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We present a theoretical study of the tunneling magnetoresistance (TMR) and spin-polarized

transport in Fe3Si/MgO/Fe3Si(001) magnetic tunnel junction (MTJ). It is found that the

spin-polarized conductance and bias-dependent TMR ratios are rather sensitive to the structure of

Fe3Si electrode. From the symmetry analysis of the band structures, we found that there is no

spin-polarized D1 symmetry bands crossing the Fermi level for the cubic Fe3Si. In contrast, the

tetragonal Fe3Si driven by in-plane strain reveals half-metal nature in terms of D1 state. The giant

TMR ratios are predicted for both MTJs with cubic and tetragonal Fe3Si electrodes under zero bias.

However, the giant TMR ratio resulting from interface resonant transmission for the former

decreases rapidly with the bias. For the latter, the giant TMR ratio can maintain up to larger bias

due to coherent transmission through the majority-spin D1 channel. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4874837]

The phenomenon of tunnel magnetoresistance (TMR)

observed in magnetic tunnel junctions (MTJs) has been

extensively investigated for decades, due to its rich physics

and potential application in spintronic devices.1 MTJ devices

have several designs including the in-plane MTJ and perpen-

dicular MTJ (p-MTJ), depending on the ferromagnetic elec-

trodes possessing an in-plane or perpendicular magnetic easy

axis. The room-temperature TMR ratio in excess of 600%

has been achieved in the MgO-based in-plane MTJ2 after the

prediction of first-principles calculation.3,4 The p-MTJ can

be used for current-induced magnetization switching using

spin-transfer torque (STT) effect5,6 and has several advan-

tages such as higher thermal stability and lower switching

current density as compared with in-plane MTJ,7 which are

favorable in the applications for STT-based magnetic ran-

dom access memory (STT-MRAM).8,9 The critical switching

current density Jc and thermal stability are the two key pa-

rameters characterizing the performance of the p-MTJ while

maintaining the high TMR ratio. Jc is proportional to the

Gilbert damping constant a and saturation magnetization Ms

as Jc / aMs.
7 In this regard, D03-type Fe3Si with uniaxial

magnetic anisotropy is a promising candidate as a ferromag-

netic electrode of p-MTJ due to its lower Ms and smaller a
than that of NiFe (Py) or CoFe alloy,10 and thus possibly

achieving lower Jc. In addition, the high Curie temperature

of �800 K as well as high spin polarization of �45%11

makes Fe3Si a better material as ferromagnetic electrodes of

spintronic devices. Very recently, Fe3Si has been explored as

ferromagnetic electrode for the MTJ using amorphous Al-O

barrier12 and the room-temperature TMR ratio of �20% has

been observed. Moreover, Fe3Si was found to have an out-

of-plane magnetization easy axis on MgO(001) substrate,13

which favors the thermal stability of p-MTJ required for data

non-volatility.

Besides switching current density and thermal stability,

another important device merit of a MTJ is the TMR ratio. A

natural question to ask is whether the MTJs with Fe3Si elec-

trode can yield giant TMR ratio. To answer this question, we

have carried out a theoretical study on the quantum transport

in a Fe3Si/MgO/Fe3Si MTJ with two structures of Fe3Si elec-

trode. Our results show that for the MTJ with cubic Fe3Si

electrode, the zero-bias TMR ratio reaches 5000%. However,

the giant TMR ratio decreases rapidly as the bias is turned

on. In contrast, for the MTJ with tetragonal Fe3Si electrode

driven by in-plane strain, the zero-bias TMR ratio can reach

2000%. Importantly, this giant TMR ratio can sustain much

larger bias. Analysis of symmetry-resolved band structures,

electronic structures and transport in momentum space pro-

vide clear understanding of these results.

