
Title Performance Analysis of Quantization-Based Approximation
Algorithms for Precomputing the Supported QoS

Author(s) Hou, R; Wong Lui, KS; Leung, KC; Baker, F

Citation Journal of Network and Computer Applications, 2014, v. 40, p.
244-254

Issued Date 2014

URL http://hdl.handle.net/10722/200615

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38051383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Performance analysis of quantization-based approximation algorithms
for precomputing the supported QoS

Ronghui Hou a,n, King-Shan Lui b, Ka-Cheong Leung b, Fred Baker c

a The State Key Lab of Integrated Service Networks, Xidian University, China
b Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
c Cisco Research Center, San Jose, CA 95134, USA

a r t i c l e i n f o

Article history:
Received 11 January 2013
Received in revised form
6 September 2013
Accepted 19 September 2013
Available online 28 September 2013

Keywords:
Precomputation
QoS routing
Approximation algorithms
Additive constraints

a b s t r a c t

Precomputation of the supported QoS is very important for internet routing. By constructing routing
tables before a request arrives, a packet can be forwarded with a simple table lookup. When the QoS
information is provided, a node can immediately know whether a certain request can be supported
without launching the path finding process. Unfortunately, as the problem of finding a route satisfying
two additive constraints is NP-complete, the supported QoS information can only be approximated using
a polynomial time mechanism. A good approximation scheme should reduce the error in estimating the
actual supported QoS. Nevertheless, existing approaches which determine this error may not truly reflect
the performance on admission control, meaning whether a request can be correctly classified as feasible
or infeasible. In this paper, we propose using a novel metric, known as distortion area, to evaluate the
performance of precomputing the supported QoS. We then analyze the performance of the class of
algorithms that approximate the supported QoS through discretizing link metrics. We demonstrate how
the performance of these schemes can be enhanced without increasing complexity. Our results serve as a
guideline on developing discretization-based approximation algorithms.

& 2013 The Authors. Published by Elsevier Ltd.

1. Introduction

As the demand for deploying real-time and multimedia appli-
cations over the internet is increasing, providing guaranteed
quality-of-service (QoS) for these applications becomes more and
more important. In general, the QoS requirements can be divided
into two categories: bottleneck metric and additive metric.
The additive metric of a path is the sum of the metrics of the
links along the path, while the bottleneck metric of a path is the
minimum value of the metrics of the links along the path.
For example, bandwidth is a bottleneck QoS metric, while delay
and delay jitter are additive QoS metrics. In this work, we consider
connection requests that have two additive QoS requirements or
constraints, such as in delay and cost. To simplify our discussion,
we assume that delay and cost are the two additive metrics under
consideration, although our analysis and method can be applied to
any additive metrics.

Many existing works study how to identify a feasible path for a
request with two additive constraints, which is an NP-complete

problem. These works usually assume either the cost or the delay
requirement which is known. Nevertheless, such reactive routing
mechanism, which finds a path after the requirement is known,
cannot provide enough information to support efficient admission
control. When a request is received, a node cannot immediately
tell whether a possible feasible path exists until a path finding
process is launched based on the requested cost/delay. On the
other hand, by precomputing the supported QoS information, a
source can immediately determine whether the connection
request can be supported by the network. Moreover, accepting a
new connection will not violate the service guarantees for the
existing traffics, and also the transmission route satisfies the QoS
requirement of the new connection.

The problem of computing the supported QoS between two
nodes is more complicated than the extensively studied multi-
constrained path (MCP) problem or the delay-constrained least cost
(DCLC) path problem. The DCLC problem is also called the
restricted shortest path (RSP) problem. The RSP problem aims at
finding the minimum delay path among the paths that satisfy a
certain cost constraint. The MCP problem studies finding a path
satisfying both specified cost and delay constraints. Both problems
focus on finding a single path between two nodes with a given
(cost) constraint. Our problem, also known as the all-costs optimal
path (ACOP) problem (Orda and Sprintson, 2003), finds, for each
cost c, a c-cost constrained path from a source to a destination
with the minimum delay. In other words, instead of finding a
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single path given a cost constraint, the ACOP problem aims at
finding a set of paths representing the supported QoS.

Due to the NP-complete nature of the problem, some approx-
imation mechanisms have been developed (Garroppo et al., 2010).
They usually identify a path with a cost (or delay) within a certain
deviation from the optimal one. Denote c as the estimated optimal
cost of all the paths satisfying a given delay constraint d0, which is
computed by an algorithm, and copt as the optimal cost of all the
paths satisfying the delay constraint d0 in the network. c�copt is
thus called the cost deviation at the delay constraint of d0.
An algorithm is “better” if the deviation is smaller. While deviation
is appropriate for measuring the performance of the DCLC solu-
tions, we believe that it does not directly reflect the performance
of the ACOP solutions in supporting admission control.

A good pre-computation mechanism should approximate the
supported QoS as precisely as possible. In other words, the error in
estimation should be minimized. Since any possible delay con-
straint is considered, this “error” is not a single cost deviation, but
an area on the Cartesian plane. To illustrate, consider that there are
three paths connecting a source to a destination. The QoS para-
meters of the paths are ð1;10Þ, ð2;2Þ, and ð10;1Þ, where the first
element in the tuple reflects the cost of the path while the second
element represents the path delay. In this paper, we write the QoS
parameter of a path and the constraints of a request as (cost,delay).
Request (c,d) can be supported by a path with the QoS parameter
ðc′; d′Þ, where c′rc and d′rd. Request ð5;5Þ is feasible because it
can be supported by the path with the QoS parameter ð2;2Þ.
Request ð1;15Þ is also feasible because it can be supported by the
path with the QoS parameter ð1;10Þ. However, Request ð1;1Þ is not
feasible because no path can support it. If we plot the QoS
parameters of the path on the cost-delay plane, any request that
can be supported by any of the paths can be easily identified. Refer
to Fig. 1(a), the shaded area is the optimal supported QoS, in which
any request that falls in the region is feasible. Thus, a good pre-
computation scheme should approximate this area as precisely as
possible. The “error” in approximation is the difference in terms of
the area between the region of the optimal supported QoS and
that of the approximated supported QoS.

