claims follow a combination
of exponentials, and an explicit expression for the expected discounted aggregate claims until ruin is
derived. Our results are then applied in Section 5 to find the covariance of τ and

∑N(τ)
i=1 e−δ2TiYi as well

as the first three moments of
∑N(τ)

i=1 e−δ2TiYi through some numerical examples.

2 Moment-based discounted densities and defective renewal equations

In order to discuss the moment-based discounted density of the triplet (U−, |U |, R), we begin by intro-
ducing the joint distribution of the quintuple (τ, Zδ2 , U

−, |U |, R). Depending on whether ruin occurs
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upon the first claim or not, the joint density has a different form. Suppose U(0) = u ≥ 0. If the first
claim causes ruin (i.e. N(τ) = 1), then R = u, and the time of ruin τ and the discounted claim cost
Zδ2 are characterized by the surplus prior to ruin U− and the deficit at ruin |U |. More precisely, it is
easy to see that τ = (U− − u)/c and Zδ2 = e−δ2(U−−u)/cf(U− + |U |). Hence, the joint distribution of
(τ, Zδ2 , U

−, |U |, R) in this situation is essentially characterized by the joint density of (U−, |U |) at (x, y),
namely (see e.g. Cheung et al. (2010a,b))

g1(x, y|u) =
1
c

p

(
x− u

c
, x + y

)
, x > u; y > 0. (2.1)

On the other hand, if ruin does not occur upon the first claim but on subsequent ones, then no simple
relationship holds among these variables, and the joint density of (τ, Zδ2 , U

−, |U |, R) at (t, z, x, y, v) is
denoted by g2,δ2(t, z, x, y, v|u) for 0 ≤ v < x; y > 0; t > max(x−min(u, v), 0)/c and z > e−δ2tf(x + y).

With the above definitions, the moment-based discounted densities associated with g1 and g2,δ2 are
given by

h
(1)
δ1,δ2,n(x, y|u) = e−(δ1+nδ2)(x−u

c )fn(x + y) g1(x, y|u), x > u; y > 0, (2.2)

and

h
(2)
δ1,δ2,n(x, y, v|u) =

∫ ∞

max(x−min(u,v),0)/c

∫ ∞

e−δ2tf(x+y)
e−δ1t zn g2,δ2(t, z, x, y, v|u) dz dt, 0 ≤ v < x; y > 0,

(2.3)
respectively. Then the Gerber-Shiu type function φδ12,n(u) admits the representation.

φδ12,n(u) =
∫ ∞

0

∫ ∞

u
w(x, y, u) h

(1)
δ1,δ2,n(x, y|u) dx dy +

∫ ∞

0

∫ ∞

0

∫ x

0
w(x, y, v) h

(2)
δ1,δ2,n(x, y, v|u) dv dx dy,

u ≥ 0. (2.4)

For later use, we also define the moment-based discounted joint density of the surplus prior to ruin and
the deficit at ruin, namely

hδ1,δ2,n(x, y|u) = h
(1)
δ1,δ2,n(x, y|u) +

∫ x

0
h

(2)
δ1,δ2,n(x, y, v|u) dv, x, y > 0, (2.5)

with h
(1)
δ1,δ2,n(x, y|u) understood to be 0 when x ≤ u. Then, the moment-based discounted marginal

density of the deficit is

hδ1,δ2,n(y|u) =
∫ ∞

0
hδ1,δ2,n(x, y|u) dx =

∫ ∞

0

{
h

(1)
δ1,δ2,n(x, y|u) +

∫ x

0
h

(2)
δ1,δ2,n(x, y, v|u) dv

}
dx, y > 0.

(2.6)
In addition, the argument δ1 + nδ2 will appear in many places in our analysis. To ease presentation, we
define the quantity δ∗n = δ1 +nδ2 for n = 0, 1, . . .. Utilizing the moment-based discounted densities (2.2),
(2.3) and (2.6) leads to the following Proposition.

Proposition 1 For n = 0, 1, . . ., the Gerber-Shiu function φδ12,n(·) defined in (1.3) satisfies the defective
renewal equation

φδ12,n(u) = αδ∗n

∫ u

0
φδ12,n(u− y) lδ∗n(y) dy + νδ12,n(u), u ≥ 0, (2.7)

where
αδ∗n =

∫ ∞

0
hδ∗n,δ2,0(y|0) dy = E

[
e−δ∗nτI{τ < ∞}|U(0) = 0

]
< 1, (2.8)
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lδ∗n(y) =
1

αδ∗n
hδ∗n,δ2,0(y|0), y > 0, (2.9)

is a proper density, and

νδ12,n(u) =
n−1∑

j=0

(
n

j

) ∫ u

0
hδ∗j ,δ2,n−j(u− s|0)φδ12,j(s) ds

+
∫ ∞

0

∫ ∞

u

{
w(x, y, u) h

(1)
δ1,δ2,n(x− u, y + u|0) +

∫ x

u
w(x, y, v)h

(2)
δ1,δ2,n(x− u, y + u, v − u|0) dv

}
dx dy,

u ≥ 0. (2.10)

Proof: Arguments analogous to Cheung (2013, Section 2.2) can be applied here. Given the initial surplus
level U(0) = u, we consider whether ruin occurs at the time of the first drop of the surplus process below
u. In the case where ruin occurs upon the first drop, two cases need to be further distinguished depending
on whether it is caused by the first claim or by subsequent claims. Applying the moment-based discounted
densities (2.2), (2.3) and (2.6) with zero initial surplus, we arrive at the integral equation

φδ12,n(u) =
n∑

j=0

(
n

j

) ∫ u

0
hδ∗j ,δ2,n−j(y|0)φδ12,j(u− y) dy

+
∫ ∞

u

∫ ∞

0

{
w(x + u, y − u, u) h

(1)
δ1,δ2,n(x, y|0) +

∫ x

0
w(x + u, y − u, v + u) h

(2)
δ1,δ2,n(x, y, v|0) dv

}
dx dy.

(2.11)

Separating the term j = n in the summation together with a change of variables yields the renewal
equation (2.7) with the components defined by (2.8)-(2.10). We remark that the second equality in (2.8)
follows from inspection of (2.4) and (2.6) (with w ≡ 1; u = 0; n replaced by 0; and δ1 replaced by δ∗n).
Moreover, the inequality αδ∗n < 1 holds when either δ∗n > 0 or the loading condition cE[V ] > E[Y ] holds.
Hence, one asserts that (2.7) is a defective renewal equation satisfied by φδ12,n(·). ¤

It is instructive to note that the defective renewal equation (2.7) is recursive in the order of moment
n because the term νδ12,n(·) depends on φδ12,j(·)’s for j = 0, 1, . . . , n− 1. In addition, the deficit densities
hδ∗j ,δ2,n−j(·|0)’s for j = 1, 2, . . . , n appearing in (2.8)-(2.10) are also related to φδ∗j ,δ2,n−j(0)’s. Nonetheless,
assuming all these lower order attributes have been obtained, the only unknown part in the defective
renewal equation (2.7) is h

(2)
δ1,δ2,n(x, y, v|0). (Note that h

(1)
δ1,δ2,n(x, y|0) is explicitly known from (2.1) and

(2.2), and hδ∗0 ,δ2,n(y|0) = hδ1,δ2,n(y|0) depends on h
(1)
δ1,δ2,n(x, y|0) and h

(2)
δ1,δ2,n(x, y, v|0) via (2.6).) Hence,

the implication of Proposition 1 is that it is sufficient to determine h
(2)
δ1,δ2,n(x, y, v|0), which is usually

done when specific distributional assumption on the interclaim time is made (see Section 4) via Lemma
1. Then, the solution of the defective renewal equation (2.7) is given by (e.g. Resnick (1992, Section
3.5))

φδ12,n(u) = νδ12,n(u) +
1

1− αδ∗n

∫ u

0
aδ∗n(u− t) νδ12,n(t) dt, u ≥ 0, (2.12)

where

aδ∗n(y) =
∞∑

k=1

(1− αδ∗n) αk
δ∗n l∗kδ∗n(y), y > 0, (2.13)

is a compound geometric density. Here l∗kδ∗n
(·) represents the k-fold convolution density of lδ∗n(·) with itself

for k = 1, 2, . . ..
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Next, suppose we have determined h
(2)
δ1,δ2,n(x, y, v|0) (and hence hδ1,δ2,n(y|0)). We shall illustrate that

the solution (2.12) can also be used to derive recursive formulas for the moment-based discounted density
h

