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We study superconducting states in the presence of spin-orbital coupling and Zeeman field. It is found that a
phase transition from a Fulde-Ferrell-Larkin-Ovchinnikov state to the topological superconducting state
occurs upon increasing the spin-orbital coupling. The nature of this topological phase transition and its
critical property are investigated numerically. Physical properties of the topological superconducting phase
are also explored. Moreover, the local density of states is calculated, through which the topological feature
may be tested experimentally.

T
he subject of topological phases in quantum systems has been studied intensively for the past few years due to
their nontrivial properties1, including significant theoretical research interests on topological superconduc-
tors/superfluids (TSC)2–5. A TSC is characterized by a full pairing gap in the bulk and has topologically

protected gapless states on edges of the system. Soon after the theoretical prediction, the TSC material was
reported experimentally through doping Cu into Be2Se3 (CuxBe2Se3)6–9.

One of the most important features of TSC is the existence of gapless edge states. Especially, the zero energy
edge states are usually related to the Majorana Femions (MFs)1, who are their own antiparticles. MFs usually obey
non-Abelian statistics and have a potential application in quantum computation, so that the realization of MFs is
of significant interest.

As is known, a typical TSC is the p 1 ip pairing system1. Besides the p-wave pairing, the TSC could also be
realized in the system with an s-wave pairing plus the spin-orbital coupling and spin polarization. Actually, it has
been shown that the s-wave pairing system with a strong spin-orbital coupling can be equivalent to a p 1 ip
system10–14. Thus, apart from the intrinsic TSC material such as CuxBe2Se3, there may also exist some artificially-
made TSCs. A kind of candidate systems are ultracold atoms, in which both the s-wave superfluidity and spin-
orbital coupling have been realized experimentally15–19. Meanwhile, it was also proposed theoretically that the
topological phase and MFs can be realized in a strong spin-orbital coupled material, through coupling to an s-
wave superconductor and an effective Zeeman field20,21. Recently, such kind of proposal has been realized
experimentally and the signatures of MF excitations have been reported by several groups22–26.

Another quite arresting feature in superconducting systems seems to be the possible appearance of Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) states. This kind of states were predicted theoretically in 1960s27,28 for some
superconductors subject to a strong magnetic field, namely, the Cooper pairs have a finite momentum and thus
the order parameter varies periodically in real space. However, this long-sought inhomogeneous superconducting
state has not been observed experimentally for quite long time, possibly due to the impurity effect29 or the orbital
effect induced by the field30.

For low dimensional superconducting systems, the orbital effect is negligibly weak when the magnetic field is
parallel to the superconducting layers. Thus they can be promising candidates for realizing the FFLO states. In the
past decade, indications for possible FFLO states have been reported in several families of materials31–38.
Meanwhile, a signature of the FFLO state was also observed in one-dimensional partially spin polarized cold
atoms39. The properties of FFLO states have attracted renewed interest due to the experimental breakthrough.

As mentioned above, the TSC may be generated in s-wave superconductors with the additional spin orbital
coupling and Zeeman field. While the conventional FFLO state is also expected to be generated by applying a
Zeeman field on s-wave superconductors, the difference between them is whether the spin-orbital coupling exists
or not. Thus it is quite intriguing to study the effect of the spin-orbital coupling on the FFLO state40. This issue has
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attracted considerable interest very recently41–46. The spin orbital
effect would break the FFLO modulation and the topological phase
shows up for a moderate-strength spin orbital coupling. Generally,
there may exist a phase transition from the FFLO state to the TSC
state. The nature of such transition and physical properties near the
critical point are of fundamental interest. Moreover, they should be
quite important for exploring potential applications of topological
phases. In this paper, motivated by the above consideration, we study
theoretically the interplay between the spin orbital effect and the
exchange field. Based on a lattice model, the nature of the phase
transition from the FFLO to TSC is explored numerically. Our results
show that there exist two regions of topological states with the chem-
ical potential being m near 24 or 0. Interestingly, near the region of m
5 0, there are two effective energy bands crossing the Fermi energy.
This is essentially different from the case of the continuous model41.
The existence of the two bands is important to realize the FFLO state.
Thus we propose that the phase transition from an FFLO state to a
topological state may be easier to occur in the lattice model. The
properties of topological phase and the MF excitations are also inves-
tigated in detail. We also study the local density of states (LDOS) to
compare with the experiments.

