
Title Performance Improvement of Topology-Transparent Broadcast
Scheduling in Mobile Ad Hoc Networks

Author(s) Liu, Y; Li, VOK; Leung, KC; Zhang, L

Citation IEEE Transactions on Vehicular Technology, 2014, v. 63 n. 9, p.
4594-4605

Issued Date 2014

URL http://hdl.handle.net/10722/200616

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38051385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

4594 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 9, NOVEMBER 2014

Performance Improvement of Topology-Transparent
Broadcast Scheduling in Mobile Ad Hoc Networks

Yiming Liu, Student Member, IEEE, Victor O. K. Li, Fellow, IEEE, Ka-Cheong Leung, Member, IEEE, and
Lin Zhang, Member, IEEE

Abstract—Broadcasting is a key function in mobile ad hoc
networks. Topology-dependent scheduling algorithms depend on
the detailed network connectivity information and cannot adapt to
dynamic topological changes in mobile networks. To overcome this
limitation, topology-transparent broadcast scheduling algorithms
have been proposed. Due to the large overhead of implement-
ing the acknowledgement mechanism in broadcast communica-
tions and to guarantee that there is at least one collision-free
transmission in each frame, most existing topology-transparent
broadcast scheduling algorithms require a node to transmit the
same packet repeatedly at multiple slots during one frame. This is
very inefficient. In this paper, we propose an efficient topology-
transparent broadcast scheduling algorithm. First, instead of
transmitting the same packet repeatedly during one frame, each
node collects transmission codes of its two-hop neighbors and
transmits several different packets during one frame. Second,
noting that many unassigned slots are not utilized, we propose
several methods to utilize the unassigned slots efficiently in a
collision-free and traffic-adaptive manner. Thus, our algorithm
provides a guaranteed throughput and achieves a much better
average throughput. The analytical and simulation results show
that our proposed algorithm outperforms other existing topology-
transparent broadcast algorithms dramatically.

Index Terms—Ad hoc networks, broadcast, topology-
transparent scheduling.

I. INTRODUCTION

S CHEDULING medium access in mobile wireless ad hoc
networks is challenging because of node mobility and

the limited availability and variability of wireless bandwidth.
Many transmission scheduling algorithms have been proposed
to maximize the spatial reuse and minimize the time-division
multiple-access (TDMA) frame length. In the conventional
TDMA networks, each node is assigned a unique time slot to
transmit. This works well when the connectivity information
among the nodes is known and when the number of nodes in
the network is not large [5]. In mobile ad hoc networks, the
number of nodes is much larger than the number of neigh-
bors of a node. Thus, the system performance can be greatly

Manuscript received October 14, 2013; revised January 18, 2014; accepted
March 8, 2014. Date of publication March 24, 2014; date of current version
November 6, 2014. This work was supported by the Research Grants Council
of Hong Kong under Grant HKU 714310E. The review of this paper was
coordinated by Dr. Y. Ji.

Y. Liu and L. Zhang are with the Department of Electronic Engineering,
Tsinghua University, Beijing 100084, China (e-mail: liu-ym05@mails.
tsinghua.edu.cn; linzhang@tsinghua.edu.cn).

V. O. K. Li and K.-C. Leung are with the Department of Electrical and
Electronic Engineering, The University of Hong Kong, Kowloon, Hong Kong
(e-mail: vli@eee.hku.hk; kcleung@ieee.org).

Digital Object Identifier 10.1109/TVT.2014.2313272

improved by applying spatial reuse. Previous approaches in
topology-dependent scheduling [5], [7], [9], [19], [21] require
each node to maintain accurate network connectivity informa-
tion. This is impractical in mobile ad hoc networks, which
are characterized by highly dynamic topological changes. An
alternative approach is topology-transparent scheduling [3], [4],
[12], in which each node is assigned multiple time slots to
transmit in each frame, with the guarantee that at least one time
slot will be successful. However, since the acknowledgement
mechanism cannot be efficiently implemented in broadcast
communications,1 most existing topology-transparent broad-
cast scheduling methods require a node to transmit the same
packet repeatedly at all of its assigned time slots during one
frame time. In addition, many unassigned time slots in each
frame are not utilized at all. Thus, they can only provide a
guaranteed minimum throughput with relatively low network
utilization.

In this paper, we propose an efficient topology-transparent
broadcast scheduling algorithm with a different design strategy.
The main contributions of our work are as follows.

1) First, unlike the existing topology-transparent broadcast
scheduling algorithms that transmit one packet repeatedly
during one frame time, in our algorithm, each node can
transmit multiple packets during one frame time accord-
ing to the collected information of its two-hop neighbors.
Each node collects such information as the identifica-
tion number (ID), transmission schedule, and priority of
each of its two-hop neighbors. The details of the infor-
mation collection will be introduced and discussed in
Section II-B. Thus, our algorithm can also provide a
guaranteed minimum throughput.

2) Second, observing the fact that the codes assigned to
each node are highly sparse (i.e., many unassigned slots
are not utilized at all), we propose several methods to
utilize the unassigned slots in a collision-free and traffic-
adaptive manner. We utilize the unassigned slots while
ensuring that the transmissions in the assigned slots are
not affected. Thus, our proposed broadcast scheduling
algorithm provides a guaranteed throughput by utiliz-
ing the assigned slots and achieves a much better aver-
age throughput, compared with existing algorithms, by
utilizing the unassigned slots. Moreover, our algorithm
can provide a guaranteed and smaller delay than the

1The acknowledgements from different intended receivers may collide at the
transmitter, leading to the failure of the acknowledgement mechanism.

0018-9545 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LIU et al.: PERFORMANCE IMPROVEMENT OF BROADCAST SCHEDULING IN MOBILE AD HOC NETWORKS 4595

existing algorithms.2 This will be discussed in detail in
Sections III and IV.

3) Third, we study the performance of the proposed algo-
rithm analytically and conduct extensive simulations to
show that our algorithm outperforms the other existing
topology-transparent broadcast algorithms dramatically.
Moreover, we investigate the effect of inaccuracies in the
estimation of the maximum node degree on the perfor-
mance of the proposed algorithm.

Note that although information (codes) on two-hop neigh-
bors is collected in our topology-transparent algorithm, as in
topology-dependent scheduling algorithms [5], [7], [9], [19],
[21], some fundamental differences exist between these two
algorithms. In our algorithm, each node determines its trans-
mission pattern according to its assigned code, which remains
the same when topology changes. Collecting the transmission
codes of two-hop neighbors helps broadcast more packets
within one frame time. However, in a topology-dependent
scheduling algorithm, each node collects information on its
two-hop neighbors, negotiates with its neighbors, and finally
determines its transmission slots. When the topology changes,
each node has to collect, compute, negotiate, and determine its
transmission slots again, resulting in inefficiency and possible
failure of such algorithms.

A. Related Work

Many medium access control (MAC) protocols have been de-
veloped for ad hoc networks. The contention-based approaches,
such as carrier sense multiple access, cannot provide deter-
ministic delay and throughput bounds. The primary drawback
surfaces at high load, when these approaches spend most of
their time resolving collisions. When the network load is very
high, the throughput approaches zero, resulting in an unstable
network. It is also shown that contention-based approaches
suffer from serious instability and unfairness issues in mul-
tihop ad hoc networks [27], which is why most networks
offering throughput and delay guarantees, such as the tactical
networks Enhanced Position Location Reporting System [13]
and Joint Tactical Radio System [22], implement deterministic
allocation-based protocols, such as TDMA.

Related work on allocation-based protocols can be catego-
rized into two different groups, namely, topology-dependent
and topology-transparent, based on whether detailed net-
work connectivity information is required. Existing topology-
dependent approaches focus on finding a minimum-length
conflict-free schedule based on the detailed network topology.
This problem is proved to be NP-complete [1], [5]. In addition,
recomputation and information exchanges are required to main-
tain accurate network topology information and to distribute
the new schedules when the network topology changes. Thus,
the robustness and effectiveness of these topology-dependent
scheduling algorithms are undermined in large highly dynamic
wireless mobile ad hoc networks.

To overcome the aforementioned limitations, topology-
transparent scheduling algorithms have been proposed.

2Delay is defined as the time experienced by each packet between when it
leaves the buffer and when it is successfully transmitted.