(2)
δ1,δ2,n(x, y, v|u) for initial surplus u ≥ 0, which is sufficient to characterize φδ12,n(u) via (2.4). For now,

we focus on the first term on the right-hand side of (2.10). Substitution of (2.4) followed by a change of
order of integrals yields

n−1∑

j=0

(
n

j

)∫ u

0
hδ∗j ,δ2,n−j(u− s|0)φδ12,j(s) ds =

∫ ∞

0

∫ ∞

0

∫ x

0
w(x, y, v) χδ12,n(x, y, v|u) dv dx dy,

where

χδ12,n(x, y, v|u) =
n−1∑

j=0

(
n

j

){
hδ∗j ,δ2,n−j(u− v|0)h

(1)
δ1,δ2,j(x, y|v) +

∫ u

0
hδ∗j ,δ2,n−j(u− s|0)h

(2)
δ1,δ2,j(x, y, v|s) ds

}
,

0 ≤ v < x; y > 0, (2.14)

depends on lower order discounted densities h
(2)
δ1,δ2,j(x, y, v|s)’s for j = 0, 1, . . . , n − 1. (Note that

hδ∗j ,δ2,n−j(u − v|0) in the above expression is understood to be 0 when v ≥ u.) It follows that (2.10)
can be reexpressed as

νδ12,n(u) =
∫ ∞

0

∫ ∞

u
w(x, y, u) h

(1)
δ1,δ2,n(x−u, y+u|0) dx dy+

∫ ∞

0

∫ ∞

0

∫ x

0
w(x, y, v) χ∗δ12,n(x, y, v|u) dv dx dy,

(2.15)
where

χ∗δ12,n(x, y, v|u) = χδ12,n(x, y, v|u) + h
(2)
δ1,δ2,n(x− u, y + u, v − u|0), 0 ≤ v < x; y > 0. (2.16)

(The second term above is non-zero only if v > u.) Application of (2.15) along with a change of order of
integrations leads the integral on the right-hand side of (2.12) to
∫ u

0
aδ∗n(u− t) νδ12,n(t) dt =

∫ ∞

0

∫ ∞

0

∫ min(x,u)

0
w(x, y, v)

{
aδ∗n(u− v) h

(1)
δ1,δ2,n(x− v, y + v|0)

}
dv dx dy

+
∫ ∞

0

∫ ∞

0

∫ x

0
w(x, y, v)

{∫ u

0
aδ∗n(u− t)χ∗δ12,n(x, y, v|t) dt

}
dv dx dy. (2.17)

Therefore, putting (2.15) and (2.17) into (2.12) and comparing with (2.4) results in h
(1)
δ1,δ2,n(x, y|u) =

h
(1)
δ1,δ2,n(x − u, y + u|0) for x > u and y > 0 (which must be true due to (2.1) and (2.2)), as well as the

following Proposition.

Proposition 2 For n = 0, 1, . . ., the moment-based discounted density h
(2)
δ1,δ2,n(x, y, v|u) defined by (2.3)

is given by the recursive formula

h
(2)
δ1,δ2,n(x, y, v|u)

= χ∗δ12,n(x, y, v|u) +
1

1− αδ∗n

{
aδ∗n(u− v) h

(1)
δ1,δ2,n(x− v, y + v|0) +

∫ u

0
aδ∗n(u− t) χ∗δ12,n(x, y, v|t) dt

}
,

0 ≤ v < x; y > 0,

where χ∗δ12,n(x, y, v|u) is defined by (2.16) together with (2.14), and aδ∗n(·) is the compound geometric
density (2.13) (that is understood to be 0 when the argument is non-positive). ¤
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As in Proposition 1, the above Proposition indicates that h
(2)
δ1,δ2,n(x, y, v|0) suffices to characterize

h
(2)
δ1,δ2,n(x, y, v|u), assuming all the lower order densities are known. Using the same procedure that

leads to Proposition 2, the next Corollary follows in a straightforward manner.

Corollary 1 For n = 0, 1, . . ., the moment-based discounted density hδ1,δ2,n(x, y|u) in (2.5) is given by
the recursive formulas

hδ1,δ2,n(x, y|u) = χ∗∗δ12,n(x, y|u) +
1

1− αδ∗n

∫ u

0
aδ∗n(u− t)χ∗∗δ12,n(x, y|t) dt, x, y > 0, (2.18)

where

χ∗∗δ12,n(x, y|u) =
n−1∑

j=0

(
n

j

)∫ u

0
hδ∗j ,δ2,n−j(u− s|0)hδ1,δ2,j(x, y|s) ds + hδ1,δ2,n(x− u, y + u|0), x, y > 0.

(2.19)
The term hδ1,δ2,n(x − u, y + u|0) appearing in (2.19) is understood to be 0 when x ≤ u. In addition,
hδ1,δ2,n(y|u) in (2.6) can be obtained from (2.18) in a straightforward manner by integrating over x. ¤

Because of the relationship (2.4) at u = 0, information about h
(2)
δ1,δ2,n(x, y, v|0) can be obtained from

φδ12,n(0), which in turn is typically derived starting from another integral equation for φδ12,n(·). Under
U(0) = u, considering whether ruin occurs upon the first claim event based on the occurrence time V1

and the severity Y1 results in an integral expression for φδ12,n(·), namely

φδ12,n(u) = βδ12,n(u)+
∫ ∞

0
e−δ∗nt

{∫ u+ct

0

[
φδ12,n(u + ct− y) + φ∗δ12,n(u + ct, y)

]
pt(y) dy

}
k(t) dt, u ≥ 0,

(2.20)
where

βδ12,n(u) =
∫ ∞

0
e−δ∗nt

{∫ ∞

u+ct
fn(y) w(u + ct, y − u− ct, u) pt(y) dy

}
k(t) dt (2.21)

=
∫ ∞

u

∫ ∞

0
w(x, y, u) h

(1)
δ1,δ2,n(x, y|u) dy dx, u ≥ 0, (2.22)

is the contribution by ruin upon the first claim, and

φ∗δ12,n(x, y) =
n−1∑

j=0

(
n

j

)
fn−j(y) φδ12,j(x− y), 0 < y ≤ x. (2.23)

We shall proceed by taking Laplace transforms on both sides of (2.20). Define φ̃δ12,n(s) =
∫∞
0 e−suφδ12,n(u) du

and β̃δ12,n(s) =
∫∞
0 e−suβδ12,n(u) du. Then

φ̃δ12,n(s) = β̃δ12,n(s) +
∫ ∞

0
e−su

∫ ∞

0
e−δ∗nt

{∫ u+ct

0
φδ12,n(u + ct− y) pt(y) dy

}
k(t) dt du

+
∫ ∞

0
e−suϕ∗δ12,n(u, δ∗n) du, (2.24)

where

ϕ∗δ12,n(u, v) =
∫ ∞

0
e−vt

∫ u+ct

0
φ∗δ12,n(u + ct, y) p(t, y) dy dt, u ≥ 0. (2.25)

Since the triple integral on the right-hand side of (2.24) represents the Laplace transform of a function
in the form of Equation (41) in Cheung et al. (2010b), Equation (42) therein is applicable. Hence, it is
given by
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∫ ∞

0
e−su

∫ ∞

0
e−δ∗nt

{∫ u+ct

0
φδ12,n(u + ct− y) pt(y) dy

}
k(t) dt du

= φ̃δ12,n(s)
∫ ∞

0
e−(δ∗n−cs)t p̃t(s) k(t) dt−

∫ ∞

0

{∫ ct

0
e−(δ∗n−cs)t−sx

∫ x

0
φδ12,n(x− y) pt(y) dy dx

}
k(t) dt

= φ̃δ12,n(s)
∫ ∞

0
e−(δ∗n−cs)t p̃t(s) k(t) dt−

∫ ∞

0
e−sxϕδ12,n(x, δ∗n − cs) dx, (2.26)

where
ϕδ12,n(x, v) =

∫ ∞

x/c
e−vt

∫ x

0
φδ12,n(x− y) p(t, y) dy dt, x ≥ 0. (2.27)

Using (2.26) and defining

σ̃δ12,n(s) =
∫ ∞

0
e−sx

[
ϕδ12,n(x, δ∗n − cs)− ϕ∗δ12,n(x, δ∗n)

]
dx, (2.28)

(2.24) can be rewritten as

φ̃δ12,n(s) = β̃δ12,n(s) + φ̃δ12,n(s)
∫ ∞

0
e−(δ∗n−cs)t p̃t(s) k(t) dt− σ̃δ12,n(s).