Results
We start from a model Hamiltonian that includes the spin-orbital
coupling, the Zeeman field coupling, and the s-wave pairing term,
which is given by

H~{
X

i yi
{ s0{ils1ð Þyizx̂zyi

{ s0{ils2ð Þyizŷ

h
zh:c:�{
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{
i is2y{
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with yi 5 (yi", yi#)T, where sn are the identity (n 5 0) and Pauli
matrix (n 5 1, 2, 3), respectively. l is the spin-orbital coupling
strength and h represents an effective Zeeman field. Here we study
different phases and the phase transition at zero temperature. If not

specifically indicated, the parameters are chosen as h 5 0.6 and m 5

0, Di is obtained self-consistently with the pairing potential V 5 2.4
(See methods).

We first illustrate numerically the topological feature of the pre-
sent model. In the topological state, if we consider the edge effect to
occur along the x-direction and the order parameter to be uniform
along the y-direction, the two-dimensional Hamiltonian can be
reduced to a quasi-one dimensional model [See methods, Eqs. (5–
7)]. The self-consistent results with the lattice size 400 3 400 are
shown in Fig. 1. Here the periodic and open boundary conditions
along y- and x- directions are used, respectively.

The energy bands are plotted in Figs. 1(a) and 1(b). As is shown,
for both spin-orbital coupling strengths we considered, there exists
an energy gap and one gapless state. We have checked numerically
that the spatially distribution of the gapless states are at the system
edge. The existence of the edge states indicates the topological feature
of our present model. The gap magnitude depends on the spin-
orbital coupling strength; it decreases significantly as the spin orbital
coupling decreases.

The order parameters with different spin-orbital coupling
strengths are plotted in Figs. 1(c) and 1(d). As is seen, they are
uniform in the bulk and exhibit a boundary effect near the edge.
For the stronger spin orbital coupling strength l 5 0.5, an obvious
boundary effect occurs only within the ten lattice constants away
from the edge [Fig. 1(c)]. While when l decreases, the size of more
lattice constants is affected by the boundary. For l 5 0.3, as is seen in
Fig. 1(d), the order parameter oscillates significantly, with the mag-
nitude of the oscillation decreasing when away from the boundary.
At more than one hundred lattice constants from the boundary, the
order parameter recovers to the bulk one. Previously, it was also
reported that the wave function may oscillate near the vortex core
and system edge47. As proposed in Ref. 47, it might make it difficult to
realize a single qubit gate for universal topological quantum com-
putation using the tunneling between two vortices. On the other
hand, such oscillation is of fundamental interest. As the spin-orbital
coupling decreases further, we expect that the oscillated lattice
should increase further and expand to the whole system at certain
critical spin orbital coupling strength. Then the system will transit to
the FFLO state for weaker spin orbital coupling. The above expecta-

Figure 1 | The topological feature for a two dimensional system. (a) and (b) are the numerical results for the energy spectra with different spin orbital

coupling strengths, respectively. The open and periodic boundary condition along the x- and y- directions are considered. (c) and (d) are the

corresponding order parameters. The other parameters are m 5 0 and h 5 0.6.
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tion will be verified by the numerical results in the quasi-one-dimen-
sional lattice, which will be presented in the following.

To conduct a more systematic and accurate numerical study on
the nature of the phase transition, we perform numerical calculations
on the three-leg ladder system (with the size 400 3 3) in the follow-
ing. The low energy eigenvalues of the Hamiltonian are plotted in
Fig. 2 with l 5 0.5. Here we use a fully self-consistent calculation
[Eqs. (3) and (4) in methods section], with the open boundary con-
dition along the x-direction. As is seen in Fig. 2, there exist two
degenerate zero-energy eigenvalues protected by a minigap about
0.16. In the BdG framework, the eigenvalues 6E usually come from
one physical particle. In the case of the zero energy mode, one phys-
ical particle corresponds to one pair Majorana Fermions. The two
MFs are spatially separated and protected by the minigap, thus they
cannot be removed by local weak perturbations. The existence of the
protected zero-energy state also confirms the topological feature of
the system with the present parameter.