Our quantum transport calculation is based on

Nonequilibrium Green’s Function-density functional theory

(NEGF-DFT) method that combines real-space DFT with the

Keldysh NEGF formalism, as implemented in Nanodcal pack-

age. For more technical details, we refer interested readers to

the original literature.14 The spin-polarized conductance Gr is

given by Landauer-B€uttiker formula

Gr ¼
e2

h

X

kk

Trðkk;EFÞ; (1)

where Trðkk;EFÞ is the transmission coefficient at the Fermi

level EF with spin r (r ¼"; #) and transverse Bloch wave

vector kk ¼ ðkx; kyÞ due to the transverse periodicity, e the

electron charge, and h the Planck’s constant. We used a

10� 10 kk mesh to converge the density matrix and a

400� 400 kk mesh for evaluating transmission coefficients

of all spin channels. The valence electrons are treated bya)Electronic mail: xfhan@iphy.ac.cn

0003-6951/2014/104(17)/172406/5/$30.00 VC 2014 AIP Publishing LLC104, 172406-1

APPLIED PHYSICS LETTERS 104, 172406 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:  147.8.31.43

On: Mon, 22 Dec 2014 06:45:54

http://dx.doi.org/10.1063/1.4874837
http://dx.doi.org/10.1063/1.4874837
http://dx.doi.org/10.1063/1.4874837
http://dx.doi.org/10.1063/1.4874837
http://dx.doi.org/10.1063/1.4874837
mailto:xfhan@iphy.ac.cn
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4874837&domain=pdf&date_stamp=2014-05-01


linear combination of atomic orbital basis with double-f plus

polarization basis for all the atoms. The local density approx-

imation as parameterized by Perdew and Zunger is used for

the exchange-correlation potential.15

The MTJ device model investigated in this work is a

two-probe tunnel junction, consisting of two semi-infinite

Fe3Si electrodes sandwiching several monolayers (ML) of

MgO barriers as shown in Fig. 1. The atomic structures of

central region are fully relaxed using the DFT based VASP

electronic package.16 The in-plane lattice constant of the

junction is fixed at 3.997 Å, corresponding to 1=
ffiffiffi
2
p

of exper-

imental value (5.653 Å) of Fe3Si. Thus, the lattice mismatch

between Fe3Si(001) and MgO(001) (4.21 Å) rotated by 458
is about 5%. The optimized Fe-O distance is found to be

2.191 Å. Note that there are two different terminations due to

the layered structure of Fe3Si. The Fe termination is verified

to be more stable than FeSi termination by performing the

cohesive energies calculations. Thus, the Fe termination is

considered in the present work. All the MgO barriers are

fixed at 5 ML in the rest of the paper.

It is known that TMR ratio is a key parameter character-

izing performance of MTJs. The optimistic TMR ratio is

defined as TMR ¼ ðGP � GAPÞ=GAP, with GP and GAP being

the total conductance for the magnetizations of two electrodes

with parallel (PC) and anti-parallel configurations (APC),

respectively. The calculated spin-polarized conductance and

TMR ratios for a number of different MTJs are reported in

Table I. All the relevant results for Fe/MgO/Fe(001) are also

presented for comparison. We find that TMR ratio of

Fe/MgO/Fe is around 3000%, which is in good agreement

with that of Ref. 17. The giant TMR ratio in Fe/MgO/Fe origi-

nates from D1 spin-filtering effect, as explained clearly in

Refs. 3 and 4. Namely, incident Bloch wave functions from

electrode will decay at symmetry-dependent rates through

MgO barrier and the state with D1 symmetry decays most

slowly when compared with other states. Moreover, for bcc
Fe, the D1 band exists only in majority-spin channel at the

Fermi level. Thus, a large conductance difference between PC

and APC is obtained giving rise to the giant TMR ratio. The

TMR ratio for the Fe3Si/MgO/Fe3Si is very large, reaching

�5000%, which is larger than that of Fe/MgO/Fe. It is inter-

esting and instructive to make a comparison between the G""P
and G##P . First of all, G""P is larger than G##P for Fe/MgO/Fe

due to the contribution of the slowly decaying D1 state. This

is in sharp contrast to the case of Fe3Si/MgO/Fe3Si for which

G##P plays a dominant role in all spin channels. As Table I

shows, G##P is about two orders of magnitude larger than that

of other spin channels.

To understand the different conductance and TMR ratios

presented above, we now examine transmission coefficients

in the two-dimensional Brillouin zone (BZ), as plotted in

Fig. 2. First, for Fe/MgO/Fe, the majority-spin in PC has a

circular peak centered at kk ¼ ð0; 0Þ due to the slow decay

through D1 state, whereas the minority-spin is characterized

by sharp peaks-called hot spots, originating from resonant

transmission through interface resonant states (IRSs).18 In

contrast, in the case of Fe3Si/MgO/Fe3Si, both the majority-

and minority-spin in PC has negligible transmittance around

the center of BZ, suggesting that there is no incoming D1

Bloch states from Fe3Si electrode. This can be confirmed

from the symmetry-resolved band structures of bulk Fe3Si, as

plotted in Figs. 3(a) and 3(b). The bands have C4v symmetry

along the D direction (C-X). It is found only doubly degener-

ate D5 (pd) band crosses the Fermi level EF for majority-spin,

while both D5 and D2 (d) bands cross EF for minority-spin.