While cost deviation is related to the difference in area, it is not
sufficient. For example, the shaded areas in Fig. 1(a) and (b)
represent the optimal and approximate supported QoS regions,
respectively. According to Fig. 1(b), when delay is two, the
approximate best cost is three. The cost deviation is 3�2¼1, as
the optimal cost is two. The area of f½2;3� � ½2;10�g is the “error” in
estimating the supported QoS. Any request with the QoS require-
ments falling in this area is considered as infeasible but actually
they are supported by the network. For example, Request ð2;5Þ is
in fact feasible but can be rejected by any approximation algo-
rithms based on the approximate QoS in Fig. 1(b). On the other
hand, in Fig. 1(d), the cost deviation with the delay constraint of two
is also one. However, we can observe that the “error” in Fig. 1(d)
is much smaller than that in Fig. 1(b). Request ð2;5Þ would be

correctly classified as feasible. Thus, the approximate supported QoS
in Fig. 1(d) provides a better network QoS providence than that in
Fig. 1(b). The above example illustrates that cost deviation cannot
sufficiently reflect the admission control ability of the algorithm,
while the “area” does. In this work, we propose a newmetric, known
as distortion area, which is defined as the difference between the
approximate supported QoS region and the optimal supported QoS
region, to evaluate the accuracy performance of the algorithm for
estimating the supported QoS. We first analyze the distortion area of
the representative algorithms described in Orda and Sprintson
(2003) and Xue et al. (2007). Then, we illustrate how to improve
the algorithm to reduce the error.

2. Related work

The MCP problem and RSP (DCLC) problem have been studied
extensively (Garroppo et al., 2010). The work in Hassin (1992) focuses
on the RSP problem and presents two polynomial algorithms. The
author first presented an ε-approximation algorithm by using the
basic technique of rounding and scaling with the time complexity
Oðlog log ðUBLBÞð E ðn=εÞþ log log ðUBLBÞÞÞ

���� , where UB and LB are the cost
metrics of the minimum delay path and the minimum cost path,
respectively, jEj is the number of links, and n is the number of nodes.
Then, the author applied the basic technique of interval partitioning in
Sahni (1977) to design a second ε�approximation algorithmwith the
time complexity of OðjEjðn2=εÞ log ðn=εÞÞ. Since the time complexity
of the first algorithm depends on the upper bound of delay metric of
each link, this algorithm is classified in Orda and Sprintson (2003) as
a pseudo-polynomial algorithm. To the best of our knowledge, the
algorithm in Xue et al. (2007) is currently fastest one for precomput-
ing the supported QoS with two additive constraints, which has the
complexity of OðjEjnðlog log nþ1=εÞÞ, where ε is the small positive
constant. The smaller ε, the higher accuracy but the higher computa-
tional overhead. Chen et al. (2008) design heuristic techniques to
improve the performance computational overhead of the algorithm
in Goel et al. (2001). As we know, heuristic algorithm cannot provide
performance guarantees and the introduced approximation error is
difficult to be bounded.

Xue et al. (2008) study the decision version of the problem.
Given a connection request with two additive constraints, the
proposed algorithm either finds a feasible solution or confirms
that there does not exist a source-destination path whose first
metric is bounded by the first constraint and whose second weight
is bounded by ð1�εÞ times the second constraint. Afterwards,
Huang et al. (2012) enhance the algorithm proposed by Xue et al.
(2008) by reducing the computational complexity. Li and Zhang
(2010) study MCP problem in smart grid and propose a simple
heuristic algorithm. Avallone and Ventre (2012) develop a routing
algorithm which searches for a feasible path for a given flow
request with multiple additive constraints that requires the least
number of nodes and links to be turned on. Lu and Zhu (2013)
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Fig. 1. An illustration for the different approximate solutions. (a) The optimal solution, (b) with cost quantization, (c) with delay quantization, (d) cost and delay
quantization.
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present a genetic algorithm to find a path satisfying a connection
request with two additive constraints. With the supported QoS
region, the decision can be made immediately based on the QoS
requirements.

In fact, the common technique used for designing approxima-
tion algorithms (for solving both RSP and MCP) is to map the cost
(or delay) value of each link to an integer. Then, the cost (or delay)
of a path becomes a value in a finite set of integers instead of the
continuous real number line. We refer this technique as quantiza-
tion. For example, in the uniform scaling quantization method, a
link cost is multiplied by a constant and then round (up or down)
to an integer. Moreover, there is another quantization method
called logarithmic scaling (Orda and Sprintson, 2003), and we shall
describe it in more detail later.

After quantizing the link costs (delays), we can apply the approx-
imation algorithm to solve RSP for each possible cost (or delay)
constraint to get the ACOP solution (Orda and Sprintson, 2003).
Unfortunately, the complexity will be very high, and thus the authors
in Orda and Sprintson (2003) developed a less computationally
expensive approximation algorithm. Nevertheless, the performance
analysis presented in Orda and Sprintson (2003) is based on cost
deviation, but not on distortion area. In this paper, we shall analyze the
upper bound of the distortion area produced by the approximation
algorithm in Orda and Sprintson (2003). Nevertheless, the analysis can
be generalized for other approximation algorithms based on link
metric quantization.

Cui et al. (2003, 2005) also study the problem of precomputing
the supported QoS. The proposed mechanisms are heuristic and
there is no performance guarantee. There are two kinds of errors
for admission control in these algorithms. The first one is when an
algorithm rejects a feasible connection request, and the second
one is whenever an algorithm accepts an infeasible connection
request. The “error” defined in Cui et al. (2003, 2005) includes
both kinds of errors. Since the quantization-based algorithms
presented in our work will not accept an infeasible connection
request, they will not introduce the second kind of error. There-
fore, the distortion area presented by our work is suitable to reflect
the admission control performance of the algorithms.

3. Network model and problem formulation

We model a computer network by a directed graph G¼ ðV; EÞ,
where V is the set of n vertices, and E is the set of m edges. Each
edge l¼ ðu; vÞ is associated with two additive metrics, namely, cost

and delay. Let ðcl; dlÞ be the QoS parameter of Edge l, where cl and
dl are the cost and delay of l, respectively. We assume that all
parameters (cost and delay) are positive, bounded, and indepen-
dent. Let AðvÞ be the node neighbor set of v. We define the optimal
delay function of Link l, Dopt

l ðcÞ, to specify the minimum delay
value provided by link l at the cost constraint of c. Thus, Dopt

l ðcÞ is
equal to 1 if cocl, otherwise, it is equal to dl if cZcl.

Given a path P from s to g, the optimal delay function of Path P,
Dopt

P ðcÞ, is the minimum delay value provided by this path with a
cost constraint of c. Thus, Dopt

P ðcÞ is equal to 1 if co∑lAPcl,
otherwise, it is equal to ∑lAPdl.