We elucidate numerically the nature of the phase transition driven
by the spin-orbital coupling. The order parameters with different
spin-orbital strengths are plotted in Fig. 3. As is seen from

Fig. 3(a), the order parameter oscillates periodically in the whole
space for the small spin-orbital strength (l 5 0.15). Such oscillation
is different from the above one shown in the topological state
[Fig. 1(d)]. Firstly, the order parameter changes the sign within
one periodical lattice, thus the phase of the order parameter changes
and also varies periodically. Secondly, the magnitude of the oscil-
lation does not change in the bulk. So the system is in the FFLO state
for this weak spin-orbital coupling. As l increases to l 5 0.17, the
result of order parameter changes qualitatively. As is seen, there
exists an obvious boundary effect, namely, the order parameter oscil-
lates strongly near the boundary while it oscillates very weakly in the
bulk. The phase of the order parameter does not change when away
from the boundary. On the other hand, the order parameter still
oscillates in the whole space. Thus this coupling strength l 5 0.17
should be the critical coupling strength between the FFLO state and
the TSC phase. As l increases further [Fig. 3(c)], the oscillation
region decreases and the order parameter is uniform in the bulk.
For a larger spin-orbital strength, the oscillation behavior disappears
and the order parameter recovers to the bulk value within several
lattice-constants away from the boundary. The above results of the
TSC state are qualitatively the same as those of the two-dimensional
lattice shown in Fig. 1.

Now let us study the properties of the TSC phase. As shown in
Fig. 1, these exists a gapless edge state in this phase for the two-
dimensional systems. For the present model, there should be two
MFs associated with the zero energy state, expressed as c1 and c2.

With a zero-energy fermion C{~
X

is misy{
iszvisyis

� �
, c1 and c2

are expressed as: c1~ CzC{� �. ffiffiffi
2
p

and c2~i C{{C
� �. ffiffiffi

2
p

. Here

the zero-energy fermion C{ can be obtained from the BdG equation,
thus the MF states can be studied numerically. The numerical results
of the spatial distribution of the two MF states are presented in Fig. 4.
At the critical point, as is seen in Figs. 4(a) and 4(b), the distributions
of the two MFs are the same so that they shall annihilate to an
ordinary fermion. The distribution curve oscillates in the whole lat-
tices. And the oscillation is stronger near the boundary. This is sim-
ilar as the case of the order parameter. As the spin orbital strength
increases to l 5 0.2, the two MFs are completely separated and locate
near the two boundaries, respectively. The distribution curve still
oscillates with the depth about 100 lattice size. As the spin-orbital

Figure 2 | The low energy spectrum for the quasi-one-dimensional
system with the open boundary condition along the x-direction. n is the

index of eigenstates. Two zero energy eigenvalues can be seen clearly,

protected by a minigapDm. The parameters are l 5 0.5, m 5 0, and h 5 0.6.

Figure 3 | The numerical results of the order parameter D in different phases for the 400 3 3 system. (a) The order parameter in the FFLO state. (b) The

order parameter at the critical point. (c–d) The order parameter in the topological state. The parameters are h 5 0.6 and m 5 0.
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strength increases further, the oscillation disappears and the two MFs
are located near the boundaries. These results may be verified by
experiments and may be useful when exploring the application of
MFs in the topological quantum computation.

Finally, let us look into the LDOS to disclose the existence and
distribution of the zero mode. The LDOS spectra as a function of the
energy at the boundary for different spin orbital coupling are plotted
in Fig. 5(a). As is shown, at the critical point (l 5 0.17), one can see a
weak zero energy peak. As the spin-orbital strength increases, the
intensity of the zero energy peak increases. For the strong strength (l
5 0.5), the spectra weight of the zero energy peak is quite strong.
Actually, the zero bias peak has also been observed by very recent
experiment and it was believed to be signature of the MFs26. The
LDOS spectra as a function of the real space position are presented
in Figs. 5(b–d). Here the LDOS spectra may be qualitatively consist-
ent with the distributions of the two MF states. This is understand-
able because the contributions from non-zero energy spectra are very
small due the existence of the minigap. The LDOS spectra also oscil-
lates near the boundary for l 5 0.17 and l 5 0.2, which might be
verified by later experiments. The numerical results for LDOS may

establish a useful link for theoretical calculations and experimental
observations.