On the other hand, the D1 (spd) band for majority-spin locates

at about 0.2 eV above EF. There are two D1 bands above EF

for minority-spin; one localizes around 0.9 eV and the other

positions at 1.6 eV. Second, the resonance transmission peaks

for minority-spin in PC can be distinctly suppressed by break-

ing the symmetry of MTJs,19 e.g., by the interface oxidation

or applied bias. To support this point, we constructed an

asymmetric MTJ with one ML Fe 50% oxidized at one inter-

face, namely Fe3Si/FeO/MgO/Fe3Si. As can be seen from

Table I, the TMR reduces drastically from �5000% to

�700% caused by the significant reduction of G##P . Because

in the case of symmetric MTJ, the localized interface states

on the two Fe3Si/MgO interfaces are at identical energies and

when they align in energy, resonance transmission occurs.

However, in the case of asymmetric MTJs, the two interface

states are separated with an energy. Thus, resonance trans-

mission is destroyed due to the mismatching of the two inter-

face states. It can be further confirmed by the local density of

states (LDOS) of an Fe atom at the interface shown in Fig.

4(a). For the symmetric MTJ, the minority-spin DOS shows a

clear peak at around EF, which can be attributed to the exis-

tence of interfacial states; on the contrary, there is no

minority-spin DOS peak around EF for the Fe atom in FeO

FIG. 1. Optimized atomic structure of a Fe3Si/MgO/Fe3Si MTJ model. The

transport direction is along the z-axis while the MTJ is periodic along the

x- and y-directions. The optimized Fe-O distance (in unit of Å) is marked.

TABLE I. The calculated spin-polarized conductance Gr (in units of e2=h) and TMR ratios (in %) for a number of different MTJs. G""P , G##P are the majority-

spin and minority-spin conductance in PC, respectively. G"#AP, G#"AP are the majority-to-minority and minority-to-majority conductance in APC, respectively.

MgO barrier is chosen as 5 ML in all cases.

Structure G""P G##P G"#AP G#"AP TMR (%)

Fe/MgO/Fe 1:23� 10�3 2:76� 10�4 2:32� 10�5 2:34� 10�5 3132

Fe3Si/MgO/Fe3Si 5:07� 10�6 1:84� 10�4 1:78� 10�6 1:78� 10�6 5211

Fe3Si/FeO/MgO/Fe3Si 1:05� 10�5 5:98� 10�6 8:78� 10�7 1:06� 10�6 750

T-Fe3Si/MgO/T-Fe3Si 1:08� 10�3 2:01� 10�4 2:71� 10�5 2:65� 10�5 2290

172406-2 Tao et al. Appl. Phys. Lett. 104, 172406 (2014)
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layer. Fig. 4(b) plots the TMR ratio of Fe3Si/MgO/Fe3Si

(blue circles) versus the bias. Note that in this condition the

TMR ratio is defined as TMR ¼ ðIP � IAPÞ=IAP, with IP (IAP)

being the total current for MTJ in PC (APC). We define the

zero-bias TMR ratio using transmission coefficients. We see

that the TMR ratio decreases very quickly with increasing the

bias and drops to around 100% at a bias of 50 mV. This is

because a small bias separates the two interface states20 and,

in consequence, suppresses the minority-spin resonance trans-

mission in PC which is directly related to IP. For MTJ-device

application, output voltage Vout is another important parame-

ter to characterize the magnitude of the output signal modula-

tion.21 Vout is defined as Vout ¼ VbðGP � GAPÞ=GP, where Vb

is the applied bias. As plotted in the inset of Fig. 4(b) (blue

circles), Vout increases roughly linearly with increasing Vb

and then drops at around 40 mV due to the strong suppression

of TMR ratio by bias.