Chalamatac and Farago [4] developed a topology-transparent
algorithm that guarantees at least one collision-free time slot
in each frame time, but the performance is even worse than
the conventional TDMA in some cases. Ju and Li [12] pro-
posed another algorithm to maximize the minimum guaranteed
throughput. Other work on the design and analysis of topology-
transparent scheduling algorithms can be found in [20], [24],
and [26]. However, only unicast communication is considered.
Cai et al. [3] proposed a broadcast scheduling algorithm, i.e.,
modified Galois field design (MGD), which sends the same
message multiple times during one frame time to guarantee
exactly one successful broadcast transmission per frame. The
throughput is relatively small, since the maximum number of
transmissions is one in a frame time. Sun et al. [25] designed
an acknowledgement-based scheduling protocol for multicast
and broadcast and obtained improved expected throughput.
Unfortunately, the overhead introduced by acknowledgements
dramatically increases with increasing frame length, thus de-
grading the performance, particularly when the total number
of nodes and the maximum number of neighbors of a node
are large. Farnoud and Valaee [8] applied positive orthogo-
nal codes to design a reliable broadcast algorithm for safety
messages in vehicular networks; however, it focused on a
specific application and network topology (1-D roads). The
algorithm requires each node to be location aware, and the
performance metric is the success probability when the traffic
load is not heavy. In [16], a probabilistic topology-transparent
broadcast-scheduling algorithm was proposed, and fewer time
slots are used to broadcast the same packet repeatedly. That is,
it sacrifices some reliability to improve the average throughput.
However, neither algorithm in [16] and [18] can guarantee
at least one conflict-free transmission slot per frame time.
Another topology-transparent broadcast-scheduling algorithm
with guaranteed throughput was proposed in [15], in which
erasure coding is applied to improve the throughput. However,
many unassigned slots are not utilized at all.

The remainder of this paper is organized as follows. We in-
troduce our system model in Section II. Our proposed algorithm
is presented in detail in Sections III and IV. We propose to
utilize the assigned slots efficiently and obtain the optimal data
frame structure in Section III. In Section IV, we propose several
methods to utilize the unassigned slots in a collision-free and
traffic-adaptive manner to further improve the throughput of
our algorithm. The performance of our algorithm is analytically
studied in Section V. Simulations are conducted to evaluate
the performance of our proposed algorithm in Section VI. The
effect of inaccuracies in the estimation of the maximum node
degree on the performance of the proposed algorithm is also
investigated. Section VII concludes this paper with suggestions
for further research.

II. SYSTEM MODEL

A. Network Model

A mobile ad hoc network can be represented by a graph
G(V,E). V is the set of all network nodes, and E is the set of
all edges. If node v is within the interference range of node u, an
edge denoted by (u, v) is in E. We assume that if (u, v) ∈ E,

4596 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 9, NOVEMBER 2014

then (v, u) ∈ E. To simplify the calculation, but without loss
of generality, we assume that the transmission range of a node
is equal to its interference range. Let N1(u) and N2(u) denote
the sets of one-hop neighbors and two-hop neighbors of node u,
respectively. Thus, N1(u) ⊂ N2(u). The degree of node u, i.e.,
D(u), is defined as the number of one-hop neighbors of node
u, i.e., D(u) = |N1(u)|. N1(u,m), where m = 1, 2, . . . , D(u)
indicates the mth neighbor of node u. The maximum degree
Dmax is defined as Dmax = maxu∈V D(u). We assume that
Dmax is much smaller than the number of nodes N and remains
constant while the network topology changes. The maintenance
and benefits of this kind of degree-bounded topology have been
discussed in [10] and [11]. In practical networks, empirical data
and statistics can be used to estimate Dmax. In addition, Dmax

may be pessimistically estimated based on network parameters
and/or empirical data, thus ensuring that the actual number of
interfering neighbors does not exceed the estimate.

We focus on TDMA networks. As discussed in previous
work on topology-transparent scheduling, we assume that the
transmission channel is error free and that a reception failure is
only due to packet collisions. The transmission from node u to
node v succeeds when 1) node v is not transmitting and 2) other
nodes in v’s interference range are not transmitting.

As in previous topology-transparent scheduling algorithms,
we assume that the network is quasi-mobile. That is, the net-
work connectivity remains the same during one frame time.

In broadcast scenarios, the acknowledgements from different
intended receivers may collide at the transmitter, leading to the
failure of the acknowledgement mechanism. This is the most
challenging issue in broadcast communication and leads to
the low throughput of previous topology-transparent broadcast
scheduling algorithms.

B. Frame Structure

In our algorithm, time is divided into equal-sized frames.
Each frame is further divided into three parts. The first two parts
are intended for control packets and called control frames (CF1
and CF2). The last part is meant for data packets and called data
frame (DF). In practice, the length of DF should be much larger
than that of CF1 and CF2 to reduce the overhead.

Fig. 1 shows the detailed frame structure. CF1 and CF2
are each divided into qc subframes, each of which consists of
pc synchronized minislots. The data frame is divided into qd
subframes, each of which consists of pd synchronized minis-
lots. We set qc ≤ pc and qd ≤ pd, according to [3], [4], and
[12]. Synchronization can be achieved by Global Positioning
System.

Each node v is assigned a unique polynomial with degree k
mod pc, fv(x) =

∑k
i=0 aix

i(modpc), where v ∈ V , as its time
slot assignment function (TSAF). Node v transmits in time slot
fv(i) in subframe i, where i ∈ {0, 1, 2, . . . , qd − 1} for each
data frame, and i ∈ {0, 1, 2, . . . , qc − 1} for each control frame.
We know (fv(i)) as the time slot location vector (TSLV) for
node v [12]. These slots are also known as the assigned slots of
node v, whereas the other slots are known as unassigned slots.
To ensure that the TSAFs of each node in the control and data
frames are the same, we set pc = pd = p.

Fig. 1. Frame structure. (a) Structure of the whole frame. (b) Structure of
control frame (CF1 and CF2). (c) Structure of data frame (DF).

For each node, CF1 is used to distribute its information and
to collect the information of its neighbors. CF2 is used to
distribute the information of its one-hop neighbors collected
in CF1 and to collect the transmitted information, which is re-
ceived by its neighbors in CF1. Thus, each node can collect the
information of all its two-hop neighbors after CF1 and CF2 and
transmit the data packets according to the collected information,
as specified in the following section. The information of each
node includes its own identity number (ID), TSAF, segment,
and priority. The priority of each node is used to determine
how to utilize the unassigned slots and will be discussed in
Section IV. The segment of each node indicates the unassigned
slots in the subset of subframes it can utilize. If the segment of
a node is set to 0, it can possibly access the unassigned slots in
all subframes. Our algorithm can provide heterogenous quality
of service (QoS) for different nodes by properly configuring
the respective segments. This will be discussed in detail in
Section IV-C.

Consider a single-channel TDMA network G(V,E) with
N mobile nodes and the maximum node degree Dmax. To
guarantee that each node receives the TSAFs of all its two-hop
neighbors after CF2, two basic constraints must be satisfied, as
discussed in [3], [4], and [12]. Therefore, we have

pk+1
c ≥N (1)
qc ≥ kDmax + 1. (2)

To minimize the overhead introduced by CF1 and CF2, we
use the same method discussed in [3] to minimize the frame
length of CF1 and CF2, stated as follows.

Let k0 be the root of the following equation:

N
1

x+1 = xDmax + 1. (3)

Then

�k0� or �k0	 = argmin
k

Lc(k) (4)

LIU et al.: PERFORMANCE IMPROVEMENT OF BROADCAST SCHEDULING IN MOBILE AD HOC NETWORKS 4597

where Lc(k) is the frame length (in number of control slots) of
each of CF1 and CF2.

Let p1 be the minimum prime or prime power greater than
or equal to �k0�Dmax + 1 and p2 the minimum prime or prime
power greater than or equal to N1/�k0	+1. Then, the minimum
frame length of each of CF1 and CF2 is min{p1(�k0�Dmax +
1), p2(�k0	Dmax + 1)}.

Based on the given discussions, we obtain the TSAFs and
TSLVs of our proposed algorithm as follows.

1) Obtain k0 and determine the optimal k that yields the
minimum length of each of CF1 and CF2 according to
(5) and (6).

