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We study localized in-gap states and quantum spin Hall effect in Si-doped InAs/GaSb quantum wells. We
propose a model with donor and/or acceptor impurities to describe Si dopants. This model shows in-gap bound
states and wide conductance plateau with the quantized value 2e2/h in light dopant concentration, consistent
with recent experiments by Du et al. (Lingjie Du et al., arXiv:1306.1925). We predict a conductance dip structure
due to backward scattering in the region where the localization length ξ is comparable with the sample width Ly

but much smaller than the sample length Lx .
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I. INTRODUCTION

The quantum spin Hall (QSH) insulator is the first theoret-
ically predicted two-dimensional (2D) time reversal invariant
topological insulator (TI) that manifests topologically non-
trivial edge states. It is characterized by topologically robust
gapless (spin polarized) counter-propagating states at the edge
while there exists an energy gap in the bulk [1,2]. The first
realistic material for QSH insulators was proposed by Bernevig
et al. [3] in a semiconductor CdTe/HgTe/CdTe quantum well
(QW), which was later confirmed in transport experiments [4].
Soon after the discovery, there have been world-wide activities
in 3D TIs [5–7]. Although nonlocal measurements have
exhibited edge transports [8], large conductance fluctuation in
the QSH regime of HgTe QWs has never been well understood.

The second example of QSH insulators is the type II
InAs/GaSb QW proposed by Liu et al. [9], which has been
realized in experiments [10–12]. A unique feature of this
system is that the conduction band bottom of bulk InAs is
about 150 meV lower than the valence band top of bulk GaSb.
Therefore, when InAs and GaSb together form a quantum
well structure, the electron subband from the InAs layer
can be lower than the heavy hole subband from the GaSb
layer [see Fig. 1(a)], forming a so-called “inverted band
structure.” The position of electron and hole subbands in
this system can be controlled by varying the thickness of
InAs and GaSb layers, and the band inversion occurs in a
large range of the thickness of the QW. The hybridization
of electron and hole states in the QW opens a minigap of
40 ∼ 60 K. When the Fermi energy lies in the minigap, charge
transport is dominated by topological edge modes, which
can be extracted from conductance measurements [10,11].
However, early experiments exhibit conductance larger than
the expected values of 2e2

h
for a QSH insulator, presumably

due to residual bulk currents carried by disorder induced
(extended) states inside the minigap.

Very recently, Du et al. [13] introduced light Si dopants
(∼1011 cm−2) in InAs/GaSb QWs. Si atoms serve as donors in
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InAs and acceptors in GaSb. They have found that Si doping
suppresses the bulk conductance and induces a mobility gap
of 26 K inside the minigap. They have observed a wide plateau
of quantized longitudinal conductance of G0 = 2e2/h within
1% as the front gate voltage changes. Therefore, it is natural
to ask how the Si doping induces the quantized conductance
plateau.

Theoretically, the disorder effect has been numerically
investigated in the context of graphene [14] and HgTe QWs
[15,16]. It was found that under magnetic fields, disorder
can induce localization behavior of helical edge states, which
is the origin of the cusplike feature in magnetotransport of
HgTe QWs [16]. In addition, strong disorder may drive an
ordinary insulating state to a topological Anderson insulator
(TAI) [15,17], which may be understood as a band inversion
caused by effective mass renormalization [18]. (Energy band
renormalization is distinct in HgTe and InAs/GaSb, see
Appendix A for details.) The phenomenon of TAI requires
very strong impurity scattering potential or high impurity
concentration to localize bulk states and to renormalize the
effective mass.

In this paper, we study the effect of Si dopants in InAs/GaSb
QW in the band inverted region. A single Si dopant serves
as a donor or acceptor and introduces a bound state in the
minigap, similar to a hydrogenic bound state in conventional
semiconductors. Note that weak disorder leads to localization
in 2D in the thermodynamic limit. For a mesoscopic sample
of length Lx , the nature of localization depends on the
localization length ξ . When ξ < Lx in QWs, a bulk mobility
gap is opened and only the edge state transport remains. We
use Landauer-Büttiker formalism to calculate conductance
and show a wide plateau in quantized conductance of 2e2/h.
Our theory explains the observed mobility gap and quantized
conductance in the experiment of Du et al.