Discussion
We can explain qualitatively the origin of the phase transition and the
oscillation of the order parameter in the topological phase. In the
momentum space, the two dimensional normal state Hamiltonian

(Di 5 0) can be rewritten as H~
X

k y{
k:,y{

k;

� �
H kð Þ yk:,yk;

� �T
,

with

H kð Þ~
ek{h

{2l sin kxzi sin ky
� �

 
{2l sin kx{i sin ky

� �
ekzh

!
, ð2Þ

where ek 5 22(cos kx 1 cos ky) 2 m. Without the spin orbital
coupling (l 5 0), the normal state energy bands of the spin up and
spin down electrons are ek 6 h, respectively. As a result, the Fermi
surfaces of the spin up and spin down electrons are separate. For the
case of s-wave symmetry, only inter-band pairing is available. Since
the Fermi momentum of spin down electron is less than that of spin

Figure 4 | The spatial distributions of the two MF states with different spin-orbital coupling strengths. (a) The MF states at the critical point where the

FFLO modulation disappears. (b) The oscillated MF states in the topological state. (c) The spatial distribution of the MF states when entering deeply into

the topological state. The parameters are h 5 0.6 and m 5 0.
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up electron, there exists a net momentum for the Cooper pair. Thus
the order parameter oscillates periodically in the real space.

In the presence of the spin orbital coupling, the renormalized
normal state energy bands are expressed as

E+~ek+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2z4l2 sin2 kxzsin2 ky

� �q
: ð3Þ

The quasiparticle operators can also be obtained through diagalizing
the Hamiltonian [Eq. (2)]. Both are expressed as the superposition of
the spin up and spin down electrons. As a result, the intra-band
pairing becomes possible, with the weight being determined by l.
The inter-band pairing would generate the FFLO-type modulation.
The intra-band one would generate zero-momentum Cooper pair.
And here the Cooper pairs are made up from two spinless quasipar-
ticles, so that the case of intra-band pairing is equivalent to two-band
p-wave superconductor with opposite chirality.

Let us first brief an idea about the topological phase based on the
continuous-type model48–50, with the band dispersion expressed as

k2

�
2m{m+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2+a kj j2

q
. A basic point to obtain a topological

phase is that the Zeeman field splits the two spin-orbital bands with
a gap 2 h. One may choose the chemical potential to place the Fermi
level inside the gap. As a result, the electrons only occupy the lower
band, while the upper unoccupied band almost plays no role. Based
on the above point, the parameter region for the appearance of the
topological phase has been obtained. One can conclude from the
band dispersion that the Fermi level only crosses the lower band
when the chemical potential is less than the exchange field (j m j ,
h). Thus the system is equivalent to a one-band p 1 ip pairing system.
With a pairing gap D and an effective exchange field h, the parameter

region for the topological phase is hw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2zm2

q
48–50.

Figure 5 | The numerical results of the LDOS. (a) The LDOS as a function of the energy. The zero energy states are indicated by the arrows. (b–d) The

LDOS as a function of the spatial position with different spin-orbital coupling strengths. The parameters are h 5 0.4 and m 5 0.

Figure 6 | The quasiparticle band dispersion [Eq. (3)] along the cuts ky 5 0 and ky 5 2p/3, respectively. The parameters are l 5 0.5, h 5 0.6, and m 5 0.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5218 | DOI: 10.1038/srep05218 5



For the lattice-type model, the energy bands are expressed by
Eq.(3). The topological behavior should be determined by the four
points (0, 0), (p, 0), (0, p), and (p, p). For the case of quasi-one
dimensional system with finite odd lattice size along y direction,
the topological behavior is determined by the C 5 (0, 0) and X 5