2) Determine pc and qc from k. If k = �k0�, pc = p1,
and qc = �k0�Dmax + 1. If k = �k0	, pc = p2, and qc =
�k0	Dmax + 1. Hence, we have pk+1

c available polyno-
mials over GF (p).

3) Distribute the polynomials to nodes. Each node i has a
unique polynomial fi(x) as its TSAF, calculates its TSLV,
and transmits the control packets according to its TSLV.

C. Overhead Analysis

Compared with the existing topology-transparent scheduling
algorithms, some overhead, namely, CF1 and CF2, is intro-
duced in the proposed algorithm to distribute and collect the
information of two-hop neighbors of each node. Each node
transmits its ID, priority, segment, and TSAF in CF1. Note
that each TSAF is a degree-k polynomial, and each of its
coefficients can be represented in one byte (each coefficient is
no larger than 255). Hence, each TSAF can be represented in
(k + 1) bytes. The ID, segment, and priority can be represented
in two bytes each. In CF2, each node broadcasts all (up to
Dmax) the information from its one-hop neighbors. Hence, we
need at most (k + 7)Dmax bytes to broadcast the information.
Each slot in CF1 is designed to accommodate the transmission
of one packet of (k + 7) bytes and a guard time. Each slot in
CF2 is designed to accommodate the transmission of one packet
of (k + 7)Dmax bytes and a guard time. Recall that the frame
length of CF1 and CF2 is pcqc and that the frame length of
DF is pdqd. To simplify the calculation, we neglect the guard
time. The overhead introduced in the proposed algorithm is as
follows:

β =
(k + 7)(Dmax + 1)pcqc

Lpdqd + (k + 7)(Dmax + 1)pcqc
(5)

where L is the length of the payload packet in bytes. Taking
N = 256, Dmax = 8, and L = 1024 as an example, k = 1,
pc = pd = 17, qc = 9, qd = 17,3 and thus, β = 3.6%.

As shown in (5), the overhead introduced in our algorithm is
independent of the total number of nodes in the network, i.e., N ,
where N ≤ 216. Thus, the overhead of our proposed algorithm
does not increase with the network size.

3The derivation of qd will be given in the following section.

III. PROPOSED ALGORITHM

A. Algorithm Description

The utilization of assigned slots of the proposed topology-
transparent broadcast-scheduling algorithm is described as
follows.

1) Initially, each node i calculates its TSLV based on its
assigned TSAF, i.e., fi(x).

2) In CF1, each node i broadcasts its ID (identification
number), segment, priority, and TSAF fi(x) according
to its TSLV and stores the IDs, priorities, and TSAFs
received from its neighbors, i.e., fj(x), where j ∈ N1(i).

3) In CF2, each node i broadcasts the D(i) TSAFs, i.e.,
fj(x), where j ∈ N1(i), IDs, segments, and priorities
received in CF1 as a packet according to its TSLV, and
stores the IDs, segments, priorities, and TSAFs received
from its neighbors. Hence, each node i knows the ID,
segment, priority, and TSAF fj(x) of node j, where
j ∈ N2(i).

4) At the beginning of each data frame, set a flag vector
Flagi = (Flagi,N1(i,1), . . . , F lagi,N1(i,D(i))) for each
node i. Flagi,N1(i,m) = 1, where m = 1, . . . , D(i),
indicates that the mth neighbor of node i has
received the broadcast packet from node i. Otherwise,
Flagi,N1(i,m) = 0. Initially, set Flagi to be a zero vector.

5) In subframe n, where n = 0, 1, . . . , qd − 1, each node i
checks Flagi. If g(Flagi) = D(i), where g(Flagi) is
defined as the number of “1”s in a vector Flagi, transmit
the next packet queued in node i in this subframe and set
Flagi to be a zero vector; otherwise, transmit the current
packet in this subframe. Then, each node i checks its
transmission slot in this subframe, i.e., fi(n). If fi(n) /∈
{fj(n) : j ∈ N1(N1(i,m)) ∪ (N1(i,m) \ {i})}, where
m = 1, . . . , D(i), set Flagi,N1(i,m) = 1; otherwise, do
nothing.

B. Correctness of the Proposed Algorithm

First, due to the frame structure of CF1 and CF2, each
node can successfully broadcast one packet to its neighbors
during both CF1 and CF2. Hence, each node can successfully
receive and store the TSAFs of its one-hop neighbor after CF1.
Moreover, each node i knows the number of its neighbors,
i.e., D(i), after CF1. Then, each node broadcasts the TSAFs
received in CF1 during CF2. As a result, each node knows the
TSAFs of all of its two-hop neighbors. As we assume that the
network is quasi-mobile, the TSAFs collected in CF1 and CF2
are accurate for the corresponding data frame. In the data frame,
at the beginning of each subframe, each node i checks its flag
vector Flagi. g(Flagi) = D(i) implies that all the neighbors
of node i have received the current packet successfully. If so,
the next queued packet will be broadcast in this subframe.
Otherwise, each node checks whether its mth neighbor, where
m = 1, 2, . . . , D(i), can receive the current packet in this sub-
frame by comparing its own TSAF with the TSAFs of its
mth neighbor and the neighbors of its mth neighbor, which
are collected in CF1 and CF2. If so, set Flagi,N1(i,m) = 1.
This is repeated until g(Flagi) = D(i). Thus, according to our

4598 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 9, NOVEMBER 2014

algorithm, each node knows whether and when a broadcast
packet is received by all its neighbors.

In the following, we show that the aforementioned utilization
of the assigned slots can provide a guaranteed delay. In our
algorithm, packets are repeatedly broadcasted in the assigned
slots of each node in a more intelligent manner than the
previous topology-transparent algorithms [3]. Based on the in-
formation collected in CF1 and CF2, each node knows when to
stop the repeated broadcast of the current packet and to start the
broadcast of the next packet, rather than simply broadcasting a
packet repeatedly in the whole frame. In the worst case, a packet
can be successfully broadcasted during one frame similar to
the algorithm in [3]. The maximum delay is one frame. This
leads to our conclusion that the aforementioned utilization of
the assigned slots can provide a guaranteed delay. We will show
that the utilization of the unassigned slots does not alter this
conclusion later in Section IV.

C. Optimal Data Frame Structure

It has been shown that the optimal frame structure for broad-
cast and unicast traffic is different and that the throughput of
topology-transparent broadcast algorithms is much smaller than
that of topology-transparent unicast algorithms [2], [11]. This
is mainly due to the fact that the acknowledgement mechanism
cannot be efficiently implemented in broadcast communication,
and to eliminate the acknowledgement, each node has to trans-
mit the same packet repeatedly in one frame time. Based on
the TSAFs of the two-hop neighbors of each node collected in
CF1 and CF2, each node can transmit more than one broadcast
packet in one frame. We have obtained the control frame
structure in Section II-B. Now, we study the average throughput
of assigned slots of our algorithm and obtain the optimal data
frame structure as follows.

Recall that qd ≤ pd. We have Theorem 1 as follows.
Theorem 1: Given pd and the TSAFs of the two-hop neigh-

bors of each node, the optimal throughput for broadcast traffic
is achieved when qd = pd.

Proof: Suppose that node u broadcasts a packet to all its
neighbors. Let Auv

i be the event that node v, which is a neighbor
of node u, has received the packet from node u in subframe
i− 1 for the first time, where i = 1, 2, . . . , Dmax + 1. We
assume the worst case here. There are up to Dmax interfering
nodes, and all are transmitting.