Let Ps-g be the set of paths from s to g. We define the optimal
delay function from s to g, Dopt

s;g ðcÞ, which is the minimum delay
value provided by all the paths from s to g with the cost constraint
of c, as Dopt

s;g ðcÞ ¼minPAPs-g fDopt
P ðcÞg.

Consider a simple network in Fig. 2(a). PA-G has six paths: Path
A-D-F-G with the QoS parameter ð4;7Þ, Path A-C-F-G
with the QoS parameter ð5;6Þ, Path A-D-C-F-G with the QoS
parameter ð5;10Þ, Path A-C-E-G with the QoS parameter ð7;5Þ,
Path A-D-C-E-G with the QoS parameter ð7;9Þ, and Path
A-B-E-G with the QoS parameter ð8;4Þ. For the given path
P1 ¼ A-B-E-G, the corresponding optimal delay function is
Dopt

P1
ðcÞ ¼1ðif co8Þ or 4ðifcZ8Þ.
We can compute the optimal delay function Dopt

A;GðcÞ from A to G
based on minPAPA-G fDopt

P ðcÞg, which is

Dopt
A;GðcÞ ¼

4 if cZ8
5 if 7rco8
6 if 5rco7
7 if 4rco5
1 if co4

8>>>>>><
>>>>>>:

As illustrated in Fig. 2(b), Dopt
A;GðcÞ is a staircase on the cost-delay

plane, which is also called the efficient frontier in Bauer et al.
(2000). We would like to introduce several definitions.

Definition 1. A point (x,y) is more representative than another
point ðx′; y′Þ, denoted by ðx; yÞ! ðx′; y′Þ, if xax′ or yay′, moreover,
xrx′ and yry′.

Definition 2. Given a set S of the QoS parameters, ðx; yÞAS is a
representative point of S if there does not exist any other point
ðx′; y′ÞAS such that ðx′; y′Þ! ðx; yÞ.

For example, in Fig. 2(b), there are totally six QoS parameters,
but four of them, namely, ð4;7Þ, ð5;6Þ, ð7;5Þ, and ð8;4Þ, are the
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Fig. 2. An illustration for the supported QoS. (a) A simple network and (b) cost-delay plane.
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optimal representative points.1 Denote PFopts;g as the set of repre-
sentative points on the efficient frontier from s to g. In Fig. 2(b),
PFoptA;G¼fð4;7Þ; ð5;6Þ; ð7;5Þ; ð8;4Þg.

Definition 3. Given a set of the optimal representative points
PFopt, define R¼ fðc; dÞjðc′; d′Þ! ðc;dÞ; ðc′; d′ÞAPFoptg. The feasible
area is defined as Aopt

feasible ¼R [ PFopt.

Definition 3 was also described in Bauer et al. (2000) and Cui
et al. (2003, 2005). Any request that falls in the feasible area must
be supported by at least one path. We call this request a feasible
request. The problem of precomputing the supported QoS aims at
finding the feasible area Aopt

feasible so that a routing table can tell
whether a request is feasible upon a request arrives. This problem
is NP-complete.

The feasible area can be uniquely defined by the set of the
optimal representative points PFopt. In Fig. 2(b), the shaded area is
the feasible area which is on the upper right hand side of the
efficient frontier. For instance, Request ð10;6Þ falls in the shaded
area. The paths ð8;4Þ and ð7;5Þ can serve this request. Thus, this
request is a feasible request.

Finding the optimal feasible area is NP-Complete (Orda and
Sprintson, 2003). Some existing works propose the approximation
algorithms to estimate the feasible area. However, no work
analyzes the upper bound of the approximation error caused by
the existing works, which is called distortion area in this work.
In this work, we first analyze the upper bound of the approxima-
tion error produced by the existing quantized algorithms. We then
propose a new method to estimate the feasible area, and also give
the theoretical comparison between the existing schemes and our
proposed method.

4. Analyzing the distortion area of the existing algorithms

In this section, we first present an exact pseudo-polynomial
algorithm for computing the supported QoS with an integer cost
metric. In fact, this algorithm was mentioned in many existing
literatures (Hassin, 1992; Orda and Sprintson, 2003). We then
present the existing quantization-based methods applied for
precomputing the supported QoS. Finally, we analyze the perfor-
mance of the existing quantization-based algorithms based on the
proposed metric, distortion area. As mentioned in Section 1,
distortion area is defined as the difference between the approx-
imate supported QoS region calculated by an approximation
algorithm and the optimal supported QoS region. For instance,
the shaded area in Fig. 3 shows the optimal supported QoS region
while Fig. 4(a) shows an approximate supported QoS region. We
calculate the shaded area in Fig. 3 as 0.44 while that in Fig. 4(a) as
0.4. The distortion area caused by the approximation algorithm is
0.04. If we assume that the requirements of the connection
request are uniformly distributed in the supported QoS region,
we can consider that almost 10% of all the requests would be
rejected by the approximation algorithm, while these requests
actually can be supported by the network. In the following, we
would give the upper bound of the distortion area introduced by
different algorithms.

Suppose that we arrange the points in PFopts;g in cost-ascending
order. The first representative point rc ¼ ðLc;UdÞ corresponds to the
minimum cost path, and the last representative point rd ¼ ðUc; LdÞ
corresponds to the minimum delay path. All other representative
points must have a cost falling between Lc and Uc, and a delay
falling between Ld and Ud (Bauer et al., 2000). If we obtain all the

representative points, we can derive the optimal delay function
Dopt

s;g ðcÞ, and vice versa. For example, in Fig. 2(b), the QoS parameter
of the minimum cost path is ð4;7Þ, and the QoS parameter of the
minimum delay path is ð8;4Þ. In order to compute the optimal
delay function Dopt

A;GðcÞ, we just need to find the representative
points ð5;6Þ and ð7;5Þ, which have the costs falling between 4 and
8. To make the problem tractable, we first consider that the cost
metric associated with each link is integer. For the ease of the
subsequent discussion, we assume that Uc and Ud are the same,
denoted by UB, and Lc and Ld are the same, denoted by LB¼ 1.