(p, 0) points. We plot in Fig. 6 the band dispersions for E6 along the
ky 5 0 and ky 5 2p/3 cuts to discuss the nature of the topological
phase in our system. Here the C point is the bottom of the energy
bands with the energies 24 6 h. If one sets the Fermi level between
them, then only the lower band crosses the level. As a result, this
system is equivalent to a one-band p 1 ip system, similar to the
continuous model as discussed above. The topological state near m
5 24 has been studied previously11 and is not concerned with in the
present work. On the other hand, the energy reaches the maximum at
X point along ky 5 0 cut. If we set the chemical potential to satisfy
jmj, h, then the Fermi level is also inside the gap between the lower
band and upper band. With a particle-hole transformation, the upper
band is occupied with holes, while the lower band is unoccupied. This
leads to the topological feature of the system. However, here the
system is indeed an effective two-band system. Actually, the lower
band also crosses the Fermi level along the other direction of the
Brillouin zone, e.g., along the ky 5 2p/3 direction, as seen in Fig. 6(b).
This would not affect the topological feature of the system. The
existence of two sheets of Fermi surface for the case m 5 0 is essential
for the appearance of the FFLO state when the spin-orbital coupling
strength decreases or disappears.

Then one can understand the nature of the phase transition. For a
two-band system with the bands expressed by Eq.(3), the FFLO state
comes from the interband pairing. The topological state come from
the intra-band pairing. The origin of the phase transition is due to the
competing of these two kinds of pairing. As the spin-orbital coupling
increases, the intra-band pairing dominates over the inter-band one,
so that the long range FFLO order is broken and the phase transition
occurs. However, even in the topological phase, the local FFLO
modulation may still survive as the spin orbital coupling is not strong
enough. This will make the order parameter oscillate near the edge, as
shown in Fig. 3.

The appearance of the topological state for the chemical potential
near 24 and 0 can be checked numerically. Here we set the pairing

gap D and the exchange field h to be D 5 0.3 and h 5 0.6. We
consider the open (periodic) boundary conditions along the x (y)
direction. The energy bands for the 100 3 100 two dimensional
lattice and 400 3 3 quasi-one-dimensional lattice are presented in
Fig. 7. As is seen in Figs. 7(a–c), for the chemical potential m 5 24,
the energy bands are gapped in the bulk while the gapless edge state
exists at the ky 5 0 point, indicating that the system is in the topo-
logical state. The gapless state disappears for m 5 23, thus the system
is in the topological trivial state. For the case of m 5 0, the gapless
states appear at ky 5 0 and ky 5 p. These two gapless mode are
contributed by the (p, 0) and (0, p) points. So there are two topo-
logical regions. We have also checked numerically that the system is

in the tropological state if the parameters satisfy hw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mz4ð Þ2zD2

q
,

or hw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2zD2

q
. For the quasi-one dimensional lattice, as seen in

Figs. 7(d–f), the zero-mode exists for m 5 24 and m 5 0. Both are
protected by a minigap. We have also checked numerically that the
parameter regimes for the topological state are the same as the case of
the two-dimensional lattice. And here we focus our study on the

region hw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2zD2

q
. Our main results shown in Figs. (1–5) are

robust for this parameter region, which has been checked numer-
ically (not presented here).

Recently, the interplay between the FFLO state and topological
state in the presence of the c-axis Zeeman field has also been
studied41,42. We now compare our results with theirs. A primary
difference has been revealed in our above discussion, i.e., there exist
two bands crossing the Fermi level in the topological state. As a result,
as the spin-orbital coupling strength decreases, the topological state
can smoothly connect to the FFLO state and a second order phase
transition occurs. For the model used in Refs. 41, 42, the realization of
the topological state requires that the Fermi level crosses only lower
band. While the FFLO state requires two separated Fermi surfaces. In
order to obtain a direct transition from the FFLO state to the topo-
logical state, a very strong pairing potential is usually required to
overcome the gap between the Fermi level and the upper band.
Thus the phase diagram should be quite different from ours. And
the large pairing gap would also prevent the topological state to
appear. Generally, there may exist a phase transition from the

Figure 7 | The topological state for the chemical potential near 24 and 0. (a–c): The energy spectra for the 100 3 100 two dimensional lattice with

different chemical potentials. (d–f): The quasiparticle energies for the 400 3 3 lattice. The open and periodic boundaries are considered along the x and y