It is proved in [11] that the maximum degree of the polyno-
mials, i.e., k, is one for most cases. Thus, without loss of gen-
erality, we use k = 1 in the following analysis for simplicity.
That is, there are p2d TSLVs in total. Let N i be the number of
ways for a given TSLV of node u, i.e., TSLVu, to select Dmax

other TSLVs, the union of which intersects TSLVu in the first
i− 1 subframes (subframes 0 to (i− 2)) and does not intersect

TSLVu in subframe i− 1. There are
(p2

d
−1

Dmax

)
ways to select

Dmax TSLVs from the remaining p2d − 1 TSLVs. Thus, the
probability that Auv

i happens, where i = 1, 2, . . . , Dmax + 1,
is as follows:

Pr (Auv
i) =

N i(p2
d
−1

Dmax

) . (6)

Consider the TSAF of node u, i.e., TSAFu. We catego-
rize the remaining p2d − 1 TSAFs into pd + 1 different sub-
sets Fi (i = 0, 1, . . . , pd) according to their coincidences with
TSAFu. We define the coincidence of any two polynomials
as the root of the difference of these two polynomials. That
is, if fu(j)− fv(j) = 0, j is the coincidence of fu(x) and
fv(x). The TSAFs in Fi (i = 0, 1, . . . , pd − 1) have the co-
incidence i with TSAFu, and the TSAFs in Fpd

have no
coincidence with TSAFu. Note that a TSAF over GF (pd) is
uniformly distributed over {0, 1, 2, . . . , pd − 1} [6]. Thus,
|Fi| = pd − 1, where i = 0, 1, . . . , pd. The detailed verifica-
tion is as follows. Consider an arbitrary degree-1 polynomial
f(x) = ax+ b (modpd), where a, b ∈ {0, 1, . . . , pd − 1}.
Keeping the slope of f(x), i.e., a, invariant and varying b,
we get a sequence of polynomials gi(x) = ax+ bi (modpd),
where bi ∈ {0, . . . , b− 1, b+ 1, . . . , pd − 1} that have no co-
incidences with f(x). The number of terms in the sequence
of polynomials is pd − 1. That is, |Fpd

| = pd − 1. Similarly,
consider f(x) = ax+ b (modpd) and an arbitrary integer
x0, where a, b, x0 ∈ {0, 1, . . . , pd − 1}. Fixing the point
(x0, f(x0)) and varying ai, where ai ∈ {0, . . . , a− 1, a+ 1,
. . . , pd − 1}, we obtain a sequence of lines (polynomials) pass-
ing the point (x0, f(x0)) besides f(x), the number of which is
pd − 1. Thus, |Fi| = pd − 1, where i = 0, 1, . . . , pd − 1.

Given i (where i = 0, 1, . . . , Dmax), we classify TSAFs
other than TSAFu into two different groups.

• Group 1: The number of TSAFs that have the coincidence
i with TSAFu is pd − 1.

• Group 2: The number of TSAFs that do not have the
coincidence i with TSAFu is pd(pd − 1).

Let Cj (where j = 0, 1, . . . , i− 2) be the set of events in
which none of the chosen Dmax TSAFs from Group 2 has the
coincidence j with TSAFu. Note that the number of TSAFs
that have the coincidence j (where j = 0, 1, . . . , i− 2) with
TSAFu is pd − 1, and we choose Dmax TSAFs from Group 2.
Thus, the cardinality of the intersection of any m sets from Dj ,

where j = 0, 1, . . . , i− 2, is
(p2

d
−1−(m+1)(pd−1)

Dmax

)
. N i is equal

to the cardinality of the complementary set of
⋃i−2

j=0 Cj , which

is denoted by �. Note that there are
(
pd(pd−1)
Dmax

)
ways to select

Dmax codewords from Group 2. Thus

N i = |�|

=

(
pd(pd − 1)

Dmax

)
−

∣∣∣∣∣∣
i−2⋃
j=0

Cj

∣∣∣∣∣∣ . (7)

Applying the inclusion–exclusion principle, we can obtain N i,
i = 2, . . . , Dmax + 1, as (8) and N1 =

(
pd(pd−1)
Dmax

)
.

N i =

(
pd(pd − 1)

Dmax

)
−

i−1∑
m=1

(−1)m−1

(
i− 1
m

)

×
(
p2d − 1 − (m+ 1)(pd − 1)

Dmax

)
. (8)

We assume that all (up to Dmax) transmissions correspond-
ing to a single broadcast communication are independent. Let μ

LIU et al.: PERFORMANCE IMPROVEMENT OF BROADCAST SCHEDULING IN MOBILE AD HOC NETWORKS 4599

be the number of times a sender broadcasts the same message so
that all its (up to Dmax) neighbors receive it successfully. Since
nodes u and v are arbitrarily chosen, deleting the superscript uv
for clarity, we have:

E[μ] = Pr(A1)
Dmax +

Dmax+1∑
i=2

i

Dmax∑
r=1

(
Dmax

r

)
Pr(Ai)

r

× Pr

⎛
⎝i−1⋃

j=1

Aj

⎞
⎠

Dmax−r

= Pr(A1)
Dmax +

Dmax+1∑
i=2

i

Dmax∑
r=1

(
Dmax

r

)
Pr(Ai)

r

×

⎡
⎣ i−1∑
j=1

Pr(Aj)

⎤
⎦
Dmax−r

. (9)

The expected number of successful broadcast messages de-
livered by a node per frame is:

T =
qd

E[μ]
. (10)

The expected throughput of the proposed algorithm can be
computed as follows:

E[Gassigned] =
T

pdqd
=

1
pdE[μ]

. (11)

Thus, the throughput of broadcast traffic does not depend on
the number of subframes. Noting that the overhead decreases
when qd increases, as shown in (5), we prove Theorem 1. �

IV. UTILIZATION OF UNASSIGNED SLOTS

Note that the codes assigned to each node in our algorithm
are highly sparse. That is, each node only chooses qd out of
pdqd time slots to transmit within one frame time to support
guaranteed throughput. The remaining (pd − 1)qd time slots
are not utilized at all, resulting in a relatively low average
throughput. An RTS (Request to Send)-based and CTS (Clear
to Send)-based ALOHA-type method has been proposed in
[18] and [28] to utilize the unassigned slots to improve the
throughput. A collision-free utilization of the unassigned slots
was proposed in [14]. However, there are two main drawbacks.
First, all these algorithms are designed only for unicast com-
munications. Second, all these algorithms are designed under
the heavy-traffic condition. Thus, none of these algorithms are
adaptive to the network traffic. To overcome these problems,
we develop several methods based on the collected codes of
two-hop neighbors to utilize the unassigned slots in a collision-
free manner, thus allowing nodes to access both the assigned
and unassigned slots efficiently and improving the average
throughput. More importantly, our methods are traffic adaptive.

In our algorithm, each node learns the indexes of the
time slots that can possibly be utilized according to the col-
lected TSAFs of its two-hop neighbors after CF1 and CF2.
Let PU(u) be the set of time slots that can possibly be

utilized by node u (where u = 1, 2, . . . , N) in the current
frame. Time slot j in subframe i is in PU(u) if and only
if j /∈

⋃
m∈{u}∪N2(u)

{fm(i)}. That is, PU(u) = {(i, j)|0 ≤
i ≤ qd − 1, 0 ≤ j ≤ pd − 1, j /∈

⋃
m∈{u}∪N2(u)

{fm(i)}}. The
detailed process is described in Algorithm 1. Meanwhile, each
node collects the priorities of its two-hop neighbors after CF1
and CF2. The nodes with the highest priority within their
two-hop neighbors are granted to utilize the time slots in
their PUs.

Algorithm 1 FindAvailableUnassignedSlots(u)

Input: The set of two-hop neighbors of node u, N2(u);
TSAFs of the nodes in N2(u), {fn(x)|n ∈ N2(u)}.

Output: The set of unassigned slots that can be possibly
utilized by node u, PU(u).

1: Initialize PU(u) = ∅
2: for Subframe = 0 to qd − 1 do
3: for Slot = 0 to pd − 1 do
4: for n = 1 to |N2(u)| do
5: if Slot /∈ {fn(Subframe)} ∪
{fu(Subframe)} then

6: PU(u)←PU(u) ∪ {Slot+Subframe×
pd}

7: end if
8: end for
9: end for

10: end for
11: return PU(u)

Note that the guaranteed minimum throughput can still be
achieved, even in a high-traffic-load environment and in dense
networks. This is because the transmissions in the time slots be-
longing to PU(u) do not interfere any transmissions of the two-
hop neighbors of u in their assigned slots. Thus, we conclude
that, for our algorithm, the transmissions in the unassigned
slots do not affect the transmissions in the assigned slots of
other nodes, implying that the use of the unassigned slots does
not lead to a violation of the provisioning of a guaranteed
delay. Thus, we can conclude that our algorithm can provide
a guaranteed throughput and delay.

If node u is granted access to the time slots in PU(u), the
transmissions in these slots are collision free, since no nodes
among its two-hop neighbors transmit in these slots. In the
following, we introduce three ways to utilize the unassigned
time slots by using different approaches to generate priorities,
namely, uniform utilization (UU), traffic-based utilization (TU),
and heterogeneous TU (HTU). UU is designed under the heavy-
traffic condition. However, TU and HTU are traffic adaptive.