4.1. Exact algorithm

Similar to Hassin (1992) and Orda and Sprintson (2003), we
assume that, for simplicity, network can be represented by a
directed acyclic graph (DAG). The extension of the algorithm for
a general graph is straightforward. In DAG, the network nodes are
numbered in a way such that ði; jÞAE implies io j. If the cost metric
of each link is an integer, we can develop a pseudo-polynomial
algorithm for computing the supported QoS as follows:

Dg;gðcÞ←0; cZ0;
Di;gðcÞ←1; cZ0; iAV\fgg;
Di;gðcÞ ¼ min

kAAðiÞ
fDk;gðc�cði;kÞÞþdði;kÞ;Di;gðc�1Þg

c¼ 0;1;2;3;…;UB; iAV: ð1Þ
Orda and Sprintson (2003) and Hassin (1992) give the pseudo-

polynomial algorithm description as the same as (1). To compute
fDi;gðcÞ; cZ0g for all iAV, we keep a table of jVj rows and UB
columns, where one row for each node and one column for each
integer cost value. To ease our discussion, we label the nodes as
1;2;…; jVj. The entry on Row i and Column j represents the
estimated delay from Node i to Node g at Cost j. Initially, Dg;gðjÞ,
for all j¼ 0;1;…;UB, are all set to be zero while Di;gðjÞ, for all iag
and j¼ 0;1;…;UB, are all set to be infinity. In the first step, each
neighbor u of g sets Du;gðcÞ to be du;g , where c¼ cu;g ; cu;gþ1;…;UB.
In step k, we update fDi;gðcÞ; cZ0g for those nodes i that can be k
hops away from g. After jVj�1 steps, the algorithm terminates
since no path can have more than ðjVj�1Þ hops. As referred to
Orda and Sprintson (2003), the computational complexity of this
pseudo-polynomial algorithm is OðjEjUBÞ.

4.2. Existing quantization-based algorithms

In general, cost values are not necessarily integers. The cost
value of each link is quantized such that it is selected from a set of
possible values, instead of the continuous real number line. Given
the lower bound and the upper bound of the cost values Lc and Uc,
we obtain a set of possible quantized cost values, denoted by
fs1; s2;…; sng. We then assume that each link or path cost is one of
the quantized values. For instance, if the cost value of a link cl falls
between sj and sjþ1, where j¼ 1;…;n�1, we assume cl � sjþ1.
Hence, we can use (1) to compute the delay function at the

1

1

1.3

1.2 1.4 1.5 1.6 1.7 2 Cost

1.5
1.6
1.8

2.2

Delay

Fig. 3. The optimal delay function.

1 The set of the representative points is called the non-dominated front
(or Pareto front). The corresponding paths of the representative points are called
the non-dominated paths or Pareto optimal paths in the literature.
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samples. We thus can obtain the approximated representative
points based on the quantized cost values. We call this method the
quantization-based approximation method.

As mentioned in Section 2, the existing approximation algo-
rithms generally apply this quantization method to solve the NP-
complete problem. Different algorithms can indeed apply different
quantization methods (Orda and Sprintson, 2003; Hassin, 1992;
Lorenz and Raz, 2001; Goel et al., 2001; Chen et al., 2008; Sahni,
1977; Xue et al., 2007). Most of them apply uniform scaling, and
the work in Orda and Sprintson (2003) applies logarithmic scaling.
Generally speaking, when applying uniform scaling, the set of
possible cost values is denoted by f1; xδ; ðxþ1Þδ;…; ðxþmÞδ;UBg,
where x¼minfkjðkδ41ÞðkAZþ Þg, and m¼maxftjððxþtÞδoUBÞ
ðtAZþ Þg. δ is the scaling parameter. Different methods may select
different values for δ. We shall discuss how to calculate the
distortion area produced by uniform scaling with the given scaling
parameter δ. In logarithmic scaling, the cost metric of each
path is selected from f1; ð1þδÞ; ð1þδÞ2;…; ð1þδÞn;UBg, where
n¼ maxfjjðð1þδÞjoUBÞðjAZþ Þg.

Consider the optimal delay function Dopt
s;g ðcÞ as depicted in

Fig. 3. Let UB¼ 2 and δ¼ 0:2. By using logarithmic scaling, there
are three samples for cost, namely, 1.2, 1.44, and 1.728. From Fig. 3,
the minimum delays at these cost values are 2.2, 1.8, and 1.3. We
thus obtain the resulting approximated delay function as exhibited
in Fig. 5(a). On the other hand, when uniform scaling is used, there
are four samples between 1 and 2, which are 1.2, 1.4, 1.6, and 1.8.
The resulting approximated delay function is exhibited in Fig. 4(a).
It can be observed that different scaling schemes lead to different
approximated delay functions.

Define Ds;gðcÞ (without the opt superscript) as the approxi-
mated delay function. Without loss of generality, assume that the
set of the possible cost values is K¼ f1; k1; k2;…; km;UBg, which is
generated by either uniform scaling or logarithmic scaling or any
other quantization method. Let k0 ¼ 1 and kmþ1 ¼UB, and we
compute the value of Ds;gðcÞ at the quantized values within ½1;UB�
as follows:

Dg;gðcÞ ¼ 0; cZ0;

Di;gðcÞ←1; cZ0; iAV\fgg;
Di;gðcÞ ¼ min

kAAðiÞ
fDk;gðc�cði;kÞÞþdði;kÞ;Di;gðc′Þg

c¼ kj; c′¼ kj�1for j¼ 0;…;mþ1: ð2Þ

If c¼ k0, then c′¼ 0. Eq. (2) is similar to (1), except that the set of
the cost values is different. In (1), the QoS metric of each link is an
integer. We just compute the minimum delay value at the integer
cost value. On the other hand, in (2), the cost value is selected from
a set of real numbers. We compute the minimum delay values at
the discrete cost values, which may not necessarily be integers.
By applying the quantization method, the representative points in
Ds;gðcÞ must be at the selected cost values. The pseudo-code of the
approximation algorithm can be referred to http://www.eee.hku.
hk/research/technical_reports.htm.

As we only consider a limited number of the cost values,
some representative points may be missed out under the
estimation. A drop in the minimum delay may happen at a later
quantized cost value. For example, the representative point
ð1:5;1:6Þ appears in Fig. 3 but not in Fig. 5(a). Besides, the
optimal delay function in Fig. 3 drops to 1.3 at cost 1.7 but the
drop occurs at 1.8 in Fig. 4(a). In other words, the scaling
method can overestimate the delay at some costs. The following
lemma describes this phenomena.

Lemma 1. For any c40, if Ds;gðcÞo1, Ds;gðcÞZDopt
s;g ðcÞ.