Rearrangements lead to the following Lemma.

Lemma 1 For n = 0, 1, . . ., the Laplace transform of φδ12,n(·) admits the representation

φ̃δ12,n(s) =
β̃δ12,n(s)− σ̃δ12,n(s)

1−E[e−sY−(δ∗n−cs)V ]
,

where
E[e−sY−(δ∗n−cs)V ] =

∫ ∞

0
e−(δ∗n−cs)t p̃t(s)k(t) dt = p̃(δ∗n − cs, s),

β̃δ12,n(s) is the Laplace transform of (2.21), and σ̃δ12,n(s) is given by (2.28). ¤

In the above Lemma, while β̃δ12,n(s) is completely known, σ̃δ12,n(s) in (2.28) depends on ϕδ12,n and ϕ∗δ12,n.
According to (2.27) and (2.25), the quantity ϕδ12,n further depends on the Gerber-Shiu function φδ12,n(·)
itself; whereas ϕ∗δ12,n depends on the lower order Gerber-Shiu functions φδ12,j(·)’s for j = 0, 1, . . . , n − 1
due to (2.23). In particular, when n = 0 one has ϕ∗δ12,0 ≡ φ∗δ12,0 ≡ 0, and thus Equation (47) of Cheung
et al. (2010b) is retrieved from Lemma 1. Application of Lemma 1 will be given in Section 3.

So far, the analyses in this section hold true for general joint density p(t, y) of the pair (V, Y ). Now,
if the factorization (1.1) holds, then (2.21) becomes

βδ12,n(u) =
r∑

i=1

mi∑

j=1

∫ ∞

0
e−δ∗ntγn,ij(u + ct, u) kij(t) dt, (2.29)

where

γn,ij(x, u) =
∫ ∞

x
fn(y) w(x, y−x, u) bij(y) dy =

∫ ∞

0
fn(x+ y) w(x, y, u) bij(x+ y) dy, x > u. (2.30)

In addition, in this case (2.25) and (2.27) respectively reduce to

ϕ∗δ12,n(u, v) =
r∑

i=1

mi∑

j=1

∫ ∞

u

1
c

e−v(x−u
c )r∗δ12,n,ij(x) kij

(
x− u

c

)
dx, (2.31)

and
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ϕδ12,n(x, v) =
r∑

i=1

mi∑

j=1

rδ12,n,ij(x)
∫ ∞

x/c
e−vtkij(t) dt, (2.32)

where
r∗δ12,n,ij(x) =

∫ x

0
φ∗δ12,n(x, y) bij(y) dy, x ≥ 0, (2.33)

and rδ12,n,ij(x) =
∫ x
0 φδ12,n(x− y) bij(y) dy for x ≥ 0.

3 Coxian interclaim times

In this section, to identify φδ12,n(0), we consider Coxian distribution for the interclaim times under the
dependency structure (1.1) for (V, Y ) (see e.g. Willmot and Woo (2012)). Specifically, it is assumed that
kij(·) is an Erlang-j density with scale parameter λi, i.e.

kij(t) = τij(t) =
λi(λit)j−1e−λit

(j − 1)!
, t > 0, (3.1)

and the corresponding Laplace transform is k̃ij(s) = τ̃ij(s) = [λi/(λi + s)]j . In this case, the marginal
density of the interclaim time is

k(t) =
r∑

i=1

mi∑

j=1

b̃ij(0) τij(t), t > 0, (3.2)

and its Laplace transform can be expressed as k̃(s) = η(s)/
∏r

i=1(λi + s)mi , where
∏r

i=1(λi + s)mi is a
polynomial in s of degree m =

∑r
i=1 mi and η(s) is also a polynomial in s but of degree n − 1 or less.

Clearly, k(·) in (3.2) corresponds to the density of a Coxian distribution (and b̃ij(0)’s are not necessarily
positive). Without loss of generality it is assumed that λi’s are all distinct. Some examples of dependency
structures that are special cases of the above assumptions are given in Willmot and Woo (2012, Section
5).

It is noted that ϕδ12,n(x, v) defined in (2.32) is structurally identical to Equation (13) in Willmot and
Woo (2012), who studied the Gerber-Shiu function φδ12,0(u) (i.e. the generalized Gerber-Shiu function
including R but without any moment-based component). Therefore, details of the derivations arising
from this function will be mostly omitted in the upcoming analysis. Instead, we focus more on functions
that are related to the term ϕ∗δ12,n(u, v) in (2.25) (or (2.31)), which is new due to the introduction of the
moment-based component Zn

δ2
(τ) in (1.3). Under (1.2) and (3.1), the Laplace transform of φδ12,n(·) in

Lemma 1 becomes

φ̃δ12,n(s) =
β̃δ12,n(s)− σ̃δ12,n(s)

1−∑r
i=1

∑mi
j=1

(
λi

λi+δ∗n−cs

)j
b̃ij(s)

. (3.3)

We proceed by studying the term σ̃δ12,n(s) in (2.28). From Willmot and Woo (2012, Equation (27)), the
first term on the right-hand side of (2.28) is given by

∫ ∞

0
e−sxϕδ12,n(x, δ∗n − cs) dx =

r∑

i=1

mi∑

j=1

θδ12,n,ij

(λi + δ∗n − cs)j
(3.4)

where θδ12,n,ij =
∑mi

k=j

λk
i r̃

(k−j)
δ12,n,ik

(
λi+δ∗n

c

)

(−c)k−j(k−j)!
, with r̃

(j)
δ12,n,ik(s) =

∫∞
0 (−x)je−sxrδ12,n,ik(x) dx. For the second

term in (2.28), with (3.1) we first evaluate (2.31) as
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ϕ∗δ12,n(u, v) =
r∑

i=1

mi∑

j=1

(
λi

λi + v

)j ∫ ∞

u

1
c

r∗δ12,n,ij(x) τivj

(
x− u

c

)
dx,

where (with a slight abuse of notation) τivj(t) is an Erlang-j density with scale parameter λi + v. Define
r̃∗δ12,n,ij(s) =

∫∞
0 e−sxr∗δ12,n,ij(x) dx. Then, taking Laplace transform followed by a change of order of

integrations and a change of variable t = (x− u)/c results in
∫ ∞

0
e−suϕ∗δ12,n(u, v) du =

r∑

i=1

mi∑

j=1

(
λi

λi + v

)j ∫ ∞

0
e−sxr∗δ12,n,ij(x)

∫ x/c

0
ecstτivj(t) dt dx

=
r∑

i=1

mi∑

j=1

{
τ̃ij(v − cs) r̃∗δ12,n,ij(s)−

(
λi

λi + v

)j ∫ ∞

0
e−sxr∗δ12,n,ij(x)

∫ ∞

x/c
ecstτivj(t) dt dx

}

=
r∑

i=1

mi∑

j=1

τ̃ij(v − cs) r̃∗δ12,n,ij(s)−
r∑

i=1

mi∑

j=1

θ∗δ12,n,ij(v)
(λi + v − cs)j

, (3.5)

where the last line follows from Willmot and Woo (2012, Equation (27)), with θ∗δ12,n,ij(v) =
∑mi

k=j

λk
i r̃
∗(k−j)
δ12,n,ik

(
λi+v

c

)

(−c)k−j(k−j)!
and r̃

∗(j)
δ12,n,ik(s) =

∫∞
0 (−x)je−sxr∗δ12,n,ik(x) dx. Application of (3.4) and (3.5) leads

(2.28) to

σ̃δ12,n(s) =
r∑

i=1

mi∑

j=1

θ∗∗δ12,n,ij

(λi + δ∗n − cs)j
− β̃∗δ12,n(s), (3.6)

where θ∗∗δ12,n,ij = θδ12,n,ij + θ∗δ12,n,ij(δ
∗
n), and

β̃∗δ12,n(s) =
r∑

i=1

mi∑

j=1

τ̃ij(δ∗n − cs) r̃∗δ12,n,ij(s). (3.7)

Consequently, (3.3) can be rewritten as

φ̃δ12,n(s) =
β̃∗∗δ12,n(s)− σ̃∗δ12,n(s)

1−∑r
i=1

∑mi
j=1

(
λi

λi+δ∗n−cs

)j
b̃ij(s)

, (3.8)

where
β̃∗∗δ12,n(s) = β̃δ12,n(s) + β̃∗δ12,n(s) (3.9)

and

σ̃∗δ12,n(s) = σ̃δ12,n(s) + β̃∗δ12,n(s) =
r∑

i=1

mi∑

j=1

θ∗∗δ12,n,ij

(λi + δ∗n − cs)j
=

qδ12,n(s)∏r
i=1(λi + δ∗n − cs)mi

, (3.10)

with qδ12,n(s) = {∏r
i=1(λi + δ∗n − cs)mi}∑r

i=1

∑mi
j=1

θ∗∗δ12,n,ij

(λi+δ∗n−cs)j being a polynomial in s of degree at most
m− 1.