In the beginning of each frame, each node broadcasts and
collects information of its two-hop neighbors, as discussed in
Sections II and III. The analysis of the overhead is given in
Section II-C. In the following, we show that our algorithm has
a polynomial time complexity. As shown in Algorithm I, in
all three loops, there are pdqd|N2(u)| iterations (lines 5–7 in
Algorithm I), where |N2(u)| is the cardinality of N2(u).

4600 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 9, NOVEMBER 2014

For each iteration, a node determines whether the current
time slot is an assigned slot of another node of its two-
hop neighbors. As discussed in Sections II and III, pd =
qd = max(N1/k+1, Dmax + 1). We can obtain that pd = qd =
O(Dmax logN/ logDmax). The detailed proof can be found
in [4]. Moreover, since each node has at most D2

max two-
hop neighbors,4 |N2(u)| ≤ D2

max. Thus, the number of iter-
ations in all three loops in Algorithm I is pdqd|N2(u)| =
O(D4

max log
2 N/ log2 Dmax). Thus, the polynomial running

time of our algorithm follows, due to the facts that the iteration
can be completed by doing elementary arithmetic operations
over Galois field GF (pd) and computed in polynomial time
and that the number of iterations executed by the algorithm is
polynomial in N and Dmax.

A. Uniform Utilization of Unassigned Slots

Let M be a permutation of the vector (1, 2, . . . , N), which
is known by all the N nodes a priori. The virtual ID (VID) of
node i, where i = 1, 2, . . . , N , in frame t can be computed as
follows:

V ID(i, t) = mod ((M(i) + t) , N) . (12)

After CF1 and CF2, each node collects the IDs and calculates
the VIDs of its two-hop neighbors.5 The nodes with the highest
VID within their two-hop neighbors are granted access to the
time slots in their PUs. It is obvious that the priority (VID) of
each node is unique in every frame and uniformly distributed as
time evolves. Thus, each node utilizes the unassigned time slots
in a uniform way.

B. Traffic-based Utilization of Unassigned Slots

In the previous discussion, we assume that all homogenous
nodes are backlogged. In reality, the traffic load at each node
may vary over time. Therefore, we propose to use the TU of
unassigned slots to investigate whether our algorithm is adap-
tive to varying traffic load at each node. We simply use the num-
ber of buffered packets in each node to represent its traffic load,
irrespective of the underlying traffic model. In Section VI-B,
we use a specific traffic model and perform simulation to study
the performance of our algorithm with TU. The impact of traffic
patterns on the performance of scheduling algorithms can be
found in [23] and references therein. Each node can be granted
access to the unassigned time slots according to its number
of buffered packets. Intuitively, the nodes with more packets
queued in the buffer should be provided more transmission
opportunities. In the TU of unassigned slots, we use the number
of buffered packets in each node as its priority. The nodes with
the highest priorities (numbers of packets) within their two-hop
neighbors are granted access to the time slots in their PUs. If
the priorities of multiple nodes within two-hop neighbors are
equal, the node with the highest V ID is granted access to the
time slots in its PU .

4The number of two-hop neighbors is much less than D2
max.

5No priority information is needed to broadcast in CF1 and CF2 in UU, since
VID, which can be computed based on ID, is used as priority.

C. Heterogeneous Traffic-Based Utilization
of Unassigned Slots

HTU of unassigned slots can be implemented in a hetero-
geneous network, in which different classes of nodes have
different quality of service (QoS) requirements. Without loss
of generality, we assume that two classes of nodes exist in the
network, namely, Class V1 with a higher QoS requirement and
Class V2 with a lower QoS requirement. The calculation of the
priority of each node is the same as that in TU. The difference
is as follows.

All time slots are equally divided into two subsets, namely,
Subset 1 and Subset 2. Subset 1 includes the time slots in the
subframes with odd indexes, and Subset 2 includes the time
slots in the subframes with even indexes. The segments of the
nodes in Class V1 are set to 0, implying that each node in V1

can utilize the unassigned slots in both subsets if it is granted
access. However, the segments of the nodes in Class V2 are set
to 1, implying that each node in V1 can utilize the unassigned
slots in Subset 1 if it is granted access.

Each node generates and broadcasts its priority in CF1 and
CF2. After CF1 and CF2, each node collects the IDs, segments,
and priorities of its two-hop neighbors. An arbitrary node u
in Class 1 is granted access to the time slots in PU(u), if
its priority is the highest within its two-hop neighbors. If not,
it can also utilize the time slots in PU(u) ∩ Subset 2 as long
as its priority is the highest within its two-hop neighbors with
segment = 0. An arbitrary node v in Class 2 with the highest
priority within its two-hop neighbors is granted to utilize the
time slots in PU(v) ∩ Subset 1. If the priorities of multiple
nodes within two-hop neighbors are equal, the node with the
highest V ID is granted access to the time slots. This guarantees
that the transmissions in the time slots in the PUs of the granted
nodes are all collision free. Thus, nodes are granted access to
the unassigned time slots according to the class to which belong
in a heterogeneous way. Although we only consider two classes
of nodes with different QoS requirements in the aforementioned
discussion, we can easily generalize it to more classes of nodes
by dividing the time slots in one frame into more subsets and
setting the segment of each node properly.

V. ANALYTICAL RESULTS

A. Throughput Analysis

We study the average saturated throughput of the proposed
algorithm. The average saturated throughput is defined as the
average number of packets successfully received per time slot
per node, under a heavy-traffic condition with all nodes back-
logged. In the proof of Theorem 1, we obtain the average
saturated throughput of the assigned slots for broadcast traffic,
as shown in (9) and (11). Intuitively, the average throughput
of unassigned slots depends on the number of nodes in the
contention set. A larger number of nodes in the contention set
leads to more contending nodes, less unassigned slots to be uti-
lized, and, thus, smaller average throughput. In the following,
we analyze the saturated throughput of the unassigned slots.

Consider an arbitrary node u with n two-hop neighbors.
Node u cannot utilize the slots, which are the assigned slots
of its n two-hop neighbors and node u itself. Recall that the

LIU et al.: PERFORMANCE IMPROVEMENT OF BROADCAST SCHEDULING IN MOBILE AD HOC NETWORKS 4601

maximum degree of the polynomials, i.e., k, is one for most
cases [11]. Thus, without loss of generality, we use k = 1 in the
following analysis for simplicity. That is, there are p2d TSLVs in
total. Consider an arbitrary subframe j, where 0 ≤ j ≤ qd − 1.
Let M l denote the number of ways to select n+ 1 out of p2d
TSLVs such that the assigned slots of these n+ 1 nodes are
exactly l specific slots in subframe j, where l = 1, 2, . . . , pd.
Note that there are

(p2
d

n+1

)
ways to select n+ 1 out of p2d TSLVs

and
(
pd

l

)
ways to select l out of pd slots in one subframe. Thus,

the probability that pd − l slots can be utilized by node u, i.e.,
P (l), is as follows:

P (l) =
M l

(
pd

l

)
(p2

d
n+1

) . (13)

As discussed in Section IV, the priority of each node changes
in a uniform manner as time evolves. Thus, a node with n
contention nodes has the highest priority and can utilize the
unassigned slots once every n+ 1 frames. We obtain the av-
erage throughput of unassigned slots, conditioned on n, i.e.,
E[Gunassigned|n], as follows:

E[Gunassigned|n] =

p∑
l=1

(p− l)P (l)

(n+ 1)p
. (14)

Thus, we have:

E[Gunassigned] =

N−1∑
m=1

E[Gunassigned|n = m] Pr(n = m).

(15)

However, we can hardly obtain the distribution of n. We
approximate the average throughput of unassigned slots as (16)
(which is found to be quite accurate when compared with the
simulation results as exhibited in Section VI). Thus,

E[Gunassigned] ≈ E[Gunassigned|n̄] (16)

where n̄ is the average number of two-hop neighbors of a node.
We will discuss how to calculate n̄ in the following section.

The calculation of M l, where l = 1, 2, . . . , pd, is given in
Appendix.

Thus, taking into consideration the overhead discussed in (5),
the average effective saturated throughput, i.e., E[Ge], is given
as follows:

E[Ge] = (E[Gassigned] + E[Gunassigned]) (1 − β) (17)

where β, E[Gassigned], and E[Gunassigned] are given in (5),
(11), and (16), respectively.