Proof. Ds;gðcÞ is initially set to infinity. According to (2), if
Ds;gðcÞo1, there exists a physical path satisfying Request
ðc;Ds;gðcÞÞ. If Ds;gðcÞoDopt

s;g ðcÞ, the optimal minimum delay from s
to gwith the cost constraint of c becomes Ds;gðcÞ, which is less than
Dopt

s;g ðcÞ. In this case, Dopt
s;g ðcÞ is no more the optimal delay function,

which contradicts our assumption. □

For ease of discussion, we drop the subscripts s and g in the
delay functions and simply use DðcÞ and DoptðcÞ instead when the
context is clear.

4.3. Distortion area analysis

Let PF be the approximated representative points found by the
algorithm. For instance, in Fig. 4(a), PF has (1,2.2), (1.4,1.8), (1.6,1.5),
(1.8,1.3), and (2,1). PFopt has (1,2.2), (1.4,1.8), (1.5,1.6), (1.6,1.5),
(1.7,1.3), and (2,1), as illustrated in Fig. 3. For each point x on the
cost-delay plane, denote x � c and x � d as the cost metric and delay
metric of this point, respectively. For each representative point
r′APF, we have r′ � d¼Dðr′ � cÞ. By Lemma 1, Doptðr′ � cÞr
Dðr′ � cÞ ¼ r′ � d. This implies that there exists a representative point
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Fig. 4. The approximated functions with uniform scaling. (a) Uniformly sampled cost values and (b) uniformly sampled delay values.
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rAPFopt such that r!r′ or r¼ r′. Let Afeasible be the feasible area
estimated by an algorithm, which is defined by PF. We thus have
AfeasibleDAopt

feasible. As mentioned in Section 1, the distortion area is
defined as Aerror ¼ Aopt

feasible\Afeasible. Although Aopt
feasible and Afeasible are

both infinite, Aerror must be finite since both Aopt
feasible and Afeasible

contain the bounded minimum cost and minimum delay repre-
sentative points.

As discussed in Section 1, the distortion area reflects the
admission control performance of the network. We apply the
distortion area as the metric to evaluate the performance of the
quantization-based algorithms for estimating the supported QoS.

Lemma 1 implies that if DðcÞ ¼Doptðc′Þ, cZc′. For example, in
Figs. 3 and 5(a), the corresponding costs for delay¼2 are 1.4 and
1.44, respectively, where the one on the approximation function is
larger. The cost deviation captures the difference in the cost values
of the optimal and approximated delay functions, as referred to
Definition 4.

Definition 4. If c0 is the cost value of a representative point, we
call c0 a representative cost. The cost deviation at the representa-
tive cost c0 on DoptðcÞ, denoted as CDðc0Þ, is min fcjDðcÞr
Doptðc0Þg�c0.

The existing algorithms also give the upper bound of the cost
deviation by using different quantization methods. For instance, it
has been shown (Hassin, 1992) that the cost-deviation at any cost
value is no more than Hδ if we apply the scaling set K¼
f1; δ;2δ;…;mδ;UBg, where H is the maximum number of hops
in the network. The work in Orda and Sprintson (2003) also shows
that the cost-deviation at cost value c0 is no more than
ðð1þδÞH�1Þc0 by using logarithmic scaling.

Since AfeasibleDAopt
feasible, the cost deviation at any cost value

cannot be negative by using any kind of quantization method.
Generally, denote Cmax as the maximum cost-deviation at all the
cost values. It is the time to discuss how to calculate the distortion
area based on PFopt ¼ fr0; r1;…; rn�1; rng and PF¼ fr′0; r′1;…; r′mg,
where r0 ¼ r′0 ¼ rc , rn ¼ r′m ¼ rd.

Suppose that the points in PFopt and PF are sorted in cost-
ascending order. Note that the first and the last representative
points of PFopt and PF are the same because these two points are
the minimum cost and minimum delay representative points,
respectively. They can be easily found out by Dijkstra's algorithm.

We first study how to calculate the distortion area between the
delay values of two consecutive representative points ri and ri�1 in
PFopt. By Definition 4, the point ðri:cþCDðri:cÞ; ri:dÞ is on the
efficient frontier defined by fDðcÞ; cZ0g. If there is no representa-
tive point in PF located in the area ½0;UB� � ½ri � d; ri�1 � d�, the area
½ri � c; ri � cþCDðri � cÞ� � ½ri � d; ri�1 � d� is NOT included in the fea-
sible area found by the scaling mechanism. The distortion area
between the delay values of r1 � d and r2 � d is ðr1 � d�r2 � dÞ�
CDðr2 � cÞ, where CDðr2 � cÞ ¼ r′3 � c�r2:c.

If some representative points in PF, denoted by fr′k;…; r′kþ jg, are
located in the region spanned by ½0;UB� � ðri � d; ri�1 � d�, r′kþ l�
d4ri:d, r′kþ l � cori � cþCDðri � cÞ for all l¼0,…,j. This means that
all these representative points are located in the area
½ri � c; ri � cþCDðri � cÞ� � ðri � d; ri�1 � d�. By Definition 4, we have
CDðr1 � cÞ ¼ r′3 � c, and we can observe that both points r′1 and r′2
are located in the area ðr1 � d; rc � d� � ½r1 � c; r1 � cþCDðr1 � cÞ�.

Therefore, the distortion area between the delay values of ri � d
and ri�1 � d is no more than ðri�1 � d�ri � dÞ � CDðri � cÞ.

The total distortion area is calculated by adding the distortion
areas between the delay values of two consecutive optimal
representative points as follows:

Aerror ¼ ∑
n

i ¼ 1
CDðri � cÞ � ðri�1 � d�ri � dÞ

rCmax � ∑
n

i ¼ 1
ðri�1 � d�ri � dÞ

 !

rCmax � UB ð3Þ
For uniform scaling, we have

Auni
errorrH � δ � UB¼ εUB; ð4Þ

since CmaxrHδ and δ¼ ε=H.
Similarly, for logarithmic scaling, we have

Alog
errorr ðð1þδÞH�1ÞUB � UB

oεUB2 δ¼ ε
2H

� �
; ð5Þ

since Cmaxrðð1þδÞH�1ÞUB and δ¼ ε=2H.