As σ̃∗δ12,n(s) is expressed as a ratio of two polynomials in (3.10), the procedure to obtain φδ12,n(0)
from φ̃δ12,n(s) using (3.8) is similar to the arguments that lead to φ̃δ12,0(s) in Willmot and Woo (2012,
Section 3). Therefore, applying Equations (32) and (33) therein (obtained from the theory of Lagrange
polynomials and initial value theorem for Laplace transforms) yields

φδ12,n(0) = β∗∗δ12,n(0) +
m∑

k=1

Ak,n β̃∗∗δ12,n(ρk,n), (3.11)
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where β∗∗δ12,n(0) = lims→∞ sβ̃∗∗δ12,n(s) and

Ak,n =

∏r
i=1

(
λi+δ∗n

c − ρk,n

)mi

∏m
j=1,j 6=k(ρj,n − ρk,n)

. (3.12)

In addition, for each fixed n = 0, 1, . . ., the quantities {ρk,n}m
k=1 are the m roots of the Lundberg’s

equation (in ξ)

p̃(δ∗n − cξ, ξ) =
r∑

i=1

mi∑

j=1

(
λi

λi + δ∗n − cξ

)j

b̃ij(ξ) = 1

with non-negative real parts. These roots are typically assumed to be distinct (see Remark 1). For
notational convenience, the dependence of {ρk,n}m

k=1 and {Ak,n}m
k=1 on δ1 and δ2 has been suppressed.

Note that β̃∗∗δ12,n(·) defined by (3.9) comprises two components. While β̃δ12,n(·) is simply the Laplace
transform of the known quantity (2.22), the component β̃∗δ12,n(·) in (3.7) depends on the lower order
Gerber-Shiu functions φδ12,j(·)’s for j = 0, 1, . . . , n − 1 because of (2.23) and (2.33). From (3.7), one
has lims→∞ sβ̃∗δ12,n(s) = 0 since lims→∞ τ̃ij(δ∗n − cs) = 0 by analytic continuation of Laplace transform
and lims→∞ sr̃∗δ12,n,ij(s) = r∗δ12,n,ij(0) = 0 according to (2.33). Thus, multiplying both sides of (3.9) by s
followed by letting s →∞ along with the use of (2.22) yields

β∗∗δ12,n(0) = βδ12,n(0) =
∫ ∞

0

∫ ∞

0
w(x, y, 0)h

(1)
δ1,δ2,n(x, y|0) dy dx. (3.13)

With (3.13), comparison of (2.4) at u = 0 with (3.11) leads to
∫ ∞

0

∫ ∞

0

∫ x

0
w(x, y, v)h

(2)
δ1,δ2,n(x, y, v|0) dv dx dy =

m∑

k=1

Ak,nβ̃∗∗δ12,n(ρk,n) =
m∑

k=1

Ak,n

[
β̃δ12,n(ρk,n)+β̃∗δ12,n(ρk,n)

]
,

(3.14)
where the last equality follows from (3.9). The identification of the moment-based discounted density
h

(2)
δ1,δ2,n(x, y, v|0) can be done via the above equation as follows. Utilizing (2.22), we first obtain

β̃δ12,n(ρk,n) =
∫ ∞

0

∫ ∞

0

∫ x

0
w(x, y, v)

{
h

(1)
δ1,δ2,n(x, y|v)e−ρk,nv

}
dv dx dy. (3.15)

Next, putting s = ρk,n into (3.7) and using (2.23) and (2.33) give rise to

β̃∗δ12,n(ρk,n) =
r∑

i=1

mi∑

j=1

τ̃ij(δ∗n − cρk,n)
n−1∑

l=0

(
n

l

)∫ ∞

0
e−ρk,nv

∫ v

0
fn−l(y) φδ12,l(v − y) bij(y) dy dv. (3.16)

Now we pay attention to the double integral, which can regarded as the Laplace transform (with argument
ρk,n) of a convolution. In particular, we define, for n = 1, 2, . . .,

b̃f
n,ij(s) =

∫ ∞

0
e−syfn(y) bij(y) dy. (3.17)

Then, by applying (2.4) we arrive at
∫ ∞

0
e−ρk,nv

∫ v

0
fn−l(y) φδ12,l(v − y) bij(y) dy dv = b̃f

n−l,ij(ρk,n)
∫ ∞

0
e−ρk,nvφδ12,l(v) dv

= b̃f
n−l,ij(ρk,n)

( ∫ ∞

0

∫ ∞

0

∫ x

0
w(x, y, v)

{
e−ρk,nvh

(1)
δ1,δ2,l(x, y|v) +

∫ ∞

0
e−ρk,nuh

(2)
δ1,δ2,l(x, y, v|u)

}
du dv dx dy

)
.

(3.18)

Combining (3.14)-(3.16) and (3.18), we can find h
(2)
δ1,δ2,n(x, y, v|0) in the following Proposition.
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Proposition 3 Assume that the joint density of (V, Y ) follows the dependency structure (1.1) with kij(·)
given by (3.1). For n = 0, 1, . . ., the moment-based discounted density h

(2)
δ1,δ2,n(x, y, v|0) defined in (2.3)

with zero initial surplus can be obtained recursively via

h
(2)
δ1,δ2,n(x, y, v|0) = h

(1)
δ1,δ2,n(x, y|v)

m∑

k=1

Ak,ne−ρk,nv

+
m∑

k=1

Ak,n

r∑

i=1

mi∑

j=1

τ̃ij(δ∗n − cρk,n)
n−1∑

l=0

(
n

l

)
b̃f
n−l,ij(ρk,n)

{
e−ρk,nvh

(1)
δ1,δ2,l(x, y|v) +

∫ ∞

0
e−ρk,nuh

(2)
δ1,δ2,l(x, y, v|u) du

}
,

0 ≤ v < x; y > 0, (3.19)

where b̃f
n−l,ij(·) is defined in (3.17). ¤

In Proposition 3, for each fixed n = 0, 1, . . ., the density h
(2)
δ1,δ2,n(x, y, v|0) is expressed in terms of the

lower order densities h
(2)
δ1,δ2,l(x, y, v|u)’s for l = 0, 1, . . . , n − 1 (with h(1) known explicitly via (2.1) and

(2.2)). Because h
(1)
δ1,δ2,0(x, y|u) and h

(2)
δ1,δ2,0(x, y, v|u) are traditional discounted densities (i.e. without

any moment-based components) that do not depend on δ2, we define h1,δ1(x, y|u) = h
(1)
δ1,δ2,0(x, y|u) and

h2,δ1(x, y, v|u) = h
(2)
δ1,δ2,0(x, y, v|u). Then, at the starting point n = 0, (3.19) reduces to

h2,δ1(x, y, v|0) = h1,δ1(x, y|v)
m∑

k=1

Ak,0e
−ρk,0v, 0 ≤ v < x; y > 0,

which is consistent with Willmot and Woo (2012, Equation (34)). According to Proposition 2, this is suf-
ficient to characterize h2,δ1(x, y, v|u) (for u ≥ 0), which can in turn be used to determine h

(2)
δ1,δ2,1(x, y, v|0)

via application of Proposition 3 when n = 1. Then we can continue to utilize Propositions 2 and 3
repetitively until h

(2)
δ1,δ2,n(x, y, v|0) is obtained. If our goal is to calculate h

(2)
δ1,δ2,n(x, y, v|u), then one can

apply Proposition 2 once more. But if we are interested in the Gerber-Shiu function φδ12,n(u) defined
by (1.3), then one can either use Proposition 1 or the integral representation (2.4) with the help of
h

(2)
δ1,δ2,n(x, y, v|u).