To summarize, the giant TMR ratio of Fe3Si/MgO/Fe3Si

decreases quickly with bias, which is detrimental to the out-

put voltage Vout. This is the result of a strong suppression of

resonant transmission through IRSs by bias. On the other

hand, D1 coherent transmission through MgO barrier is less

affected by small bias in compared with IRSs.17 Thus, it is

favorable to Vout to achieve D1 coherent transmission in

Fe3Si/MgO/Fe3Si. We found that a slight in-plane compres-

sive strain can drive the majority-spin D1 band of Fe3Si

crossing EF. We calculated the band structures of tetragonal

Fe3Si for a number of c/a ratios, where c and a are out-of-

plane and in-plane lattice constants, respectively. Here, c/a

FIG. 2. Spin- and kk-resolved trans-

mission coefficients for ((a)-(c))

Fe/MgO/Fe, ((d)-(f)) Fe3Si/MgO/Fe3Si

and ((g)-(i)) T-Fe3Si/MgO/T-Fe3Si at

the Fermi level. Panels from left to

right are ((a), (d), (g)) for majority-

to-majority and ((b), (e), (h)) for

minority-to-minority in PC; ((c), (f),

(i)) for majority-to-minority or

minority-to-majority in APC.

FIG. 3. Band structures of bulk ((a) and (b)) cubic Fe3Si (c=a ¼ 1) and ((c) and

(d)) tetragonal Fe3Si (c=a ¼ 1:07). The Fermi level EF has been aligned to zero.
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ratio is determined by keeping the volume of the Fe3Si unit

cell fixed, namely a2c ¼ a3
0 (a0 ¼ 5:653 Å). It is found that

the majority-spin D1 band crosses EF, whereas minority-spin

one does not when c/a ratio excess 1.04 (1.3% strain). Figs.

3(c) and 3(d) plot the band structure of tetragonal Fe3Si with

c=a ¼ 1:07. In this case, a is chosen to be 3.905 Å, to model

growth on the SrTiO3(001) substrate, corresponding to 2.3%

in-plane compressive strain. As expected, this new type of

tetragonal Fe3Si (T-Fe3Si) reveals half-metal nature in

terms of D1 state, which is rather similar to that of bcc
Fe. Then we calculated the transmission coefficients for

T-Fe3Si/MgO/T-Fe3Si MTJ. As shown in Figs. 2(g)–2(i), the

majority-spin in PC shows the expected broad peak around

the center of BZ, whereas for the minority-spin and for APC

there are negligible transmittance in the BZ, except for some

resonance peaks at special kk points. This is quite similar to

that of Fe/MgO/Fe. As a consequence, giant TMR ratio of

�2000% is predicted originating from the D1 spin-filtering

effect, as reported in Table I. More importantly, as shown in

Fig. 4(b) and its inset, the giant TMR ratio decays much

slower with bias and, even at 50 mV bias, the TMR ratio is

still over 1500%. This is due to the coherent transmission

through the majority-spin D1 channel, which is less affected

by small bias when compared with IRSs. Thus, Vout increases

linearly with increasing Vb and Vout is almost 1.6 times larger

than that of Fe3Si/MgO/Fe3Si at 50 mV bias. This Vout

difference will be expected to be further increased when the

bias becomes larger.

In conclusion, we have calculated the TMR and spin-

polarized transport in Fe3Si/MgO/Fe3Si(001) MTJs with two

different Fe3Si electrodes, i.e., cubic and tetragonal ones.

Our results show that the giant TMR ratio for the former

stems from the minority-spin interface resonant transmis-

sion, which can be dramatically reduced by breaking the

symmetry of MTJs, e.g., by the interface oxidation or applied

bias. For the latter, the tetragonal Fe3Si reveals half-metal

nature in terms of the D1 state. Giant TMR ratio is predicted

capitalizing on D1 spin-filtering through MgO barrier and,

more importantly, this giant TMR ratio drops much slower

with bias in compared with former. Note that in real MTJs,

the transport could be in either mixed ballistic and diffusive

regime or diffuse regime due to the interface roughness and

atom defects. Therefore, the TMR ratios might be smaller

than the predicted values by taking into account of the dif-

fuse scattering. Our studies provide some guidelines for

achieving giant TMR ratio in Fe3Si-based MTJ, which is a

promising candidate as an MTJ element for designing

STT-MRAM devices.

This work was supported by the State Key Project of

Fundamental Research of Ministry of Science and

Technology [MOST, No. 2010CB934400], National Natural

Science Foundation [NSFC, Grant Nos. 11374351,

11174341, and 11222432], and Research Grant Council

(Grant No. HKU 705212P) of HKSAR. The crystalline struc-

ture visualisation is plotted by using VESTA software.22 We

are grateful to the Shanghai Supercomputer Center for pro-

viding the computational facility.