5. Further reducing the error

In this section, we propose a strategy to further reduce the
distortion area, which is called two-dimensional scaling. Two-
dimensional scaling works with any quantization method, such as
uniform scaling or logarithmic scaling. We then calculate the
upper bound of the distortion area produced by two-dimen-
sional scaling. Finally, we consider both quantization schemes,
namely, uniform scaling and logarithmic scaling, and compare the
error of two-dimensional scaling with that of the existing
quantization-based algorithms.

5.1. Two-dimensional scaling

In the existing approximation algorithms, the cost metric is
quantized, so that we can get the approximate delay function DðcÞ.
If we indeed quantize the delay metric by using the same scaling
mechanism (logarithmic scaling or uniform scaling), we would get
a different approximate cost function, denoted by CðdÞ. DðcÞ and
CðdÞ may represent the different approximate supported QoS
regions. If we combine the two supported QoS regions represented
by DðcÞ and CðdÞ, we can get a more accurate supported QoS region
than the one denoted by either one. For example, consider the
optimal delay function depicted in Fig. 3. If we use the logarithmic
scaling method on cost, we get the approximated function in Fig. 5
(a). On the other hand, if we quantize on delay, the function
becomes the one shown in Fig. 5(b). The sets of the approximate
representative points defined by the two functions are different.
If we combine both sets, another set of seven representative
points, i.e. {(1,2.2), (1.4,2.0736), (1.44,1.8), (1.5,1.728), (1.7,1.44),
(1.728,1.3), (2,1)} is obtained, as shown in Fig. 6(b). The supported
QoS region of Fig. 6(b) is larger than that of Fig. 5(a) or (b).

Our approximation algorithm is as follows. Each node keeps
two sets of the approximate representative points, PFdu;g and PFcu;g .
PFdu;g is obtained by computing the minimum delay with all
possible quantized cost values, while PFcu;g is obtained by comput-
ing the minimum cost with all possible quantized delay values.
Both PFdu;g and PFcu;g may define different supported QoS regions.
We combine both sets to define the supported QoS region from u to g.
The pseudo-code of our algorithm is referred to http://www.eee.
hku.hk/research/technical_reports.htm. The computational complex-
ity of the quantization-based approximation algorithm depends on
the number of quantized values (Orda and Sprintson, 2003). The
computational overhead of our algorithm is twice that of the existing
quantization-based algorithm, since our algorithm conducts the
quantization twice while the existing algorithm does once.

For clarity, the existing quantization-based algorithms use cost-
scaling, while our approach employs two-dimensional scaling. Either
kind of quantization schemes, such as uniform scaling or logarithmic
scaling, can be applied through cost-scaling or two-dimensional

R. Hou et al. / Journal of Network and Computer Applications 40 (2014) 244–254 249



scaling. Note that intuitively, two-dimensional scaling produces the
smaller distortion area but the larger computational overhead if it uses
the same scaling parameter as cost-scaling. In the following, we will
show that with the condition that both cost-scaling and two-
dimensional scaling produce the same computational overhead, two-
dimensional scaling yields the smaller upper bound of the distortion
area.

5.2. Distortion area of two-dimensional scaling

In this subsection, we describe how to calculate the distortion
area produced by our mechanism. Let PFopt ¼ fr0; r1;…; rng, where
r0 ¼ rc , rn¼rd, and ri � coriþ1 � c for all i¼ 0;…;n�1. With the
similar method described in Section 4.3, we first calculate the
distortion area between two consecutive delay values ri � d and
ri�1 � d, where i¼ 1;…;n�1.

In two-dimensional scaling, the delay metric is also quantized.
Let CoptðdÞ and CðdÞ be the optimal cost function and the approxi-
mated cost function, respectively. Similar to Definition 4, we
define delay deviation as follows.

Definition 5. The delay deviation at the representative delay d0 on
CoptðdÞ, denoted as DDðd0Þ, is min fdjCðdÞrCoptðd0Þg�d0.

In two-dimensional scaling, the cost metric and delay metric
are quantized by the same method. Thus, the calculation of the
delay deviation at a certain delay value is similar to that of the cost
deviation. In other words, by using uniform scaling, the delay
deviation at a certain delay value d0 is no more than Hδ, and by
using logarithmic scaling, the delay deviation is no more than
ðð1þδÞH�1Þd0. By setting the same upper bound for both cost
metric and delay metric as UB, the upper bound of the delay
deviation with logarithmic scaling is the same as that of cost
deviation. Thus, Cmax denotes the maximum cost deviation at any
cost value as well as the maximum delay deviation at any delay
value produced by two-dimensional scaling.

By Definitions 4 and 5, the points ðri � cþCDðri � cÞ; ri � dÞ and
ðri � c; ri � dþDDðri � dÞÞ are in the feasible area found by our
mechanism. This implies that the distortion area must be no more
than CDðri � cÞ �DDðri � dÞ. The total distortion area produced by
two-dimensional scaling is no more than ∑n�1

i ¼ 1CDðri � cÞ �DDðri � dÞ.
We can see that the total distortion area of two-dimensional

scaling depends on the number of the optimal representative
points n. To gain the insight into n, we assume that the QoS
metrics of all paths are independent and identically distributed
(i.i.d.) random variables (Van Mieghem and Kuipers, 2003).
The following lemma is established in Van Mieghem and Kuipers
(2003).

Lemma 2. The expected number of the representative points among
a set of T i.i.d. points in K�dimensional space is bounded above by
ðln TÞK�1.

Given a source s, a destination g, and other h�1 nodes in the
network, there are at most ðh�1Þ! different h-hop paths from s to
g. Therefore, there are at most ðh�1Þ!jV�2j

h�1 h-hop paths but jV�2j
h�1

different QoS parameters for all h-hop paths from s to g. Therefore,
the maximum number of the QoS parameters of the paths from s
to g is ∑jVj�2

j ¼ 0
jV�2j
h�1 ¼ 2jVj�2. For the two-dimensional case, it holds

that ðln TÞK�1r ln 2jVj�2r jVj�2. We thus have nr jVj�2. There-
fore, the distortion area introduced due to two-dimensional
scaling can be calculated as

A2�D
error ¼ ∑

n�1

i ¼ 1
CDðri � cÞ �DDðri:dÞ

r ðjVj�2Þ � C2
max ð6Þ

If two-dimensional uniform scaling is applied, we have DDðri �
dÞrðjVj�1Þδ and CDðri � dÞrðjVj�1Þδ. Therefore, the distortion
area is

A2�D;uni
error r ðjVj�2Þ � ððjVj�1ÞδÞ2

¼ ðjVj�2Þε2 ð7Þ
where δ¼ ε=ðjVj�1Þ.