II. MODEL HAMILTONIAN

The bulk of InAs/GaSb QW can be well described by a four
band tight-binding model on a square lattice where four rele-
vant atomic states {|E+〉 , |E−〉 , |H+〉 , |H−〉} are involved.
E and H mark electron and hole states, respectively, and ±
correspond to pseudospins. This tight-binding Hamiltonian
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FIG. 1. (a), (b) Band inversion in InAs/GaSb. (a) Conduction
band of InAs (denoted by E) is lower than the valence band of
GaSb (denoted by H ). (b) The hybridization of the electron and hole
states opens a minigap. (c), (d) Schematic impurity level and impurity
scattering. (c) Si atoms serve as donors in InAs. (d) Si atoms serve as
acceptors in GaSb.

can be derived from a corresponding k · p Hamiltonian [9]
and reads

H0 =
∑
iσα

Vασ c
†
iασ ciασ +

∑
iτσαβ

tτσ
αβ c

†
iασ ci+τβσ , (1)

where i is the site labeling, τ = ±x̂,±ŷ denotes the four
nearest neighbors bond, σ = ± is for pseudospin, and α,β =
E,H is the orbital index. The pseudospin is a good quantum
number. In the sub-Hilbert space spanned by {|Eσ 〉 , |Hσ 〉},
Vασ is a diagonal matrix

Vσ =
(

C − 4D + M − 4B 0

0 C − 4D − M + 4B

)
(2)

and t τσ
αβ is given by the following matrix form:

t±x̂σ =
(

D + B ∓iσA/2

∓iσA/2 D − B

)
,

(3)

t±ŷσ =
(

D + B ±A/2

∓A/2 D − B

)
,

where A, B, C, D, and M are parameters determining the
band structure and will be given later. The lattice constant
in InAs/GaSb is about 6 Å. However, as an effective tight-
binding model derived from the k · p Hamiltonian, we can use
a different lattice constant by properly choosing parameters.
In this paper, we shall set the lattice constant as a = 20 Å
and choose A = 0.0185 eV, B = −0.165 eV, C = 0, D =
−0.0145 eV, and M = −0.0078 eV. This set of parameters
corresponds to the set of k · p parameters used in Ref. [9]. For
simplicity, we neglect the terms describing bulk and structure
inversion asymmetry [9], which are inessential for the physics
of QSH effect.

The k component of Hamiltonian (1) can be expressed as

H0(k) = ε(k)I +
(

h0(k) 0

0 h∗
0(−k)

)
, (4)

where h0(k) is a 2 × 2 matrix,

h0(k) =
(

M(k) A(sin kx − i sin ky)

A(sin kx + i sin ky) −M(k)

)
, (5)

I is the 4 × 4 identity matrix, M(k) = M − 2B(2 − cos kx −
cos ky) and ε(k) = C − 2D(2 − cos kx − cos ky). Equation (4)
recovers the k · p Hamiltonian at small k [9]. According to Fu
and Kane’s criterion for TIs, topological nontrivial states exist
when 0 < M/2B < 2 [19].

Now we consider the disorder induced by Si dopants, which
serve as donors in InAs (E band) and acceptors in GaSb (H
band). A donor attracts E band electrons and its interaction
with H band can be neglected. Similarly, an acceptor provides
a repulsive scattering potential to H band while leaving E band
noninteracted [20]. To model the disorder effect of Si dopants
in InAs/GaSb, we introduce the following on-site impurity
Hamiltonian,

Himp = −
∑

i∈Rd,σ

Vic
†
i,Eσ ci,Eσ +

∑
i∈Ra,σ

Vic
†
i,Hσ ci,Hσ , (6)

where Rd and Ra denote the site sets for donors and acceptors,
respectively. Vi is positive and distributes randomly within a
range of (Vmin,Vmax). While this is a simplified model for the
charge impurity potentials, it captures the basic physics in Si-
dopant systems. As we will see below, this type of disorder has
the largest efficiency in inducing in-gap bound states, which are
essential for the localization physics. For the lattice constant
a = 20 Å used in this paper, 1011 cm−2 Si dopant corresponds
to 0.4% impurity in our model.