Remark 1 Sometimes it is possible that the roots {ρk,n}m
k=1 are not distinct. Under such a rare situation,

practically one can slightly alter a model parameter (such as δ1, δ2 or the premium rate c) so that there
will no longer be multiple roots. Then the ruin-related quantities in question could be approximated or
bounded by their counterparts in a model with distinct roots. Interested readers are referred to D’Auria
et al. (2010), Labbé et al. (2011), and Ji and Zhang (2012) for the detailed treatment of risk processes
with multiple Lundberg’s roots. ¤

Example 1 Consider the classical compound Poisson risk model with time-independent claims (i.e.
r = 1 and m1 = 1 in (1.1) and (3.1)). For notational convenience, we let λ1 = λ and ρ1,1 = ρ, and the claim

density is b11(·) ≡ p(·). In this case, (2.2) is given by h
(1)
δ1,δ2,n(x, y|u) = λ

c e
−

(
λ+δ1+nδ2

c

)
(x−u)

fn(x+y) p(x+y)
for x > u and y > 0. When n = 1, (3.19) reduces to

h
(2)
δ1,δ2,1(x, y, v|0) = h

(1)
δ1,δ2,1(x, y|v)

(
λ + δ1 + δ2

c
− ρ

)
e−ρv

+
λ

c
(̃f · p)(ρ)

{
e−ρvh1,δ1(x, y|v) +

∫ ∞

0
e−ρuh2,δ1(x, y, v|u) du

}
, 0 ≤ v < x; y > 0,
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where (̃f · p)(ρ) =
∫∞
0 e−ρyf(y) p(y) dy. The quantity h2,δ1(x, y, v|u) has been derived by Cheung et al.

(2010a, Corollary 3.1). ¤

For the rest of this section, we consider the special case of (1.3) when w(x, y, v) = w(x, y), i.e. the
penalty function does not depend on the variable R. Such a Gerber-Shiu function is given by

φδ12,n(u) = E
[
e−δ1τZn

δ2(τ) w(U(τ−), |U(τ)|) I{τ < ∞}
∣∣∣U(0) = u

]
, u ≥ 0,

which is an extension of the classical Gerber-Shiu function further involving the n-th moment of the
discounted aggregate claim costs until ruin. Similarly, the special cases of some related functions
will be denoted by adding a bar ‘ ’ on them. As we shall see, some of the previous results can
be simplified. Again we shall apply Lemma 1 (or Equation (3.3)) and identify the corresponding

β̃δ12,n(s) =
∫∞
0 e−su βδ12,n(u) du and σ̃δ12,n(s) under the penalty w(x, y, v) = w(x, y). Then, with the

distributional assumption kij(t) = τij(t) in (3.1), (2.29) reduces to

βδ12,n(u) =
r∑

i=1

mi∑

j=1

∫ ∞

0
e−δ∗nt γn,ij(u + ct) τij(t) dt, u ≥ 0,

where

γn,ij(x) =
∫ ∞

x
fn(y) w(x, y − x) bij(y) dy =

∫ ∞

0
fn(x + y) w(x, y) bij(x + y) dy, x > 0 (3.20)

from (2.30) no longer depends on u. For later use, we also define the corresponding Laplace transform

γ̃n,ij(s) =
∫ ∞

0
e−sx γn,ij(x) dx =

∫ ∞

0

∫ ∞

0
w(x, y) e−sxfn(x + y) bij(x + y) dx dy. (3.21)

Along the same lines as in Willmot and Woo (2012, p.138), it follows that

β̃δ12,n(s) =
r∑

i=1

mi∑

j=1

τ̃ij(δ∗n − cs) γ̃n,ij(s)−
r∑

i=1

mi∑

j=1

ϑδ12,n,ij

(λi + δ∗n − cs)j
, (3.22)

with ϑδ12,n,ij ’s being constants. As for σ̃δ12,n(s), (3.6) in the present context becomes

σ̃δ12,n(s) =
r∑

i=1

mi∑

j=1

θ
∗∗
δ12,n,ij

(λi + δ∗n − cs)j
− β̃

∗
δ12,n(s), (3.23)

for some constants θ
∗∗
δ12,n,ij ’s, where β̃

∗
δ12,n(s) =

∑r
i=1

∑mi
j=1 τ̃ij(δ∗n−cs) r̃

∗
δ12,n,ij(s) according to (3.7). Here

r̃
∗
δ12,n,ij(s) follows the trivial definition r̃

∗
δ12,n,ij(s) =

∫∞
0 e−sx r∗δ12,n,ij(x) dx with r∗δ12,n,ij(x) =∫ x

0 φ
∗
δ12,n(x, y) bij(y) dy and φ

∗
δ12,n(x, y) =

∑n−1
j=0

(
n
j

)
fn−j(y)φδ12,j(x − y) because of (2.33) and (2.23)

respectively. Define φ̃δ12,n(s) =
∫∞
0 e−suφδ12,n(u) du. When w(x, y, v) = w(x, y), substitution of (3.22)

and (3.23) into (3.3) yields

φ̃δ12,n(s) =
ζ̃δ12,n(s)− $̃δ12,n(s)

1−∑r
i=1

∑mi
j=1

(
λi

λi+δ∗n−cs

)j
b̃ij(s)

.
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where

ζ̃δ12,n(s) =
r∑

i=1

mi∑

j=1

τ̃ij(δ∗n − cs) γ̃n,ij(s) + β̃
∗
δ12,n(s) (3.24)

and

$̃δ12,n(s) =
r∑

i=1

mi∑

j=1

ϑ∗δ12,n,ij

(λi + δ∗n − cs)j
=

q∗δ12,n(s)∏r
i=1(λi + δ∗n − cs)mi

,

with ϑ∗δ12,n,ij = ϑδ12,n,ij+θ
∗∗
δ12,n,ij and q∗δ12,n(s) being a polynomial in s of degree at most m−1. By applying

the same arguments resulting in (3.11) and noting that lims→∞ sζ̃δ12,n(s) = 0 as τ̃ij(s) = [λi/(λi + s)]j ,
one finds

φδ12,n(0) =
m∑

k=1

Ak,n ζ̃δ12,n(ρk,n), (3.25)

where Ak,n’s are given by (3.12). Concerning ζ̃δ12,n(·) in (3.24), we note that γ̃n,ij(·) is explicitly known via

(3.20) whereas β̃
∗
δ12,n(·) depends on the lower order Gerber-Shiu functions φδ12,j(·)’s for j = 0, 1, . . . , n−1.

From (2.4) along with w(x, y, v) = w(x, y), one can write

φδ12,n(u) =
∫ ∞

0

∫ ∞

0
w(x, y) hδ1,δ2,n(x, y|u) dx dy, u ≥ 0, (3.26)

where hδ1,δ2,n(x, y|u) is given by (2.5). We shall identify hδ1,δ2,n(x, y|0). Resembling (3.16) and (3.18), it
is found that

β̃
∗
δ12,n(ρk,n) =

r∑

i=1

mi∑

j=1

τ̃ij(δ∗n−cρk,n)
n−1∑

l=0

(
n

l

)
b̃f
n−l,ij(ρk,n)

∫ ∞

0

∫ ∞

0
w(x, y)

∫ ∞

0
e−ρk,nuhδ1,δ2,l(x, y|u) du dx dy.

Application of the above equation and (3.21) with s = ρk,n to (3.24) followed by comparing (3.25) with
(3.26) at u = 0 leads to following Proposition.