Similarly, if two-dimensional logarithmic scaling is employed,
we have DDðri � dÞr ðð1þδÞjVj�1�1Þ � ri � d and CDðri � cÞr ðð1þ
δÞjVj�1�1Þ � ri � c. Therefore, the distortion area is

A2�D;log
error r ðjVj�2Þ � ðð1þδÞjVj�1�1Þ2rc � d � rd � c

o ðjVj�2Þðð1þδÞjVj�1�1Þ2UB2

r ðjVj�2Þε2UB2 ð8Þ
where δ¼ ε=2ðjVj�1Þ.

5.3. Performance comparison

According to the discussion in Sections 4.3 and 5.2, we know
that the computational overhead of a quantization-based algo-
rithm depends on the quantization scheme employed. In this
section, we consider both quantization schemes, namely, uniform
scaling and logarithmic scaling, and compare the error produced
by our approach and cost-scaling under the condition that they
produce almost the same computational overhead.

If the same scaling parameter δ is used, it is obvious that two-
dimensional scaling generally outperforms cost-scaling by produ-
cing a smaller distortion area. For two-dimensional scaling, the
supported QoS region is defined by both PFd and PFc. However, for
cost-scaling, the supported QoS region is defined by PFd. On the
other hand, two-dimensional scaling yields a larger computational
overhead if both techniques apply the same scaling parameter.
According to Section 4, we know that the computational over-
heads of both our proposed approach and cost-scaling heavily
depend on the number of possible cost values (and delay values
for our approach) caused by the quantization scheme. We believe
that if both approaches produce the same number of the possible
quantized cost values (and delay values for our approach), they
produce almost the same computational overhead. Thus, we are
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Fig. 6. The approximated functions by using the proposed scaling scheme. (a) Uniform scaling and (b) logarithmic scaling.
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going to discuss how to set the scaling parameter, such that the
total number of the possible quantized values is the same.

Given a scaling parameter δ, the number of possible cost values
by uniform scaling is UB=δ, and that by logarithmic scaling is
log 1þδUB, as referred to Section 4.2. For ease of discussion, denote
δt and δs as the scaling parameters adopted in two-dimensional
scaling and cost-scaling, respectively.

If we use uniform scaling, by setting δt ¼ 2δs, we can consider
that the total number of quantized cost and delay values for two-
dimensional scaling is the same as that for cost-scaling. We thus
consider both algorithms incur a comparable computational over-
head. If we use logarithmic scaling, by setting δt ¼ 2δs, the total
number of possible cost values and delay values by two-
dimensional scaling is 2 log 1þ2δsUB, and the number of cost values
by cost-scaling is log 1þδsUB. When δs is very small, say δsr0:1,
we have 1þ2δsC ð1þδsÞ2. This means that 2 log 1þ2δsUBC
log 1þδsUB. Therefore, if we set δt ¼ 2δs, we can consider that the
computational overheads produced by two-dimensional scaling
and cost-scaling are comparable.

Denote δ as the scaling parameter used in cost-scaling. For two-
dimensional scaling, the scaling parameter of 2δ is used. If we
apply uniform scaling, δ¼ ε=jVj�1. By (4) and (7), the distortion
area for cost-scaling and two-dimensional scaling is upper
bounded by ε � UB and 4ðjVj�2Þε2, respectively. For logarithmic
scaling, δ¼ ε=2ðjVj�1Þ. By (5) and (8), the distortion area for cost-
scaling and two-dimensional scaling is upper bounded by ε � UB2

and 4ðjVj�2Þ � ε2 � UB2, respectively.
Since UB is the maximum cost value for a path in the network,

it is upper bounded by ðjVj�1ÞW , where W is the maximum cost
value of each link. For uniform scaling with εoW=4, two-
dimensional scaling yields a smaller upper bound on the distortion
area than cost-scaling. For logarithmic scaling with 4ðjVj�2Þεo1,
two-dimensional scaling provides a better error guarantee.

For the worst case, the distortion area incurred equals to its
upper bound. This means that the distortion area for two-
dimensional scaling is smaller than that for cost-scaling in the
worst case analysis.

We notice that the distortion area for two-dimensional scaling
is proportional to the square of ε, while that for cost-scaling is
proportional to ε. Generally speaking, εo1. As ε increases, the
distortion area of two-dimensional scaling grows much slower
than that of cost-scaling. On the other hand, the total number of
the cost and delay values taken by two-dimensional scaling
reduces with the same rate as that of cost-scaling. This implies
that two-dimensional scaling can effectively reduce the computa-
tional overhead with a smaller increase in the distortion area
when compared with cost-scaling.

As the actual improvement depends on the network topology,
we have conducted extensive simulations to study the perfor-
mance, which will be discussed in Section 6. We also notice that by
setting the same scaling parameter δ, uniform scaling yields a
smaller approximation error but a larger computational overhead
than logarithmic scaling.

6. Performance evaluation

In this section, we present our simulation results. We compare
our proposed method, two-dimensional scaling, with cost-scaling.
We evaluate the performance of the algorithms from the perspec-
tives of the approximation error and the computational overhead. As
discussed in Section 1, we use the distortion area as the evaluation
metric for the accuracy performance of the quantization-based
approximation algorithms. We use the exhaustive method to com-
pute the optimal feasible area Aopt. Denote A as the estimated
feasible area computed by an algorithm. The distortion area is thus

Aopt�A � ðAopt�AÞ=Aopt is called the region-deviation ratio which is
proportional to the distortion area. We compare the region-deviation
ratio for different quantization-based approximation algorithms.

It is obvious that the region-deviation ratio depends on the
scaling parameter δ. A smaller δ gives a smaller region-deviation
ratio, but a larger computational overhead. In our simulation
experiments, we use the running time of an algorithm as the
metric for evaluating the efficiency performance. In order to fairly
test the computational overheads of the different algorithms, all
the algorithms run in turn under the same machine configuration
and the same operation system (Fedora 10). Moreover, during the
running of each algorithm, the machine did not perform any other
task. We use the function “gettimeofday” provided by the system
to obtain the exact starting time and the end time, in order to
calculate the running time delivered by different algorithms.

