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Computation of Self-Induced Magnetic Field Effects
Including the Lorentz Force for Fast-Transient

Phenomena in Integrated-Circuit Devices
Wim Schoenmaker, Quan Chen, Member, IEEE, and Philippe Galy

Abstract—We present a full physical simulation picture of
the electromagnetic phenomena combining electromagnetic (EM)
fields and carrier transport in semiconductor devices (TCAD)
in the transient regime. The simulation tool computes the EM
fields in a self-consistent way and the resulting magnetic fields
are incorporated in the computation of the current sources that
get modified by the Lorentz force (LF).

Index Terms—Electromagnetics, Lorentz force (LF), TCAD,
Transient.

I. Introduction

THE SINGLED-out purpose of electrostatic discharge
(ESD) devices is that these devices should protect elec-

tronic circuitry against fast-transient voltage/current spikes.
Although the overall signal variation occurs within a nanosec-
ond, the corresponding currents can ramp up to multiampere
levels. Fast varying current patterns give rise to equally fast
varying induced magnetic fields, being proportional to the rate
of change of the current. As a consequence, a substantial
part of the electric fields can be attributed to the variation
of the induced magnetic fields and the full electromagnetic
picture is required for understanding the effects of fast-
transient input signals. A similar reasoning can be done for
high-power switch devices. Continuing the reasoning along
these lines, when the fields are varying sufficiently fast, both
the induced magnetic fields and electric fields will ultimately
have such large components such that the current flow is
controlled by both fields. In particular, in semiconductors,
the Hall coefficient is directly related to the carrier mobility
and therefore self-induced Lorentz force (LF) modifications
could become appreciable. So far, no simulation tool has
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been designed to address these concerns and strictly speaking,
without actually computing these effects, we have no clue
if it is justified to ignore these subtleties altogether or that
these effects are really a concern. The purpose of the present
work is to fill this gap. We present an implementation that
allows the computation of these self-induced electromagnetic
field effects for fast transient phenomena. In particular, the
key ingredients are: 1) the semiconductor device equations;
2) modifications thereof to account for the LF; and 3) the
Maxwell’s equations to compute the electromagnetic (EM)
fields. All this is done in the time domain, since in the
frequency domain the small-signal analysis upfront excludes
high current/voltage signals at the ports. In the remainder
of the paper, we refer to the Maxwell’s equations with
electromagnetism (EM) and to the semiconductor equations
with drift-diffusion model (DD). Finally, the modifications are
induced by the LF. The EM-TCAD simulation refers to a
concurrent solution of the Maxwell’s equations that describe
the EM dynamics and the transport models that describe the
charge carrier dynamics in semiconductor devices. So far, only
a few frameworks have been developed to allow such coupling,
see [1]–[3], based on different selections of EM and TCAD
solvers. One experimentally verified cosimulation framework
was first proposed in [4] and [5] in the frequency domain.
The Maxwell’s equations are formulated in terms of the scalar
potential V and vector potential A to obtain straightforward
coupling with the DD semiconductor model (called the A-V
formulation henceforth). The spatial discretization scheme
based on the finite-volume method (FVM) and finite-surface
method (FSM) is fully compliant with the geometric meaning
of the differential operators. The motivation for selecting
the FVM is found in the desire to connect the field solver
results directly to the variables that are commonly used in the
electronic design environment, i.e., currents and voltages. In
other words, the voltages (V) at the contacts are in one-to-one
correspondence with node voltages at a SPICE net list and
the currents entering/leaving the circuit fragment simulated
by a field solver are in one-to-one correspondence with the
end point(s) of some net list branch(es). A convenient link is
established between the field solver and Kirchhoff’s voltage
and current laws. Successful simulations of semiconductor
devices always have exploited charge conservation as an
essential ingredient of the modeling that could be achieved
using the FVM. It is noted that the FVM is mimetic [6] and
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relaxes the demand that for finite grid sizes, every variable
should be calculable at every space–time point. In other words,
only in the limit of zero grid-node distance (lim h → 0) such
detailed information may be extracted. For example, the finite-
integration method [7], which belongs to the class of FVM,
puts the electric field on the links of the grid and the magnetic
field on the surfaces of the grid. No statement is made about
these fields for space points that are neither on the links or
surfaces. The benefit is that the geometrical character of the
field variables are faithfully implemented and the constraints
are obeyed without additional effort. Finally, the conservation
of charge is built-in from the start.

In addition to these practical advantages, the FVM can
be justified from Noether’s theorem [8] which states that
to every conserved quantity there corresponds an invariance
principle. Strictly speaking, the relation is reverse, i.e., to every
invariance principle there corresponds a conserved quantity.
Thus in order to respect charge conservation, we must build
in the underlying invariance principle. For the electromagnetic
fields, the invariance is realized for the scalar potential and
the vector potential that may be transformed without altering
the physical content. Accepting voltages (V ) as degrees of
freedom in the modeling set up requires that for the inclusion
of magnetic effects, the vector potential (A) must be also part
of the set of degrees of freedom.