Proposition 4 Assume that the joint density of (V, Y ) follows the dependency structure (1.1) with kij(·)
given by (3.1). For n = 0, 1, . . ., the moment-based discounted density hδ1,δ2,n(x, y|0) in (2.5) with zero
initial surplus can be obtained recursively via

hδ1,δ2,n(x, y|0) =
m∑

k=1

Ak,n

r∑

i=1

mi∑

j=1

τ̃ij(δ∗n − cρk,n)

{
e−ρk,nxfn(x + y) bij(x + y)

+
n−1∑

l=0

(
n

l

)
b̃f
n−l,ij(ρk,n)

∫ ∞

0
e−ρk,nuhδ1,δ2,l(x, y|u) du

}
, x, y > 0. (3.27)

The density hδ1,δ2,n(y|0) follows immediately by integrating over x thanks to (2.6). ¤

The starting point n = 0 of (3.27) represents the traditional discounted joint density of (U−, |U |) with
zero initial surplus, and it agrees with Willmot and Woo (2012, Equation (41)). Following the comments
made after Proposition 3, (2.18) and (2.19) in Corollary 1 along with (3.27) in Proposition 4 lead to a
full characterization of the recursive evaluation of hδ1,δ2,n(x, y|u) for u ≥ 0.
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4 Combination of exponentials claims: Discounted claims until ruin

In this section, the joint density (1.1) for (V, Y ) is still assumed. However, in contrast to Section 3 in which
distributional assumption on kij(·) is made, we shall assume specific form of bij(·) pertaining to the claim
severity (see (4.3)). As suggested by Willmot (2007), the study of Gerber-Shiu function in risk processes
with general interclaim times typically starts with the identification of the form of the ‘first drop’ density
hδ1,δ2,n(y|0) as a function of y via some probabilistic arguments. For ruin of the surplus process by claims
subsequent to the first, we shall look at the joint density of (τ, Zδ2 , U

−, |U |, R) with zero initial surplus,
namely g2,δ2(t, z, x, y, v|0), defined at the beginning of Section 2. Let g∗δ2(t, z, x, v|0) be the joint density

of the quadruple (τ,
∑N(τ)−1

i=1 e−δ2Tif(Yi), U−, R) at (t, z, x, v) for ruin occurring upon subsequent claims,
given U(0) = 0. Combining the arguments leading to Cheung (2013, Equation (2.4)) and Landriault et
al. (2013, Equation (7)), we arrive at, for 0 ≤ v < x, y > 0, t > x/c, and z > e−δ2tf(x + y),

g2,δ2(t, z, x, y, v|0) = g∗δ2(t, z − e−δ2tf(x + y), x, v|0)
g1(x, y|v)∫∞

0 g1(x, s|v) ds
, (4.1)

where g1 is defined in (2.1). Under (1.1), application of (2.1)-(2.3) and (4.1) to (2.6) yields

hδ1,δ2,n(y|0)

=
∫ ∞

0
e−δ∗n(x

c )fn(x + y) g1(x, y|0) dx

+
∫ ∞

0

∫ x

0

∫ ∞

x/c

∫ ∞

e−δ2tf(x+y)
e−δ1t zn g∗δ2(t, z − e−δ2tf(x + y), x, v|0)

g1(x, y|v)∫∞
0 g1(x, s|v) ds

dz dt dv dx

=
r∑

i=1

mi∑

j=1

∫ ∞

0
e−

δ∗n
c

xfn(x + y)
{

1
c

kij

(x

c

)
bij(x + y)

}
dx

+
r∑

i=1

mi∑

j=1

n∑

l=0

(
n

l

) ∫ ∞

0

∫ x

0

∫ ∞

x/c

∫ ∞

0
e−δ∗l t zn−l f l(x + y) g∗δ2(t, z, x, v|0)

1
c kij

(
x−v

c

)
bij(x + y)∫∞

0 g1(x, s|v) ds
dzdtdvdx,

(4.2)

where a change of variable for the integral involving z and a binomial expansion have been performed.
From the above equation, it is clear that the dependence of hδ1,δ2,n(y|0) on y only appears through bij(·)’s
and the cost function f(·). Further assumptions on these quantities need to be made.

In the rest of this section, for simplicity it is assumed that mi = 1, and we denote ki(·) = ki1(·),
k̃i(·) = k̃i1(·) and bi(·) = bi1(·) for i = 1, 2, . . . , r. In particular, we assume that bi(y) = µie

−µiy is an
exponential density. Hence, (1.1) becomes

p(t, y) =
r∑

i=1

ki(t) µie
−µiy, t, y > 0. (4.3)

Here ki(·)’s are not necessarily densities, and µi’s are assumed distinct. Under (4.3), the marginal
distribution of the claim size Y follows a combination of exponentials. This reverse type of dependency
structure (4.3) was studied by Landriault et al. (2013), who analyzed the Gerber-Shiu function in which
the penalty function depends on the deficit only. Since we are mostly interested in the discounted
aggregate claims until ruin, it is assumed that w(x, y, v) ≡ 1 and f(x) = x. Therefore, the Gerber-Shiu
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function (1.3) becomes

φδ12,n(u) = E

[
e−δ1τ

( N(τ)∑

i=1

e−δTiYi

)n

I{τ < ∞}
∣∣∣U(0) = u

]
, u ≥ 0. (4.4)

It is remarked we do not assume δ1 = 0 here so as to facilitate the study of covariance of τ and∑N(τ)
i=1 e−δTiYi in Section 5. For later use, for each fixed n = 0, 1, . . ., we define the Lundberg’s equation

(in ξ)

p̃(δ∗n − cξ, ξ) =
r∑

i=1

k̃i(δ∗n − cξ)
µi

µi + ξ
= 1, (4.5)

which is known to have exactly r roots with negative real parts (see Landriault et al. (2013)).

Under the above assumptions, by applying a binomial expansion to the term f l(x + y) = (x + y)l in
(4.2), it is not difficult to see that hδ1,δ2,n(y|0) admits the form

hδ1,δ2,n(y|0) =
n∑

j=0

r∑

k=1

Cδ1,δ2,j,k,n
yje−µky

j!
, y > 0, (4.6)

for some constants Cδ1,δ2,j,k,n’s. The corresponding Laplace transform h̃δ1,δ2,n(s|0) =
∫∞
0 e−syhδ1,δ2,n(y|0) dy

is thus given by

h̃δ1,δ2,n(s|0) =
n∑

j=0

r∑

k=1

Cδ1,δ2,j,k,n

(µk + s)j+1
. (4.7)

Now, (4.6) will in turn be used to identify the appropriate solution form of φδ1,δ2,n(u) as a function
of u. Using (2.6), (2.11) reduces to

φδ12,n(u) =
∫ u

0
hδ∗n,δ2,0(y|0)φδ12,n(u−y) dy+

n−1∑

j=0

(
n

j

) ∫ u

0
hδ∗j ,δ2,n−j(y|0) φδ12,j(u−y) dy+

∫ ∞

u
hδ1,δ2,n(y|0) dy

(4.8)
With the help of (4.6), it can be readily verified that

∫ ∞

0
e−su

∫ ∞

u
hδ1,δ2,n(y|0) dy du =

n∑

j=0

r∑

k=1

C∗
δ1,δ2,j,k,n

(µk + s)j+1
,

for some constants C∗
δ1,δ2,j,k,n’s. Hence, taking Laplace transforms on both sides of (4.8) followed by

rearrangements yields

φ̃δ12,n(s) =
1

1− h̃δ∗n,δ2,0(s|0)

{
n−1∑

j=0

(
n

j

)
h̃δ∗j ,δ2,n−j(s|0) φ̃δ12,j(s) +

n∑

j=0

r∑

k=1

C∗
δ1,δ2,j,k,n

(µk + s)j+1

}
. (4.9)

For each fixed n = 0, 1, . . ., define {−κk,n}r
k=1 to be the roots of the polynomial equation (in ξ)

r∏

k=1

(µk + ξ)−
r∑

k=1

Cδ∗n,δ2,0,k,0

r∏

i=1,i6=k

(µi + ξ) = 0.
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These roots are known to have negative real parts and are assumed to be distinct (see Remark 1). Then,
by applying (4.7) to (4.9), we arrive at

φ̃δ12,n(s) =
1∏r

k=1(s + κk,n)

{
n−1∑

j=0

(
n

j

) n−j∑

l=0

r∑

k=1

Cδ∗j ,δ2,l,k,n−j
∏r

i=1,i 6=k(µi + s)

(µk + s)l
φ̃δ12,j(s)

+
n∑

j=0

r∑

k=1

C∗
δ1,δ2,j,k,n

∏r
i=1,i6=k(µi + s)

(µk + s)j

}
.