III. SINGLE IMPURITY

We begin with a single impurity problem. In a semiconduc-
tor, a dopant can always induce in-gap bound states because of
the long-ranged Coulomb attraction. In our model, the impurity
potential is a short-ranged and delta-function-like potential in
2D. At first glance, this kind of impurity potential does not
support bound states unless it exceeds a threshold. But this is
not true here because the density of states (DOS) is singular at
the band edge in the clean system [see Fig. 3(b)]. In this case,
even infinitesimal attractive potential will give rise to in-gap
bound states [21]. So our model catches the in-gap physics
correctly although it uses a simplified impurity potential. To
examine this point, we diagonalize the Hamiltonian H =
H0 + Himp numerically on a 50 × 40 lattice and find that an
in-gap state appears in the presence of a single impurity. For
simplicity, we only show the results on donors, and the acceptor
situation is similar. The energy difference �E between the
in-gap state and band edge for a pure system is plotted in
Fig. 2(a) as a function of the attractive potential V . It is
clear that there are bound states at any attraction strength. The
density distributions for the corresponding in-gap bound states
are shown in Figs. 2(b)–2(d). The in-gap state becomes more
and more localized as the attractive potential increases. For
hole states in the valence band, an acceptor carries a negative
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(b)(a)

(c) (d)

FIG. 2. (Color online) (a) Binding energy of single impurity (donor) state. (b)–(d) Local density of states of bound states induced by a
single impurity. V = 50,200,300 meV in (b)–(d).

charge and is attractive to holes while repulsive to electrons. It
will also induce in-gap bound states. Therefore, our choice of
signs of Vi in Himp in Eq. (6) always gives rise to in-gap bound
states.

IV. LOCALIZATION IN BULK

We continue to study the localized states in bulk in the
presence of many Si dopants. We consider half of the Si
dopants are donors and the other half are acceptors. Hereafter
we set Vmin = 200 meV and Vmax = 300 meV unless specified
otherwise. To investigate the localization problem, we calcu-
late DOS and conductance G = Gxx by using the recursive
Green’s function method [22] and Landauer-Büttiker-Fisher-
Lee formula [23]. We consider a strip geometry consisting of
a Lx × Ly rectangular disorder region and two semi-infinite
doped metallic leads connected to the rectangle along the x

direction. This setup allows us to study the transport coeffi-
cients with both open boundary condition (OBC) and periodic
boundary condition (PBC) along the y direction. We shall
utilize PBC to study bulk states and OBC to study edge states.

The results are shown in Fig. 3. There is a window in
the Fermi energy, EF ∼ 0.2 − 2.4 meV, where DOS is finite
but the conductance vanishes. This means that there are
fully localized in-gap states with ξ � Lx in this regime. For
the regime −3.0 meV< EF < 0.2 meV or 2.4 meV< EF <

4.0 meV, although the Fermi energy is still in the bulk gap, the
conductance is nonzero. This is due to the finite size effect.
Namely, when the localization length ξ is comparable with
or larger than the system size Lx , the size effect become

considerable and bulk transport is allowed. In Fig. 3(d), we
increase Lx and the regime for zero conductance is also
enlarged.

The localized in-gap states do not contribute to the con-
ductance but to the DOS revealed in capacity measurements.
The existence of a large amount of localized in-gap states in
DOS in our simulation qualitatively agrees with the capacity
measurement in experiments [13].

We remark that our sharp impurity potential scenario for Si
dopant is very different from the weak localization scenario.
Firstly, increasing impurity concentration will result in a finite
bulk conductance due to the formation of impurity bands.
Secondly, smooth disordered potential may give rise to in-gap
“extended” states with a long localization length ξ � Lx due
to large DOS at the band edge. Correspondingly, the mobility
gap becomes smaller than the minigap in the present system.
These extended states may be further localized by Si dopants
described by a sharp impurity potential. (See Appendix C for
details.) This may explain the experiment by Du et al., where
the bulk conductance is finite in the absence of the Si doping
and vanishes as Si impurities are introduced.

V. EDGE TRANSPORT

When the bulk states are localized by impurities, i.e.,
ξ � Lx , the transport is entirely dominated by the edge
channels, as clearly seen in Fig. 4(a). In the regime 0.2 meV<

EF < 2.4 meV, a wide conductance plateau with the quantized
value 2e2

h
emerges for OBC while bulk conductance is zero

and all bulk states are localized for PBC. In this regime, the
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FIG. 3. (Color online) Conductance and DOS in the presence of impurities. The strip width is set to Ly = 200a. The concentration of
impurity is 0.5%. (a) Conductance for clean and impure samples with Lx = 400a. (b) Lead-free DOS for clean and impure samples with
Lx = 1000a. (c) Conductance as the function of electron density with Lx = 400a. (d) Conductance of different samples with Lx = 400a

(blue), 300a (red), and 200a (black).

localization length, ξ ≡ −2 limLx→∞ Lx〈ln G/G0〉−1 [24], is
found to be much smaller than both the length Lx and width
Ly of the system, as shown in Fig. 4(b).