VI. PERFORMANCE EVALUATION

Here, we compare the performance of our proposed schedul-
ing algorithm with the MGD algorithm proposed by Cai et al.
[3], the algorithm in [25] (referred to as Sun’s algorithm), and
the erasure-coding-based broadcast algorithm in [15] (referred
to as EC algorithm). We also compare our algorithm with the
topology-dependent (coloring) scheduling algorithm proposed

in [19].6 We refer to it as the coloring algorithm. This col-
oring algorithm is a centralized algorithm. Several distributed
versions of this algorithm have been proposed and shown to
have similar performance to this centralized algorithms [21].
However, it takes several minutes to obtain the schedules [9],
[21], which is too long in mobile networks, as the topology
would have changed before the computation ends. Thus, the
centralized coloring algorithm in [19] is not really applicable to
our scenario; however, it may be considered as a benchmark
of topology-dependent (coloring) algorithms. Moreover, we
conduct all simulations using MATLAB.

A. Simulation Setup

We conduct computer simulation on the geometric model for
the average performance of our algorithm. In the geometric
model, all N nodes are uniformly distributed in a region of
1000 m × 1000 m initially. Each node moves according to the
Gauss–Markov mobility model, which has been shown to be
more realistic than the widely used random waypoint model [2].
In the Gauss–Markov mobility model, time is discrete so that
the movement of a node from a time instance to the next time
instance is determined by parameters θ and v. The tuning pa-
rameter θ is used to present different levels of randomness in the
Gauss–Markov model. We set θ = 0.5 (where Brownian motion
is obtained by setting θ to zero, and the linear motion is obtained
by setting θ to 1). The speed v follows a Gaussian distribution,
the mean and standard deviation of which are 0.9 ms−1 and
0.5 ms−1 [29]. The detailed description of the Gauss–Markov
mobility model can be found in [2] and [29]. Moreover, we
consider that the 1000 m ∗ 1000 m region wraps around like
a torus; hence, there are no edge effects. Given Dmax, we set
the interference range of each node RI such that the probability
that the number of interfering neighbors of an arbitrary node
exceeding Dmax, which is

∑N−1
i=Dmax+1

(
N−1
i

)
(πR2

I/A)
i(1 −

(πR2
I/A))

N−1−i, is smaller than 0.05. For example, RI = 87 m
if (N,Dmax) = (256, 10). If there exist more than Dmax nodes
in the interference range of a node, the nodes other than Dmax

randomly selected interfering nodes are assumed to be noninter-
fering. This guarantees that the maximum node degree is Dmax.
We can calculate n̄ as n̄ = Nπ(αRI)

2/A. In the simulations,
we find that a good estimation of n can be achieved by setting
α = 1.4.

We apply the optimal k, pc, qc, and pd = qd = p derived
in Sections II and III. The packet length of the payload is
set to 1024 bytes, i.e., L = 1024. The overhead is calculated
according to (5). For each result, we run each simulation for
100 frame times, unless stated otherwise. The 95% confidence
interval is computed for each data point, as shown in the figures.

Unlike our proposed algorithm and the other algorithms to
which we refer, Sun’s algorithm is acknowledgement based.
To make a fair comparison, we must consider the overhead
introduced by employing acknowledgements in Sun’s algo-
rithm. We adopt the same parameters used in [25]. In Sun’s
algorithm, a time slot is divided into two segments, namely,

6The best heuristic, i.e., Progressive Minimum Neighbors First, has been
applied in coloring.

4602 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 9, NOVEMBER 2014

Fig. 2. Effect of Dmax on the performance. (a) N = 128. (b) N = 256.

the data segment and the acknowledgement segment. The ac-
knowledgement segment is further divided into pq minislots
for acknowledgement transmission. Each of these minislots
is used to accommodate the transmission of a four-byte ac-
knowledgement. Thus, the overhead introduced by employing
acknowledgement is 4pcqc/L+ 4pcqc, where L is the packet
length of the payload. In the simulations, we also consider the
overhead of our algorithm due to CF1 and CF2. The overhead
introduced by our algorithm is discussed in Section II-C and
can be expressed as (5).

B. Simulation Results

We first evaluate the average saturated throughput of our
algorithm and study the other two traffic-adaptive utilizations
of unassigned slots later, namely, TU and HTU.

1) Effect of Dmax on the Performance: Given that N = 128
and N = 256, we investigate the performance of our algorithm
with different Dmax settings from 6 to 20. A larger value of
Dmax indicates that the network is denser and that there are
more possible conflicts. As shown in Fig. 2, we can see that
the average throughput of our algorithm is better than that of
other topology-transparent scheduling algorithms. Moreover,
the performance of our algorithm is comparable with that of
the coloring algorithm, particularly when Dmax is not large
because there exists only one node transmitting among its two-
hop neighbors in the coloring algorithm to avoid the costly
recomputation of the updated schedules when the destinations
of nodes change as time evolves. However, in our algorithm,
each node can dynamically utilize its unassigned slots as long as
it does not interfere with or is not interfered by other nodes in its
contention set, regardless of the changes of the destinations of
the nodes. We can also observe that the superiority of our algo-
rithm, compared with the EC algorithm, becomes smaller with
increasing Dmax. This is because the performance of the EC
algorithm only depends on Dmax. However, the performance
of our algorithm depends on the number of two-hop neighbors.
Thus, the performance of the EC algorithm decreases slower
than that of our algorithm with increasing Dmax. Moreover,
we can observe that the performance of our proposed algorithm
almost remains the same with increasing N , implying that the

Fig. 3. Effect of inaccuracies in the estimation of Dmax on the throughput.

performance of our algorithm is insensitive to the number of
nodes in the network.

It is shown in Fig. 2 that the simulation results match our
analytical results closely. We can also observe that the through-
put obtained by simulation is slightly higher than that obtained
analytically. This is due to the fact that the number of neighbors
for any node is not larger than Dmax so that the throughput
obtained analytically, assuming that the number of neighbors is
Dmax, is indeed a lower bound of the average throughput.

2) Effect of Inaccuracies in the Estimation of Dmax on the
Performance: In Fig. 3, we investigate the effect of inaccura-
cies in the estimation of Dmax on the throughput. Given that the
network parameters (N,Dmax) is (256, 12), we then find p =
pd = qd = 17, according to the discussion in Section III. By
varying the actual maximum node degree from 6 to 20, we can
observe in Fig. 3 that the actual value of the average throughput
is smaller (larger) than the estimated value of the average
throughput when the actual maximum node degree is larger
(smaller) than the design value of Dmax. The actual value of the
average throughput decreases with increasing actual maximum
node degree. The difference between the actual and estimated
values of the average throughput is relatively small (about 25%
derivation) when the actual maximum node degree is close

LIU et al.: PERFORMANCE IMPROVEMENT OF BROADCAST SCHEDULING IN MOBILE AD HOC NETWORKS 4603

Fig. 4. Comparison of throughput of our algorithm with TU and UU. (a) Average throughput of our algorithm with TU. (b) Average throughput of our algorithm
with UU.

to the design value (Dmax = 12). As the difference between
the actual Dmax and the design value of Dmax increases, the
penalty on the network performance increases (when the actual
Dmax is larger than the design value). When the actual value of
Dmax is 18 (50% larger than the design value), the actual value
of the average throughput is about half as large as the estimated
value. Hence, our proposed algorithm is topology adaptive in
the sense that the average throughput gracefully degrades when
the actual value of Dmax is larger than the estimated value. In
other words, the network throughput is lower than that obtained
analytically when Dmax is underestimated. When Dmax is
accurately estimated, the throughput is the same as the analyt-
ical results obtained based on the designed parameters. When
Dmax is overestimated, the throughput of our algorithm is even
better than the analytical results obtained based on the de-
signed parameters. This validates our statement in Section II-A
that Dmax should always be pessimistically estimated to ensure
that the actual number of interfering neighbors does not exceed
the estimate.