By induction, it can be deduced that φ̃δ12,n(s) admits the partial fractions representation

φ̃δ12,n(s) =
n−1∑

j=0

r∑

k=1

Bj,k,n

(µk + s)j+1
+

n∑

j=0

r∑

k=1

B∗
j,k,n

s + κk,j
,

for some constants Bj,k,n’s and B∗
j,k,n’s. Thus, Laplace transform inversion gives

φδ12,n(u) =
n−1∑

j=0

r∑

k=1

Bj,k,n
uje−µku

j!
+

n∑

j=0

r∑

k=1

B∗
j,k,ne−κk,ju, u ≥ 0. (4.10)

Having identified the above solution form, the last step is to determine the unknown coefficients by back
substitution into the integral equation (2.20). From Cheung (2013, Section 3.1), it has been shown that
the recursive evaluation of these coefficients is extremely tedious for general positive integer n even for the
simple case of the traditional Sparre Andersen model with exponential claims. Therefore, for illustration
we only focus on φδ12,1(u) which will result in a neat expression. In particular, it will be shown that
B0,k,1 = 0 for k = 1, 2, . . . , r, i.e. the first summation in (4.10) vanishes. When n = 1, it is clear from
(2.20) that one requires the starting point φδ12,0(·) via φ∗δ12,1(x, y) in (2.23). From (4.4), φδ12,0(·) is simply
the Laplace transform of the time of ruin. Hence, according to Landriault et al. (2013, Theorem 1), one
asserts that (4.10) holds true, where {−κk,0}r

k=1 are the r roots with negative real parts to (4.5) under
n = 0, and {B∗

0,k,0}r
k=1 can be obtained from the system of linear equations

r∑

k=1

B∗
0,k,0

µi

µi − κk,0
= 1, i = 1, 2, . . . , r. (4.11)

When w(x, y, v) ≡ 1 and f(x) = x, the use of (2.21) and (2.23) leads (2.20) for n = 1 to

φδ12,1(u) =
r∑

i=1

∫ ∞

0
e−(δ1+δ2)t

{∫ ∞

u+ct
y µie

−µiy dy +
∫ u+ct

0
φδ12,1(u + ct− y) µie

−µiy dy

+
∫ u+ct

0
y φδ12,0(u + ct− y)µie

−µiy dy

}
ki(t) dt. (4.12)

We evaluate three double integrals on the right-hand side of the above equation as follows. The first and
third ones are rather straightforward, and we omit the algebra and simply state that

r∑

i=1

∫ ∞

0
e−(δ1+δ2)t

{∫ ∞

u+ct
y µie

−µiy dy

}
ki(t) dt

=
r∑

i=1

k̃i(δ1 + δ2 + cµi) ue−µiu +
r∑

i=1

{
1
µi

k̃i(δ1 + δ2 + cµi) + c T 2
δ1+δ2+cµi

ki(0)
}

e−µiu, (4.13)
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and
r∑

i=1

∫ ∞

0
e−(δ1+δ2)t

{∫ u+ct

0
y φδ12,0(u + ct− y)µie

−µiy dy

}
ki(t) dt

=
r∑

k=1

B∗
0,k,0

r∑

i=1

µi

(µi − κk,0)2
k̃i(δ1 + δ2 + cκk,0) e−κk,0u −

r∑

i=1

k̃i(δ1 + δ2 + cµi)
r∑

k=1

B∗
0,k,0

µi

µi − κk,0
ue−µiu

−
r∑

i=1

r∑

k=1

B∗
0,k,0

µi

µi − κk,0

{
1

µi − κk,0
k̃i(δ1 + δ2 + cµi) + c T 2

δ1+δ2+cµi
ki(0)

}
e−µiu, (4.14)

where T 2
δ1+δ2+µic

ki(0) =
∫∞
0 te−(δ1+δ2+µic)tki(t) dt corresponds to the double Dickson-Hipp operator (see

Dickson and Hipp (2001) and Li and Garrido (2004)). For the second double integral in (4.12), one needs
to be careful in computing the inner integral

∫ u+ct
0 φδ12,1(u+ct−y) µie

−µiy dy, as φδ12,1(u+ct−y) involves
exponential terms in the form of e−µk(u+ct−y) which has some cancellations with e−µiy when i = k. After
all, it is found that

r∑

i=1

∫ ∞

0
e−(δ1+δ2)t

{∫ u+ct

0
φδ12,1(u + ct− y) µie

−µiy dy

}
ki(t) dt

=
r∑

i=1

k̃i(δ1 + δ2 + cµi) B0,i,1 µi ue−µiu +
r∑

i=1

B0,i,1 cµi T 2
δ1+δ2+cµi

ki(0) e−µiu

+
r∑

i=1

r∑

k=1,k 6=i

B0,k,1
µi

µi − µk

{
k̃i(δ1 + δ2 + cµk) e−µku − k̃i(δ1 + δ2 + cµi) e−µiu

}

+
1∑

j=0

r∑

k=1

B∗
j,k,1

r∑

i=1

µi

µi − κk,j
k̃i(δ1 + δ2 + cκk,j) e−κk,ju −

r∑

i=1

k̃i(δ1 + δ2 + cµi)
1∑

j=0

r∑

k=1

B∗
j,k,1

µi

µi − κk,j
e−µiu.

(4.15)

We proceed by substituting (4.13)-(4.15) into (4.12) and equating the coefficients of various exponential
terms with (4.10) for n = 1. First, the coefficients of e−κk,1u (k = 1, 2, . . . , r) imply that {−κk,1}r

k=1 are
the r roots to (4.5) (when n = 1) with negative real parts. Similarly, equating the coefficients of e−κk,0u

and rearranging terms, we arrive at

B∗
0,k,1 =

B∗
0,k,0

∑r
i=1

µi

(µi−κk,0)2
k̃i(δ1 + δ2 + cκk,0)

1−∑r
i=1

µi
µi−κk,0

k̃i(δ1 + δ2 + cκk,0)
, k = 1, 2, . . . , r. (4.16)

In the above equation, B∗
0,k,1 is expressed in terms of B∗

0,k,0 which is known because of (4.11). Next, the
coefficients of ue−µiu together with the fact that B∗

0,k,0’s satisfy (4.11) lead to

B0,i,1 = 0, i = 1, 2, . . . , r. (4.17)

Finally, we equate the coefficients of e−µiu and apply (4.17) to arrive at

0 =
1
µi

k̃i(δ1 + δ2 + cµi) + c T 2
δ1+δ2+cµi

ki(0)− k̃i(δ1 + δ2 + cµi)
1∑

j=0

r∑

k=1

B∗
j,k,1

µi

µi − κk,j

−
r∑

k=1

B∗
0,k,0

µi

µi − κk,0

{
1

µi − κk,0
k̃i(δ1 + δ2 + cµi) + c T 2

δ1+δ2+cµi
ki(0)

}
, i = 1, 2, . . . , r. (4.18)
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The only unknowns in the above equation are {B∗
1,k,1}r

k=1, since {B∗
0,k,0}r

k=1 can be solved from (4.11)
and then {B∗

0,k,1}r
k=1 are explicitly given by (4.16). Hence, (4.18) forms a linear system of r equations

from which {B∗
1,k,1}r

k=1 can be solved for. To summarize, because of (4.17), (4.10) for n = 1 simplifies to
give

φδ12,1(u) =
1∑

j=0

r∑

k=1

B∗
j,k,1e

−κk,ju, u ≥ 0. (4.19)

5 Numerical illustrations

In this section, we apply the results in preceding sections to find, conditional on ruin occurring, (i) the
covariance of the time of ruin τ and the discounted aggregate claims until ruin

∑N(τ)
i=1 e−δ2TiYi; and (ii)

the expectation, variance and third central moment of
∑N(τ)

i=1 e−δ2TiYi. Throughout it is sufficient to use
the cost function f(x) = x so that Zδ2(τ) =

∑N(τ)
i=1 e−δ2TiYi. For notational convenience, we shall use Eu

to denote the expectation taken under U(0) = u.

First, we introduce the conditional covariance defined by

Cov(τ, Zδ2(τ)|u) = Eu[τ Zδ2(τ)|τ < ∞]− Eu[τ |τ < ∞]Eu[Zδ2(τ)|τ < ∞]

=
Eu[τ Zδ2(τ) I{τ < ∞}]

ψ(u)
− Eu[τ I{τ < ∞}] Eu[Zδ2(τ) I{τ < ∞}]

ψ2(u)
.