A time-domain A–V simulator has been proposed in [9] and
[10] to meet the desire to handle the large-signal response
and to complement the small-signal analysis applied in its
frequency-domain counterpart. The implicit backward Euler
(BE) approach was employed for time discretization, and the
Newton’s method was used to solve the nonlinear system that
arises from the semiconductor dynamics. Whereas [10] deals
with field transformations to capture ultrafast time variations,
this paper does not exploit these transformations but aims
to include the LF. Due to the extended physical reality and
its numerical treatment, five variables are used and solved
simultaneously in the formulation. Three variables are located
on nodes and two variables are defined on links. Therefore,
the number of unknowns in each Newton iteration can be ∼ 9
times the number of nodes in the computational grid for large-
scale problems. The discretization of the LF impact on currents
was addressed in [11] and [12]. The emphasis of this paper
was on finding a proper discretization of higher order field
expressions such as E × B. Again, the current balance is a
key guideline in the discretization procedure, and the mimetic
methods that respect the geometrical meaning of the various
observables are capable of arriving at very accurate results. In
particular, comparing the outcome of the numerical approach
with analytic results (for the rare case where such results
can be found) demonstrates that the proposed discretization
method is very reliable. Although it was anticipated in [11]
and [12] that the self-induced LF will become only important,
if it will be at all, in fast-transient regimes, the paper in
[11] and [12] is limited to the static regime. In this paper,
we will report about the full transient implementation of the
proposed methods. This brings us to the following organization
of this paper. Section II reviews the A–V formulation of
EM-TCAD problem and the conventional solution scheme.

Section III describes the extension to include the Lorentz force.
In Section IV, we address the discretization of the Lorentz
force as well as the numerical subtleties that are encountered
when solving the full EM-TCAD-LF problem. Numerical
experiments that verify the proposed approach are presented
in Section V. Conclusions are presented in Section VI.

II. Time-Domain Formulation of

EM-TCAD Problem

The starting point of the time-domain EM-TCAD formula-
tion is the full-wave Maxwell’s equations

∇ · D = ρ, ∇ · B = 0 (1a)

∇ × E = −∂tB, ∇ × H = J + ∂tD (1b)

D = εE, B = μH (1c)

where D, E, B, H, J, and ρ are the displacement field, electric
field, magnetic induction, magnetic field, free current density,
and charge density, respectively.

In the semiconductor region, the Maxwell’s equations are
complemented with the current-continuity of electrons and
holes

1

q
∇ · Jn − ∂tn − R (n, p) = 0 (2a)

1

q
∇ · Jp + ∂tp + R (n, p) = 0 (2b)

where n and p are the electron and hole densities, and R(n, p)
denotes the net generation/recombination rate of carriers and
q is the elementary charge. The particle current densities in
semiconductor are described by the DD model

Jn = qμnnE + kTμn∇n (3a)

Jp = qμppE − kTμp∇p (3b)

where ε is the permittivity, μ is the magnetic permeability, μp,
μn, k, and T denote the carrier mobilities, Boltzmann constant,
and temperature, respectively.

To facilitate the coupling between the EM and TCAD
solvers, the Maxwell’s equations are written in potential form
using the variables V and A with the result that B = ∇×A and
E = −∇V −∂tA [4], [5]. A new variable, the pseudo-canonical
momentum

� = ∂tA (4)

is also introduced to avoid the second-order time derivative [9].
The complete system of equations is then laid out in (5)
utilizing a generalized de Mari scaling scheme [5], [10]
⎧⎪⎪⎨
⎪⎪⎩

1
ν
∇ · [εr (−∇V − �)] − ρ = 0, ρ = p − n + ND

1
ν
∇·[εr (−∇∂tV −∂t�)]+

{ ∇·[σ (−∇V −�)] metal
∇·Jsd semi/metal

}

= 0
(5a)

∇ · Jn − ∂tn − R (n, p) = 0 (5b)

∇ · Jp + ∂tp + R (n, p) = 0 (5c)

∂tA − � = 0 (5d)
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− Kεr (−∂t�−∇∂tV )−K∇ (εr∂tV )

+[∇ × (∇ × A)−∇ (∇ · A)]

−Kν

{
Jc metal
Jsd semi

}
= 0 (5e)

where Jc is the conduction current in metal and Jsd = Jn + Jp

is the total semiconductor current (see Section III ). K and ν

are two dimensionless constants of the scaling method [10].
In the scaling scenario where λL and λT are the natural units
of length and time, we find that K = μ0ε0λ