3) Performance of Our Algorithm With TU: Given that
N = 128 and Dmax = 8, we evaluate the performance of our
algorithm with TU. The frame structure can be determined
according to the network parameters as pc = 13, qc = 9, and
p = pd = qd = 13. The simulation lasts 1000 frame times. It is
assumed that two groups of nodes exist in the network, namely,
Group 1 and Group 2. The number of nodes in each group is
N/2 = 64. The packet arrivals of each node follow different
Poisson distributions as follows. The arrival rate of each node
in Group 1 is 2λ from frame 1 to frame 500 and λ from frame
501 to frame 1000. The arrival rate of each node in Group 2
is λ from frame 1 to frame 500 and 2λ from frame 501 to
frame 1000. In our simulation, λ = 0.02 packets per time slot.
In Fig. 4, each point with time index i stands for the throughput
averaged from frame 1 + 20(i− 1) to frame 20i. We can
observe that with TU, the throughput of nodes in Group 1
(Group 2) is adaptive to their traffic arrivals, and the overall
throughput is stable. Conversely, the throughput of nodes with
UU is not adaptive to their arrivals at all. Moreover, the average
throughput of our algorithm with TU is better than that of UU.

Fig. 5. Comparison of average queue length of our algorithm with TU and UU.

The average queue length in our algorithm with TU and UU
is shown in Fig. 5.7 We can see that the average queue length
in our algorithm with TU is very small and much smaller than
those of UU, which implies that our algorithm with TU is traffic
adaptive. This can be explained by the fact that with TU, the
nodes with more packets have larger probabilities to utilize the
unassigned slots.

4) Performance of Our Algorithm With HTU: HTU of unas-
signed slots can be applied for the provisioning of different QoS
requirements for different classes of nodes in heterogeneous
networks. Suppose that Dmax = 8 and N = 128 nodes are
equally divided to two classes, namely, Class V1 with a higher
QoS requirement and Class V2 with a lower QoS requirement.
The arrival rate of each node λ varies from 0.01 to 0.20. For
each data point plotted, we perform 1000 simulation runs. In
Fig. 6(a), we can observe that the throughputs of the nodes in
two classes are almost the same when λ is small. However, the
throughputs of the nodes in Class V1 are larger than those of

7The average queue length is defined as the expected number of waiting
packets of all nodes in the system.

4604 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 9, NOVEMBER 2014

Fig. 6. Performance of our algorithm with HTU. (a) Average throughput. (b) Average delay.

the nodes in Class V2 with increasing λ. Moreover, as shown
in Fig. 6(b), the average delays of the nodes in Class V1 are
smaller than those of the nodes in Class V2, even when λ is in
the region in which the average throughputs of the nodes in two
class are the same.8 Thus, our algorithm with HTU can provide
heterogeneous performance for different classes of nodes.

VII. CONCLUSION AND FUTURE RESEARCH

In this paper, we have proposed an efficient distributed
topology-transparent scheduling algorithm for broadcasting in
wireless ad hoc networks. First, instead of repeatedly trans-
mitting the same packet during one frame time, each node
collects transmission codes of its two-hop neighbors with little
overhead and can transmit more than one packet during one
frame time. Second, we propose several methods to utilize
the unassigned slots efficiently in a collision-free and traffic-
adaptive manner. Hence, our proposed algorithm achieves a
much better average throughput. We have conducted analyt-
ical and simulation studies to show that the performance of
our proposed algorithm outperforms other existing topology-
transparent algorithms dramatically.

In this paper, we assumed that the transmission channel is
error free. However, channel error is an important characteristic
of wireless network, and we plan to study topology-transparent
algorithms accounting for channel errors in the future.

APPENDIX

CALCULATION OF M l

Given an arbitrary subframe j, we categorize p2d TSAFs into
pd different subsets FFh (h = 0, 1, . . . , pd − 1) according to
their function values in subframe j. The function values of
TSAFs in FFh (h = 0, 1, . . . , pd − 1) are h. Note that a TSAF
over GF (pd) is uniformly distributed over {0, 1, 2, . . . , pd −
1} [6]. Thus, |FFh| = pd, where h = 0, 1, . . . , pd − 1. The
detailed verification is similar to that in the proof of Theorem 1.

8Here, we consider the average queueing delay at a node. This is different
from the frame latency discussed in Sections III and IV. The queueing delay
is defined as the waiting time experienced by each packet before it leaves the
buffer.

Let Api
(where i = 1, 2, . . . , l) be the set of events in which

none of the chosen n+ 1 TSAFs has the function value pi in
subframe j, where 0 ≤ pi ≤ pd − 1. Note that the number of
TSAFs that have the function value pi (where i = 1, 2, . . . , l)
is lpd, and we choose n+ 1 TSAFs from those TSAFs, the
function values of which in subframe j are not pi (where i =
1, 2, . . . , l). Thus, the cardinality of the intersection of any m
sets from Api

, where i = 1, 2, . . . , l, is
(
(l−m)pd

n+1

)
. M l is equal

to the cardinality of the complementary set of
⋃l

i=1 Api
. There

are
(
lpd

n+1

)
ways to select n+ 1 codewords from those TSAFs,

the function values of which in subframe j are not pi (where
i = 1, 2, . . . , l). We define a function F (x, y) equal to

(
x
y

)
if

x ≥ y and zero, otherwise. Thus

M l = F (lpd, n+ 1)−
∣∣∣∣∣

l⋃
i=1

Api

∣∣∣∣∣ (18)

where l = 1, 2, . . . , pd.
Applying the inclusion–exclusion principle, we can obtain

the following results:

M l=F (lpd, n+ 1)−
l∑

m=1

(−1)m−1

(
l

m

)
F ((l −m)pd, n+ 1)

(19)

where l = 2, . . . , pd, and M1 = F (lpd, n+ 1).

REFERENCES

[1] E. Arikan, “Some complexity results about packet radio networks,” IEEE
Trans. Inf. Theory, vol. IT-30, no. 4, pp. 681–685, Jul. 1984.

[2] J. Ariyakhajorn, P. Wannawilai, and C. Sathitwiriyawong, “A comparative
study of random waypoint and Gauss–Markov mobility models in the
performance evaluation of MANET,” in Proc. IEEE ISCIT , Sep. 2006,
pp. 894–899.

[3] Z. Cai, M. Lu, and C. Georghiades, “Topology-transparent time division
multiple access broadcast scheduling in multihop packet radio networks,”
IEEE Trans. Veh. Technol., vol. 52, no. 4, pp. 970–984, Jul. 2003.

[4] I. Chalamatac and A. Farago, “Making transmission schedules immune to
topology changes in multi-hop packet radio networks,” IEEE/ACM Trans.
Netw., vol. 2, no. 1, pp. 23–29, Feb. 1994.

[5] A. M. Chou and V. O. K. Li, “Fair Spatial TDMA channel access protocols
for multihop radio networks,” in Proc. IEEE INFOCOM, Apr. 1991,
pp. 1064–1073.

[6] D. Cohen, “Uniform distribution of polynomial over finite fields,”
J. London Math. Soc., vol. s2-6, no. 1, pp. 93–102, Dec. 1972.

LIU et al.: PERFORMANCE IMPROVEMENT OF BROADCAST SCHEDULING IN MOBILE AD HOC NETWORKS 4605

[7] A. Ephremides and T. V. Truong, “Scheduling broadcast in multihop radio
networks,” IEEE Trans. Commun., vol. 38, no. 4, pp. 456–460, Apr. 1990.

[8] F. Farnoud and S. Valaee, “Reliable broadcast of safety messages
in vehicular ad hoc networks,” in Proc. IEEE INFOCOM, Apr. 2009,
pp. 226–234.

[9] S. Gandham, M. Dawande, and R. Prakash, “Link scheduling in wireless
sensor networks: Distributed edge-coloring revisited,” J. Parallel Distrib.
Comput., vol. 68, no. 8, pp. 1122–1134, Aug. 2008.

[10] T. Hou and V. O. K. Li, “Transmission range control in multihop packet
radio networks,” IEEE Trans. Commun., vol. COM-34, no. 1, pp. 38–44,
Jan. 1986.

[11] L. Hu, “A novel topology control for multihop packet radio networks,” in
Proc. IEEE INFOCOM, Apr. 1991, pp. 1084–1093.

[12] J. H. Ju and V. O. K. Li, “An optimal topology-transparent scheduling
method in multhop packet radio networks,” IEEE/ACM Trans. Netw.,
vol. 6, no. 3, pp. 298–306, Jun. 1998.

[13] J. Kivett and R. Cook, “Enhancing PLRS with user-to-user data capabil-
ity,” in Proc. IEEE PLANS, Apr. 1986, pp. 154–161.