(Interested readers are referred to Psarrakos and Politis (2012) for the study of the covariance of the
surplus prior to ruin and the deficit at ruin in the classical compound Poisson risk model.) In addition,
we are also interested in the following three moment-based quantities in relation to Zδ2(τ) conditional on
ruin, namely the mean

Mean(Zδ2(τ)|u) = Eu[Zδ2(τ)|τ < ∞] =
Eu[Zδ2(τ) I{τ < ∞}]

ψ(u)
,

the variance

Var(Zδ2(τ)|u) = Eu[{Zδ2(τ)−Mean(Zδ2(τ)|u)}2|τ < ∞] =
Eu[Z2

δ2
(τ) I{τ < ∞}]
ψ(u)

−
(

Eu[Zδ2(τ) I{τ < ∞}]
ψ(u)

)2

,

and the third central moment

CM3(Zδ2(τ)|u) = Eu[{Zδ2(τ)−Mean(Zδ2(τ)|u)}3|τ < ∞]

=
Eu[Z3

δ2
(τ) I{τ < ∞}]
ψ(u)

− 3×Mean(Zδ2(τ)|u)×Var(Zδ2(τ)|u)−Mean3(Zδ2(τ)|u).

The evaluation of various quantities involved in the above definitions is explained as follows.

• ψ(u) is the ruin probability (i.e. a special case of φδ12,0(u) in (1.3) when w(x, y, v) ≡ 1 and δ1 = 0).

• One can find

Eu[τZδ2(τ)I{τ < ∞}] = − ∂

∂δ1
Eu

[
e−δ1τZδ2(τ)I{τ < ∞}

]∣∣∣
δ1=0

, u ≥ 0,
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where the expectation on the right-hand side is a special case of φδ12,1(u) in (1.3) with w(x, y, v) ≡ 1
and f(x) = x. In particular, if the dependency (4.3) holds, then it can be seen from (4.19) that the
above quantity (as a function of u) is a linear sum of terms involving e−κk,ju’s and ue−κk,ju’s for
j = 0, 1 and k = 1, 2, . . . , r. (Note that B∗

j,k,1’s and −κk,j ’s in (4.19) depend on δ1 implicitly.)

• Similarly, the expected time to ruin Eu[τ I{τ < ∞}] can be obtained by differentiating φδ12,0(u)
with w(x, y, v) ≡ 1.

• The n-th moment Eu[Zn
δ2

(τ) I{τ < ∞}] is a special case of φδ12,n(u) with w(x, y, v) ≡ 1; f(x) = x
and δ1 = 0.

For numerical illustrations, it is assumed that the interclaim time V and the claim severity Y are both
exponentially distributed with means 1/λ and 1/µ respectively. In addition, the dependency between
V and Y is modelled via the Farlie-Gumbel-Morgenstern (FGM) copula (e.g. Nelsen (2006, Examples
3.12 and 5.2)). We refer interested readers to e.g. Cossette et al. (2010) and Chadjiconstantinidis and
Vrontos (2012) for the study of risk processes under FGM copula. Therefore, the joint density of (V, Y )
is given by

p(t, y) = (λe−λt)(µe−µy) + θ(λe−λt)(µe−µy)(2e−λt − 1)(2e−µy − 1), y, t > 0.

Here θ is the dependency parameter such that −1 ≤ θ ≤ 1, with θ = 0 corresponding to the case of
independence. Clearly, the above joint density can be put in the form of (1.1) under (3.1) or (4.3), and
therefore both Sections 3 and 4 are applicable. We shall closely follow the parameters in Cossette et al.
(2010, Example 8.1), and let λ = µ = 1 and c = 1.5.

We first plot the conditional covariance Cov(τ, Zδ2(τ)|u) against the initial surplus u for the depen-
dency parameters θ = −1,−0.5, 0, 0.5, 1 when δ2 = 0.01 in Figure 1 and when δ2 = 0.05 in Figure 2. From
both figures, for each fixed θ, as u increases the covariance always first increases starting from a positive
value, and then decreases to negative values and finally converges. The sign change of the covariance as
the initial surplus increases may be interpreted as follows. In general, conditional on ruin, the aggregate
claims until ruin (without discounting), namely

∑N(τ)
i=1 Yi, is always given by u+cτ+|U(τ)|. For a fixed ini-

tial surplus u, there are two opposing effects to the discounted aggregate claims Zδ2(τ) =
∑N(τ)

i=1 e−δ2TiYi

if τ gets larger: (i) the aggregate claims
∑N(τ)

i=1 Yi (and hence
∑N(τ)

i=1 e−δ2TiYi) tends to be larger; but (ii)
the occurrences of these claims are spread over a longer time period as the process survives longer, and
the effect of discounting tends to make

∑N(τ)
i=1 e−δ2TiYi smaller. When u is small, the numerical result of

positive covariance indicates that the former effect dominates. However, as u increases further, the sign
change of the covariance suggests that the latter effect becomes more dominant because the discounting
on u gets more significant. In addition to the pattern of Cov(τ, Zδ2(τ)|u) as a function of u, we note
that for almost all values of fixed u the absolute value of the covariance decreases when the dependency
parameter θ increases from −1 to 1. Finally, the absolute value of the covariance is mostly smaller in
Figure 2 (i.e. δ2 = 0.05) than in Figure 1 (i.e. δ2 = 0.01), which can be attributed to the fact that the
discounted aggregate claims Zδ2(τ) is always decreasing in δ2.

INSERT FIGURE 1

Figure 1 : Plot of Cov(τ, Z0.01(τ)|u) for various choices of θ
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INSERT FIGURE 2

Figure 2 : Plot of Cov(τ, Z0.05(τ)|u) for various choices of θ

Next, the moment-based quantities Mean(Zδ2(τ)|u), Var(Zδ2(τ)|u) and CM3(Zδ2(τ)|u) for δ2 = 0.01
and δ2 = 0.05 are plotted in Figures 3-8. Analogous to the comparison across Figures 1 and 2, the values
in Figures 3,5 and 7 (i.e. δ2 = 0.01) are mostly larger than those in Figures 4,6 and 8 (i.e. δ2 = 0.05)
because the magnitude of Zδ2(τ) is larger when δ2 is smaller. In both Figures 3 and 4, the conditional
mean Mean(Zδ2(τ)|u) is an increasing function of u for fixed dependency parameter θ. This makes sense
as more claims are required to cause ruin if one starts with larger initial surplus. However, within each
of these two figures, the curves for different values of θ are very close to each other, which suggests that
Mean(Zδ2(τ)|u) is fairly insensitive to the level of dependency between an interclaim time and the resulting
claim amount. When we turn to the conditional variance Var(Zδ2(τ)|u), Figures 5 and 6 show the similar
pattern: Var(Zδ2(τ)|u) is not monotone in u but it converges to a finite value as u → ∞. In addition,
Var(Zδ2(τ)|u) increases when θ decreases. Interestingly, Bargès et al. (2011, Section 4.1) and Woo and
Cheung (2013, Section 4.1) also illustrated the same phenomenon for the discounted aggregate claims
until a fixed time t, namely Zδ2(t) =

∑N(t)
i=1 e−δ2TiYi. The same probabilistic interpretations therein are

applicable: if an interclaim time and the resulting claim amount are negatively dependent, a large (small)
claim is usually associated to a small (large) interclaim time and hence the discounted value each claim
amount is more likely to take on extreme values, leading to a larger variance to Var(Zδ2(τ)|u). Finally,
from Figures 7 and 8, it can be seen that the third central moment CM3(Zδ2(τ)|u) is not monotone in
u. In particular, CM3(Zδ2(τ)|u) mostly takes on positive values, i.e. Zδ2(τ) is skewed to the right except
for a small domain of u. Nonetheless, similar to the case of Cov(τ, Zδ2(τ)|u), for most values of fixed u
the absolute value of CM3(Zδ2(τ)|u) decreases when the dependency parameter θ increases.

INSERT FIGURE 3

Figure 3 : Plot of Mean(Z0.01(τ)|u) for various choices of θ

INSERT FIGURE 4

Figure 4 : Plot of Mean(Z0.05(τ)|u) for various choices of θ

INSERT FIGURE 5

Figure 5 : Plot of Var(Z0.01(τ)|u) for various choices of θ

INSERT FIGURE 6

Figure 6 : Plot of Var(Z0.05(τ)|u) for various choices of θ
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INSERT FIGURE 7

Figure 7 : Plot of CM3(Z0.01(τ)|u) for various choices of θ

INSERT FIGURE 8

Figure 8 : Plot of CM3(Z0.05(τ)|u) for various choices of θ
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