Similar to Xue et al. (2007), we used BRITE (Huang et al., 2010),
a well-known Internet topology generator, to generate network
topologies using the Waxman model. We apply the default
parameters provided in BRITE. The details can be referred to Xue
et al. (2007) and Huang et al. (2010). The physical links in the
networks are asymmetric, and the link metrics of both directions
are independently generated. Cost metrics are selected uniformly
from ½1;100�, while the delay values are selected uniformly from
½1;300�. We consider five different network sizes with 100, 200,
300, 400, and 500 nodes. We generate ten different instances for
each network size. In each instance, we randomly select four
nodes and compute the supported QoS regions from each selected
node to all the other nodes in the network. There are totally 99 � 4
different supported QoSes between two nodes in a network
instance. For each network size, the average region-deviation ratio
is thus an average value of the region-deviation ratios among
these 99 � 4 � 10 configurations.

6.1. Significance of distortion area

In Section 1, we mention that the distortion area reflects the
admission control performance of the network. In this section, we
have conducted the simulation experiments to demonstrate the
relationship between the admission control performance and the
size of the distortion area.

After a source receives a connection request, it first determines
whether there is a path satisfying the QoS requirement of a
request. The network will accept the request if it is feasible or
reject it if the source cannot find a feasible path according to its
precomputed supported QoS region. We define the ratio of the
number of the requests accepted to the total number of the
incoming requests as the acceptance ratio. Denote Sopt as the
acceptance ratio corresponding to the optimal feasible area Aopt

and S as the acceptance ratio for an approximation algorithm with
the approximate feasible area A. Similar to Korkmaz and Krunz
(2001), we define S=Sopt as the relative acceptance ratio which
implies how well an algorithm works for the provision of the QoS
guarantees. S=Sopt thus reflects the admission control perfor-
mance of the network. A larger S=Sopt implies a better network
performance.

We generate the connection requests as follows. Given a source
and a destination, let p1 and p2 be the minimum cost and
minimum delay paths, respectively. Denote the QoS parameters
of p1 and p2 as ðcmin; dmaxÞ and ðcmax; dmaxÞ, respectively. We
generated 1000 requests from each node pair. Each request has
the cost requirement creq and the delay requirement dreq. As
similar to Korkmaz and Krunz (2001), we take creq � uniform½f l �
cmin; f u � cmax� and dreq � uniform½f l � dmin; f u � dmax�, where fl¼1. In
our simulation experiments, the value of the scaling parameter for
our proposed approach is twice of that for cost-scaling.
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Figure 7(a) and (b) shows the relative acceptance ratio against
the scaling parameter for cost-scaling when fu¼1 and fu¼0.9,
respectively. For example, when δ¼ 0:05, the scaling parameter
for two-dimensional scaling becomes 2δ¼ 0:1. The simulation
results show that the relative acceptance ratio decreases as the
scaling parameter increases. Since the distortion area becomes
larger as the scaling parameter increases, the distortion area varies
with the relative acceptance ratio. That is, the distortion area
reflects the admission control performance of the network. We
also observe that the relative acceptance ratio for our approach is
higher than that for cost-scaling. In the following, we are going to
show that the computational overheads of our approach and cost-
scaling are almost the same. Therefore, our approach can provide a
better admission control service than cost-scaling without indu-
cing additional overhead. Comparing Fig. 7(a) and (b), we observe
that the relative acceptance ratio with fu¼0.9 is less than that with
fu¼1. The larger fu implies that more requests fall in the feasible
region, and so, the relative acceptance ratio with larger fu is
greater.

6.2. Two-dimensional scaling against cost-scaling

The relative acceptance ratio does not only depend on the
distortion area, but also it relates to the specific QoS requirements
of the connection requests. We would like to use the region-
deviation ratio as the metric to evaluate the accuracy performance
of an approximation algorithm.

Figure 8 shows the simulation results with uniform scaling.
Figure 8(a) exhibits the relationship between the region-deviation
ratios and the scaling parameter δ. We can see that the region-
deviation ratio for cost-scaling is the higher than that for two-
dimensional scaling. For each running time, there is a corresponding
region-deviation ratio produced by algorithm. With the same running
time, the lower the region-deviation ratio, the better the algorithm.
Figure 8(c) shows the region-deviation ratio of two-dimensional

scaling is lower than that of cost-scaling, and so the proposed method
outperforms cost-scaling.

We then test the performance of the algorithms applying
logarithmic scaling. Figure 9 shows the simulation results. In
Fig. 9(b), the scaling parameter for two-dimensional scaling is
twice of that for cost-scaling. The computational overheads for
both algorithms are comparable. This accords with our theoretical
analysis in Section 5.3. That is, when the scaling parameter is small
enough, ð1þ2δÞ is approximately the same as ð1þδÞ2. Figure 9
(c) shows the region-deviation ratio of the algorithms against the
running time. We observe that the performance improvement for
two-dimensional scaling over cost-scaling becomes greater with a
smaller scaling parameter, which leads to a larger running time.

Finally, we would like to evaluate the performance of the
algorithms with different network sizes. When applying uniform
scaling, we set the scaling parameters as 0.1 and 0.2 for cost-
scaling and two-dimensional scaling, respectively. When applying
logarithmic scaling, the scaling parameters for cost-scaling and
two-dimensional scaling are 0.05 and 0.1, respectively. The simu-
lation results in Figs. 10(b) and 11(b) show that the computational
overheads incurred by the algorithms are comparable. Figures 10
(a) and 11(a) show that the region-deviation ratio for two-
dimensional scaling is less than half of that for cost-scaling. These
results show that our approach outperforms over cost-scaling in
the general network topology.

7. Conclusion

In this paper, we investigated the problem of precomputing the
supported QoS with two additive constraints, which is NP-
complete. We proposed a new metric, distortion area, to evaluate
the performance of the approximation algorithms for estimating
the supported QoS. We gave the theoretical analysis for the upper
bound of the distortion area produced by the existing quantization-
based approximation algorithms, and then we presented a new
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Fig. 7. Relative acceptance ratio against scaling parameter. (a) fu¼1 and (b) fu¼0.9.
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Fig. 8. Performance plots with uniform scaling. (a) Region-deviation ratio against scaling parameter, (b) running time against scaling parameter and (c) region-deviation
ratio against running time.
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method to further improve the accuracy performance, which is
called two-dimensional scaling. We also formally show that two-
dimensional scaling produces the smaller approximation error than
the existing methods. Finally, we demonstrated the performance of
our method and compared it with the existing methods by condu-
cting the extensive simulation experiments. Our method can be
extended for the case of routing with multiple additive constraints.
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