1S. Ikeda, J. Hayakawa, Y. M. Lee, F. Matsukura, Y. Ohno, T. Hanyu, and

H. Ohno, IEEE Trans. Electron Devices 54, 991 (2007).
2S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa,

M. Tsunoda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 93, 082508

(2008).
3W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren, Phys.

Rev. B 63, 054416 (2001).
4J. Mathon and A. Umerski, Phys. Rev. B 63, 220403(R) (2001).
5J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
6L. Berger, Phys. Rev. B 54, 9353 (1996).
7S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S.

Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nature Mater. 9, 721

(2010).
8Y. Huai, F. Albert, P. Nguyen, M. Pakala, and T. Valet, Appl. Phys. Lett.

84, 3118 (2004).
9Z. Diao, D. Apalkov, M. Pakala, Y. Ding, A. Panchula, and Y. Huai, Appl.

Phys. Lett. 87, 232502 (2005).
10Y. Ando, K. Ichiba, S. Yamada, E. Shikoh, T. Shinjo, K. Hamaya, and M.

Shiraishi, Phys. Rev. B 88, 140406(R) (2013).
11A. Ionescu, C. A. F. Vaz, T. Trypiniotis, C. M. G€urtler, H. Garc�ıa-Miquel,

J. A. C. Bland, M. E. Vickers, R. M. Dalgliesh, S. Langridge, Y.

Bugoslavsky, Y. Miyoshi, L. F. Cohen, and K. R. A. Ziebeck, Phys. Rev. B

71, 094401 (2005).
12Y. Fujita, S. Yamada, G. Takemoto, S. Oki, Y. Maeda, M. Miyao, and K.

Hamaya, Jpn. J. Appl. Phys., Part 1 52, 04CM02 (2013).
13Y. N. Zhang, J. X. Cao, I. Barsukov, J. Lindner, B. Krumme, H. Wende,

and R. Q. Wu, Phys. Rev. B 81, 144418 (2010).
14J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407 (2001).
15J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
16G. Kresse and J. Furthm€uller, Phys. Rev. B 54, 11169 (1996). The cut-off

energy of 500 eV, Perdew-Burke-Ernzerhof generalized gradient approxi-

mation (GGA) for the exchange correlation functional, and Monkhorst-

Pack grid of 10� 10� 1 for k-point sampling were used. The atoms were

FIG. 4. (a) LDOS of an Fe atom at Fe3Si/MgO, Fe3Si/FeO/MgO interfaces;

shaded plots are the LDOS of an Fe atom in the deep Fe layer, which is close

to that of bulk. The majority- and minority-spin are plotted upward (posi-

tive) and downward (negative), respectively. (b) TMR ratios versus bias for

Fe3Si/MgO/Fe3Si (blue circles) and T-Fe3Si/MgO/T-Fe3Si (red squares).

Inset: Output voltage Vout versus bias.

172406-4 Tao et al. Appl. Phys. Lett. 104, 172406 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:  147.8.31.43

On: Mon, 22 Dec 2014 06:45:54

http://dx.doi.org/10.1109/TED.2007.894617
http://dx.doi.org/10.1063/1.2976435
http://dx.doi.org/10.1103/PhysRevB.63.054416
http://dx.doi.org/10.1103/PhysRevB.63.054416
http://dx.doi.org/10.1103/PhysRevB.63.220403
http://dx.doi.org/10.1016/0304-8853(96)00062-5
http://dx.doi.org/10.1103/PhysRevB.54.9353
http://dx.doi.org/10.1038/nmat2804
http://dx.doi.org/10.1063/1.1707228
http://dx.doi.org/10.1063/1.2139849
http://dx.doi.org/10.1063/1.2139849
http://dx.doi.org/10.1103/PhysRevB.88.140406
http://dx.doi.org/10.1103/PhysRevB.71.094401
http://dx.doi.org/10.7567/JJAP.52.04CM02
http://dx.doi.org/10.1103/PhysRevB.81.144418
http://dx.doi.org/10.1103/PhysRevB.63.245407
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevB.54.11169


allowed to relax perpendicularly to the layers until the forces on each atom

were smaller than 0.02 eV/Å.
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