[14] Y. Liu, V. O. K. Li, K.-C. Leung, and L. Zhang, “Is topology-transparent
scheduling really inefficient?” IEEE Wireless Commun. Lett., vol. 2, no. 6,
pp. 659–662, Dec. 2013.

[15] Y. Liu, V. O. K. Li, K.-C. Leung, and L. Zhang, “Topology-transparent
broadcast scheduling with erasure coding in wireless networks,” IEEE
Commun. Lett., vol. 17, no. 8, pp. 1660–1663, Aug. 2013.

[16] Y. Liu, V. O. K. Li, K.-C. Leung, and L. Zhang, “Topology-transparent
distributed multicast and broadcast scheduling in mobile ad hoc net-
works,” in Proc. IEEE VTC-Spring, May 2012, pp. 1–5.

[17] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North Holland, 1977.

[18] K. Oikonomou and I. Stavrakakis, “Analysis of a probabilistic topology-
unaware TDMA MAC policy for ad hoc networks,” IEEE J. Sel. Areas
Commun., vol. 22, no. 7, pp. 1286–1300, Sep. 2004.

[19] S. Ramanathan, “A unified framework and algorithm for channel assign-
ment in wireless networks,” Wireless Netw., vol. 5, no. 2, pp. 81–94,
Mar. 1999.

[20] C. H. Rentel and T. Kunz, “Bounds and parameter optimization of medium
access control coding for wireless ad hoc and sensor networks,” Ad Hoc
Netw., vol. 10, no. 1, pp. 128–143, Jan. 2012.

[21] I. Rhee, A. Warrier, J. Min, and L. Xu, “DRAND: Distributed randomized
TDMA scheduling for wireless ad hoc networks,” IEEE Trans. Mobile
Comput., vol. 8, no. 10, pp. 1384–1396, Oct. 2009.

[22] D. R. Stephens, B. Salisbury, and K. Richardson, “JTRS infrastructure
architecture and standards,” in Proc. IEEE MILCOM, Oct. 2006, pp. 1–5.

[23] D. Stiliadis and A. Varma, “Latency-rate servers: A general model for
analysis of traffic scheduling algorithms,” IEEE/ACM Trans. Netw., vol. 6,
no. 5, pp. 611–624, Oct. 1998.

[24] Y. S. Su, S. L. Su, and J. S. Li, “Topology-independent link activation
scheduling schemes for mobile CDMA ad hoc networks,” IEEE Trans.
Mobile Comput., vol. 7, no. 5, pp. 599–616, May 2008.

[25] Q. Sun, V. O. K. Li, and K.-C. Leung, “Topology-transparent distributed
scheduling in multi-hop wireless networks,” in Proc. IEEE GLOBECOM,
Nov./Dec. 2008, pp. 1–5.

[26] V. R. Syrotiuk, C. J. Colbourn, and S. Yellamraju, “Rateless forward error
correction for topology-transparent scheduling,” IEEE/ACM Trans. Netw.,
vol. 16, no. 2, pp. 464–472, Apr. 2008.

[27] S. Xu and T. Saadawi, “Does the IEEE 802.11 MAC protocol work well in
multihop wireless ad hoc networks?” IEEE Commun. Mag., vol. 39, no. 6,
pp. 130–137, Jun. 2001.

[28] G. Zhang, J. Li, W. Zhang, and L. Zhou, “Topology-transparent schedule
with reservation and carrier sense for multihop ad hoc networks,” IEEE
Commun. Lett., vol. 10, no. 4, pp. 314–316, Apr. 2006.

[29] E. Zola and F. Barcelo-Arroyo, “Impact of mobility models on the cell
residence time in WLAN networks,” in Proc. IEEE SARNOFF, Apr. 2009,
pp. 1–5.

Yiming Liu (S’14) received the B.Eng. degree
in electronic engineering from Tsinghua Univer-
sity, Beijing, China, in 2009, where he is cur-
rently working toward the Ph.D. degree in electronic
engineering.

His research interest is in the area of wire-
less communications and networking, specifically
in topology-transparent scheduling and cross-layer
design.

Victor O. K. Li (F’92) received the B.S., M.S.,
E.E., and D.Sc. degrees in electrical engineering and
computer science from the Massachusetts Institute of
Technology, Cambridge, MA, USA, in 1977, 1979,
1980, and 1981, respectively.

He is a Chair Professor of information engineering
and the Head of the Department of Electrical and
Electronic Engineering with the University of Hong
Kong (HKU), Pokfulam, Hong Kong. He has also
served as an Associate Dean of Engineering and the
Managing Director of Versitech Ltd., which is the

technology transfer and commercial arm of HKU. He served on the board
of China.com Ltd. and now serves on the board of Sunevision Holdings Ltd.
and Anxin-China Holdings Ltd., which are listed on the Hong Kong Stock
Exchange. Previously, he was a Professor of electrical engineering with the
University of Southern California (USC), Los Angeles, CA, USA, and the
Director of the USC Communication Sciences Institute. Sought by government,
industry, and academic organizations, he has lectured and consulted extensively
around the world.

Dr. Li has received numerous awards, including the PRC Ministry of
Education Changjiang Chair Professorship at Tsinghua University, Beijing,
China; the U.K. Royal Academy of Engineering Senior Visiting Fellowship in
Communications; the Croucher Foundation Senior Research Fellowship; and
the Order of the Bronze Bauhinia Star, Government of the Hong Kong Special
Administrative Region, China. He is a Registered Professional Engineer and
a Fellow of the Hong Kong Academy of Engineering Sciences, the IAE, and
the HKIE.

Ka-Cheong Leung (S’95–M’01) received the
B.Eng. degree in computer science from the Hong
Kong University of Science and Technology, Hong
Kong, in 1994 and the M.Sc. degree in electrical
engineering (computer networks) and the Ph.D. de-
gree in computer engineering from the University of
Southern California, Los Angeles, CA, USA, in 1997
and 2000, respectively.

From 2001 to 2002, he was a Senior Research
Engineer with the Nokia Research Center, Nokia
Inc., Irving, TX, USA. Between 2002 and 2005, he

was an Assistant Professor with the Department of Computer Science, Texas
Tech University, Lubbock, TX, USA. Since June 2005, he has been with the
University of Hong Kong, Pokfulam, Hong Kong, where he is currently an
Assistant Professor with the Department of Electrical and Electronic Engi-
neering. His research interests include transport layer protocol design, wireless
packet scheduling, congestion control, routing, and vehicle-to-grid.

Lin Zhang (M’08) received the B.Sc., M.Sc., and
Ph.D. degrees from Tsinghua University, Beijing,
China, in 1998, 2001, and 2006, respectively.

He is currently an Associate Professor with
Tsinghua University, where, for the past few years,
he has been teaching selected topics in communi-
cation networks (40230992) and information theory
(70230063) to senior undergraduate and graduate
students, and a Visiting Associate Professor with
Stanford University, Stanford, CA, USA. In 2006,
he led a 2008 Beijing Olympic Stadium (the “Bird’s

Nest”) structural security surveillance project, which deployed more than 400
wireless temperature and tension sensors across the stadium’s steel support
structure and dome. The system adopted a flexible spectrum sensing and
adaptive multihop routing algorithm to overcome strong radio interference and
long-distance transmission channel fading and played a critical role in the
construction of the stadium. Since then, he has implemented wireless sensor
networks in a wide range of application scenarios, including underground mine
security, precision agriculture, and industrial monitoring. Since 2008, he has
been working in close association with CISCO to develop a Metropolitan
Area Sensing and Operating Network (MASON). MASON provides a smart-
city and intelligent-urbanization sensor network system for metropolitan ar-
eas. MASON has attracted the interest of several large-sized Chinese cities,
including Beijing, Shenzhen, Tianjing, and Chengdu. Recently, he has also
led two National Science Foundation of China projects, three National High-
Tech Developing (863) projects, and more than ten research projects that are
primarily funded by private industry in the area of wireless sensor networks.
He is a coauthor of more than 40 peer-reviewed technical papers and has five
U.S. or Chinese patent applications. His current research focuses on wireless
sensor networks, distributed data processing, and information theory.

Dr. Zhang and his team received the IEEE/ACM SenSys 2010 Best Demo
Award. In 2004 and 2010, he received Excellent Teacher Awards from Tsinghua
University.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