directions, respectively. The parameters are set as h 5 0.6, D ; 0.3, and l 5 0.5.
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FFLO state to the topological trivial superconducting state. The
direct transition from the FFLO to topological state may only occur
for very large pairing potential and very large exchange field. Besides
this important difference, there are some other technique differences
between our work and others. Namely, it was argued in Ref. 41 that
the study of one-dimensional system is problematic according to the
Mermin-Wagner theorem51–53. Thus the coupling chains are consid-
ered. The FFLO modulation occurs only along the chain direction
and the order parameter is assumed to be uniform along its perpen-
dicular direction. The BdG equations are solved in the momentum
space so that certain local inhomogeneous feature is neglected. This
is also different from our model and actually the gap fluctuation is
also an important part of the present work. Some interesting signa-
tures for the phase transition are provided based on the present work
which may be detected by later experiments. Ref. 42 mainly discussed
the numerical results for the pure one-dimensional system and
weakly coupled chains. Actually, the topological phase near m 5 0
region could not appear for the one-dimensional model. It appears
near m 5 22, which is the bottom of the normal state band. Thus the
system is also a one-band system, and a direct transition from the
FFLO state to the topological state can hardly occur.

It was proposed that the topological order may form before the
disappearance of the FFLO state. Thus a special region, named as
‘‘topological FFLO state’’ might appear in the phase diagram41,44,45.
Usually the topological order can be determined strictly through
studying the Pfaffian topological invariant. In Refs. 41, 44, 45, the
model includes both in-plane Zeeman field and c-axis Zeeman field.
Such a model would favor an FF state with D(i) 5 D0 exp(iQ ? Ri), in
which the order parameter magnitude is spatially uniform. The phase
factor in the order parameter can be gauged out and the BdG hamil-
tonian can be transformed to the momentum space44. This technique
can be used to investigate the Pfaffian topological invariant, and a
topological FF state has indeed been verified numerically41,44. In the
present work, only c-axis Zeeman field is considered. The quasipar-
ticle bands are degenerate with the momentum k and 2k. For this
case, usually LO state with D(i) 5 D0 cos(Q ? Ri) is favored. The
translational symmetry is broken and thus it is difficult to study
numerically the possible topological order in the LO state. While if

the topological phase could persist into the LO state, the possible
‘‘topological-LO’’ state is quite interesting, which may be worthwhile
studying in future.

It is also meaningful to compare our results with previous numer-
ical and analytical results on the topological states for the continuous
model. A main character for the topological state is the existence of
the zero energy states protected by a minigap. The magnitude of the
minigap is an important parameter that can determine the robust-
ness of the MF state against various fluctuations and disorder/impur-
ity effect. Generally the minigap should depend strongly on the
magnitude of the bulk pairing gap. With a uniform pairing gap,
the minigap can approximately be obtained in the momentum space.
Namely, the Hamiltonian [Eq. (4) in the method section] can be
rewritten in the momentum space considering periodic boundaries.
The quasiparticle bands for the Hamiltonian can be obtained numer-
ically, denoted as Ei(k). The quasiparticle bands are fully gapped and
the minigap should be the minimum value of j Ei(k) j. In the present
work, we solve Eq.(4) in a fully self-consistent method and obtain the
minigaps numerically in the real space. For a very large lattice-size,
the same result is obtained for the two methods. In real space, the gap
is size dependent. We define the bulk gap D0 to be the gap at the site
(200, 2). Numerically as the other parameters (h, l, m) are fixed, the
bulk gap can be controlled through varying the pairing potential V.
We show in Figs. 8(a–c) the minigap as a function of the bulk gap. For
all of the parameters we considered, the nonzero minigap exists only

when the relation hw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

0zm2
q

is satisfied. This numerical conclu-

sion is consistent with previous analytical results48,49 and numerical
ones for a continuous model47. Here the minigap increases linearly
with the bulk gap as the bulk gap is small and then decreases linearly
for large bulk gap. This result is also qualitatively consistent with that
of the continuous model14,47,48,49. The scale coefficient for small bulk
gap almost does not depend on the chemical potential [Fig. 8(a)]. It
decreases slightly as the exchange field increases [Fig. 8(b)]. While it
depends strongly on the spin-orbital strength l, as seen in Fig. 8(c). It
increases as l increases. The relation between the minigap/the bulk
gap) and the spin-orbital strength is presented in Fig. 8(d). The ratio
of the minigap to the bulk gap with a fixed pairing potential V 5 2.4 is

Figure 8 | The numerical results of the minigap for the 400 3 3 lattice with different parameters. Here the bulk gap D0 is defined as the gap in the

site (200, 2). (a–c) The minigap as a function of the bulk gap. (d) The minigap and bulk gap as a function of the spin-orbital coupling strength. Inset of (d):

the ratio of the minigap to the bulk gap.
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plotted in the inset of Fig. 8(d). As is seen, the ratio increases mono-
tonously with l and saturates to about 1.0 at a strong limit of spin-
orbital coupling. While the magnitudes of the bulk gap and minigap
are non-monotonous as the spin-orbital strength increases. The
minigap reaches the maximum for about l 5 0.4.