When the Fermi energy is tuned to the regime −3.0 meV <

EF < 0.2 meV or 2.4 meV < EF < 4.0 meV, we find that
although the bulk conductance increases according to the
calculation with PBC, the total conductance for a system
computed with OBC decreases at the plateau edge. This
conductance dip is a finite size effect. In this regime, the
localization length ξ increases rapidly and when Ly ∼ ξ �
Lx , the electron at one edge state can interfere with in-gap
bound states in the bulk and will be scattered to the opposite
edge, resulting in a significant reduction of edge currents. We
emphasize here that the penetration length of the edge states in
a clean system is quite small for the present parameters, which
can not induce direct hybridization between two edge states.
The backscattering is mediated by in-gap bound states.

For a given impurity concentration, the dip structure in
conductance may smooth out by increasing sample width
Ly or decreasing sample length Lx , because the former will
reduce the coupling between edge states and in-gap bulk states,

while the later will increase the bulk conductance. Figs. 4(c),
4(d), and 4(a) show how this dip structure emerges with
increasing Lx and fixed Ly ∼ ξ . This predicted dip structure
in conductance under the condition Ly ∼ ξ � Lx may be
examined in future experiments.

VI. COMPARISON WITH EXPERIMENTS AND SUMMARY

Now we shall relate our numerical simulation on the
localization effect to the recent experiment of InAs/GaSb QWs
with Si doping. Experimentally, the conductance quantization
is only observed at low temperatures. The localization length
ξ is temperature dependent. At high temperature, ξ � Lx , the
impurity state is extended, and conductance is higher and not
quantized. At low temperature, ξ � Lx for the states deep in
the band gap. As a result, the system starts to show insulating
behavior. This corresponds to the development of the mobility
gap observed by both the bulk conductance measurement in
a Carbino disk and the electric capacity measurement. In this
regime, for a finite sample, a robust quantized conductance
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FIG. 4. (Color online) Quantized conductance plateau and localization length in a strip with width Ly = 200a and 0.5% impurity.
(a) Conductance in a 400 × 200 sample. (b) Localization length as a function of Fermi energy. (c) Conductance in a 200 × 200 sample.
(d) Conductance in a 300 × 200 sample.

plateau appears due to the edge transport and the system enters
into the QSH regime.

Finally, we would like to emphasize the uniqueness of
disorder effect in InAs/GaSb QWs. In conventional materials,
even smooth disorder could lead to a large mobility gap.
Therefore, the precise quantization conductance plateaus can
be easily observed in the quantum Hall effect [25]. In contrast,
our numerical calculations have shown that the mobility gap
strongly depends on the strength and types of disorders in
InAs/GaSb QWs. Thus, light Si doping is required to introduce
in-gap bound states efficiently to form a mobility gap at a
low temperature. Our theory explains the essential role of
in-gap states for the highly quantized conductance plateau
observed in Du et al.’s experiment at zero magnetic field, and
examined conditions for the accurate quantization in the QSH
systems. We note that the experiments of Du et al. also report
the extreme robustness of the quantization against external
magnetic field, which remains to be a theoretical challenge for
our future work.
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APPENDIX A: BAND RENORMALIZATION BY
ANDERSON DISORDER: SELF-CONSISTENT

BORN APPROXIMATION

To compare different band renormalization effect by An-
derson disorder between HgTe and InAs/GaSb QWs, we
use self-consistent Born approximation to investigate the
following random onsite potential

HI =
∑
iσα

Vic
†
iασ ciασ ,

where V ∈ [−W/2,W/2] with disorder strength W . This type
of impurity will renormalize the energy band through the self
energy, which is defined as

(EF − h0 − 	)−1 = 〈(EF − h)−1〉,
where 〈· · · 〉 denotes the disorder average. Here 	 is a 2 × 2
matrix which can be decomposed into Pauli matrices: 	 =
	μσμ μ = 0,1,2,3. The renormalized topological mass and
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chemical potential are then given by

M̄ = M + Re	3, ĒF = EF − Re	0,

where M and EF are bare mass and chemical potential,
respectively.