Finally, we would like to discuss how the present work is relevant
to a real system. Generally, our model might be simulated by cold
atoms. Recently, the spin-orbital coupling has been realized in
one-dimensional systems with equal Rashba and Dresselhaus
strengths17–19. While the pure Rashba-type spin-orbital coupling is
used in the present work. Although the experimental realization of
the Rashba-type spin-orbital coupling is still awaited, there have been
several theoretical proposals to generate it in cold atoms very
recently54–56, which seem to be quite promising. The s-wave pairing
superfluid state has also been realized in cold atoms15. We also wish
to point out that there always exist the external trap in cold atom
systems, which was addressed in Ref. 57 but is not considered in the
present work. The effect of the trap is also interesting and may
deserve a further study. While, in principle, our main results are
robust again small fluctuations, and we expect that the existence of
external trap does not change our main conclusions. At last, we
emphasize that we here mainly focus on the phase transition in
the lattice system. The numerical results are rather different from
those obtained with a continuous model. The existence of the
lattice seems to play a rather important role to reach our main
conclusion.

In summary, we have studied the physical properties and compet-
ing superconducting phase based on a lattice model that includes the
s-wave pairing, spin-orbital coupling, and the Zeeman field term.
The phase transition from the FFLO state to the TSC state induced
by the spin orbital coupling has been revealed and discussed. The
difference between our lattice model and a previous continuous
model are discussed in detail. It has been proposed that the transition
from the FFLO state to topological state is easier to occur for the
lattice model. We have also explored the properties of the critical
point, the minigap, and the excitations of MFs in the TSC state,
providing a helpful insight in profound understanding of topological
superconductivity and potential applications. The LDOS spectra
have been calculated, serving as a link between our theoretical ana-
lysis and experimental observations.

Methods
The Hamiltonian can be diagonalized by solving the Bogoliubov-de Gennes (BdG)
equations as

Ht rð Þ D rð Þs3

D� rð Þs3 {s2H�t rð Þs2

� 	
Yn rð Þ~En Yn rð Þ, ð4Þ

where Yn(r) denotes the order column vector with Yn rð Þ~ un
r:,un

r;,vn
r;,vn

r:

� �T
, and

the order parameter D(r) is determined self-consistently

D rð Þ~ V
2

X
n

vn
r:vn�

r; tanh
En

2KBT

� 	
ð5Þ

with V the pairing strength.
Considering the order parameter to be uniform along the y-direction, the two-

dimensional Hamiltonian can be reduced to a quasi-one dimensional model,
expressed as,

H~
X

x,ky
y{

ky
xð Þ e ky

� �
s0z2l sin kys2{hs3

� �h
yky

xð Þ{y{
ky

xð ÞTyky
xz1ð Þ{h:c:

i
z
X

x,ky
D xð Þy{

ky
xð Þis2y{

ky
xð Þzh:c:,

ð6Þ

where e(ky) 5 22 cos ky 2 m and T 5 s0 2 ils1.
The BdG equation and self-consistently determined order parameter are written as,

Ht ky ,x
� �

D xð Þs3

D� xð Þs3 {s2H�t ky ,x
� �

s2

 !
Yn ky ,x
� �

~En Yn ky ,x
� �

: ð7Þ

D xð Þ~ V
2Ny

X
ky ,n

un ky ,x
� �

vn� ky,x
� �

tanh
En

2KBT

� 	
: ð8Þ

The local density of states (LDOS) can be calculated as

ri vð Þ~
X

n

un
i:




 


2d En{vð Þz vn
i;




 


2d Enzvð Þ
� �

: ð9Þ

The delta function d(E) is taken as d 5 x/[p(E2 1 x2)], with the quasiparticle damping
x 5 0.01.
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