In the self-consistent Born approximation, we keep the self
energy up to the second order of W in the spirit of perturbation.
The self energy is given by

	 = W 2

12

∑
k

[EF + i0+ − h0(k) − 	]−1.

The band gap Egap is determined by the upper band edge Eu

and the lower band edge El through Egap = Eu − El , where
Eu reads

Eu = min[ε(k) + Re	0 +
√

M̄2(k) + A2 sin2 k],

and El reads

El = max[ε(k) + Re	0 −
√

M̄2(k) + A2 sin2 k],

with M̄(k) = M̄ − 2B(2 − cos kx − cos ky).
To compare HgTe with InAs/GaSb, we choose the following

bare band parameters for HgTe QW: A = 0.0729 eV, B =
−0.02744 eV, C = 0, D = −0.02048 eV, and M = −0.01 eV,
while we use the same parameters as in the main text for
InAs/GaSb QW, namely, A = 0.0185 eV, B = −0.165 eV,
C = 0, D = −0.0145 eV, and M = −0.0078 eV. Figure 5
shows the renormalized band edges by disorder average based
on self-consistent Born approximation. One sees that the band
gap in InAs/GaSb QW will be narrowed in weak disorder
strength in contrast to HgTe QW where the band gap is
enlarged by disorder. This indicates that it is easier to induce
in-gap states by disorder in InAs/GaSb than that in HgTe.

APPENDIX B: THE FORMATION OF IMPURITY BAND

In the weak localization picture, the localization length
will decrease as impurity concentration increases. In contrast,
localized states caused by the strong localization mechanism
proposed in the main text will become more and more
“extended” when impurity concentration increases, because
the wave function overlap between neighboring localized
states will increase. Thus the localized states induced by
individual impurity will form an impurity band when the
impurity concentration is large enough. This impurity band
will contribute to bulk transport, resulting in finite bulk
conductance as shown in Fig. 6.

APPENDIX C: LOCALIZATION OF IN-GAP “EXTENDED”
STATES INDUCED BY SMOOTH DISORDERS

In addition to sharp impurity potential induced by dilute
Si dopants, one may consider smooth disorder potential
commonly used in quantum Hall and other systems. We find
that smooth disorders may introduce in-gap “extended” states,
or to be precise, localized states with localization length ξ

much longer than sample length Lx . Moreover, these in-gap
“extended” states will be localized by sharp impurity potential
induced by dilute Si dopants.

FIG. 5. Energy band renormalization by Anderson disorder.
(a) Upper and lower band edges in HgTe QW. (b) Upper and lower
band edges in InAs/GaSb QW.

To illustrate these effects, we use a random Gaussian
potentials HG to model smooth disorder,

HG =
∑
i,σ

VG(i)(c†i,Eσ ci,Eσ + c
†
i,Hσ ci,Hσ ),

with

VG(i) =
∑
j∈RG

V0(j ) exp

[
− (ri − rj )2

2b2

]
,

where RG is the collect of site j where the Gaussian peaks
locate, b is a constant to describe the width of Gaussian
potential, and V0 distributes uniform randomly in [−Vs,Vs].
We choose RG to contain 10% sites in the whole lattice, b = 5a

and Vs = 10 meV to generate smooth disorder potential. The
sharp impurity potential induced by Si is described by random
delta-function-like potential Himp as in the main text with
Vmin = 300 meV and Vmax = 400 meV. We use 4% sharp
impurity concentration to illustrate the localization effect.
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FIG. 6. (Color online) Bulk conductance changes with the impu-
rity concentration. In the presence of dilute impurities, bulk conduc-
tance vanishes due to strong localization. As impurity concentration
increases, wave function overlap between neighboring localized states
will increase, resulting in finite bulk conductance.

As shown in Fig. 7, smooth disorder potential will give
rise to in-gap states with localization length ξ � Lx , resulting
in finite bulk conductance. These in-gap “extended” states

FIG. 7. (Color online) Bulk conductance in the presence of
smooth disorder potential and smooth + sharp disorder potential.
In-gap “extended” induced by smooth disorders will be localized
by sharp disorders. The red dashed line is for the system with only
smooth disorder. The blue dashed line is for the system with both
smooth and sharp disorders.

will then be further localized by sharp impurity potential
induced by dilute Si dopants, which significantly reduce the
bulk conductance.
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