2
L/λ2

T. For example,
for a small-size microelectronic device with a typical length
of about one micrometer and a switching frequency around
5 GHz, we may set λL = 10−6 m and λT = 10−10 s. The
dimensionless parameter ν corresponds to the characteristic
relaxation time of conductive materials. In particular, if λCOND

is the ’natural unit’ of conductance (for example λCOND = 107

S/m for Aluminum) we find that ν = λCOND × λT/ε0. The
meaning of the parameter ν becomes clear when combining
Gauss’ law with the current-continuity and eliminating the
electric field, i.e., σ

ε
ρ+∂tρ = 0 or ρ ∼ exp

(− σt
ε

)
. We also note

that natural units can be chosen within a range of applicability.
In other words, an equally valid choice is λL = 10−5 m or
λL = 10−7 m in the above discussion. An unnatural choice
would be to describe the microelectronic devices using 1 km
as a basis for expressing lengths. The scaling of the system
can be further improved by using quasi-Fermi potentials, φp

and φn. The relation is

n = ni exp
( q

kT
(V − φn)

)
, p = ni exp

( q

kT
(φp − V )

)
(6)

and by scaling the semiconductor current-continuity equa-
tions with the nodal carrier densities. Equation in (5a) is
the common Gauss’ law, and (5e) is the current-continuity
equation that is applied to nodes for which there is attached
at least one grid cell consisting of a conductor (metal).
For these nodes, Gauss’ law is used to recover the charge
densities which are not explicit unknowns. Note that a node
may be located at a metal/insulator or metal/semiconductor
or a metal/semiconductor/insulatior (triple point) interface.
As a consequence, the discretization or equation assembling
receives contribution from both metallic and semiconductor
cells. Therefore, both current types are found in (5a). The
scaled current-continuity equations are given in (5b) and (5c)
whereas (5d), equal in appearance as (4) is the scaled version
of the pseudo-canonical momentum definition. The Maxwell–
Ampere equation is given in (5e). It includes the subtraction
of the divergence of Lorentz gauge condition

∇ · A + Kεr∂tV = 0 (7)

to eliminate the intrinsic singularity of the curl–curl op-
erator [13] and obtaining a Laplacian-like operator ∇2 =
∇(∇·) − ∇ × (∇×). The numerical subtleties in the various
transient regimes have been addressed in [10]. In particular,
the fact that the A − −V -formulation ultimately breaks down
if the transient times get too small (10−14 s). However, it
is assumed that for such short time signals the DD model
becomes questionable [14] and the relevance of the full EM-
TCAD setup is at stake. Therefore, we limit the fast-transient
signals in a range of O(10−14) − O(10−9) seconds.

III. Inclusion of the Lorentz force

In this section, we will present the equations that will serve
as a starting point for the implementation of the Hall effect
and the self-induced Lorentz forces (LFs). First of all, we
emphasize that the LF, although having a magnetic origin, is
not related to skin effects and proximity effects. The latter
correspond to altering the current flow due to the presence
of time-varying magnetic fields, thereby altering the electric
field. The currents are related to the electric field according
to Ohm’s law in metallic domains and according to the
drift-diffusion current-continuity equations in semiconducting
domains. However, the Lorentz force impacts Ohm’s law and
the DD model itself. The starting point of the discussion of
the LF is the well-known LF law

F(t) = qE(t) + qv(t) × B(t). (8)

This force can be inserted into the Boltzmann transport equa-
tion that requires the description of external forces applied
to the point particles moving in configuration space and by
adapting the moment expansion, the upgraded equations of
Ohm’s law and the DD model are obtained. In metallic
regimes, one finds

J(t) = σE(t) + μHJ(t) × B(t) (9)

where μH is the Hall coefficient.1 In order to keep track
of the transient modifications, we explicitly denote the time
dependence. In semiconducting regions, the current densities
for holes and electrons in the DD model with inclusion of the
LF are

Jn(t) = qμnn(t) (E(t) + vn(t) × B(t)) + kTμn∇n(t)

Jp(t) = qμpp(t)
(
E(t) + vp(t) × B(t)

) − kTμp∇p(t)

(10)

where Jn(t) = −qn(t)vn(t) and Jp(t) = qp(t)vp(t) are implicitly
defining the mean carrier velocities. The latter can be elimi-
nated in favor of the current densities, and both equations can
be expressed as [15]

Jc(t) + sμcB(t) × Jc(t) = KDD
c (t). (11)

KDD
c (t) = qμcc(t)E(t) − skTμc∇c(t). (12)

Here, c(t) = p(t) and s = +1 (holes) or c(t) = n(t) and s = −1
(electrons), Jc is Jp or Jn, Kc is Kp or Kn and μc is μp or
μn. The latter are taken here as scalars. Were it not for the
second term at the left-hand side, (11) would be the usual
DD expression for the current density. It is possible to perform
easily a full inversion of the current density in terms of the
DD current density KDD

c (t)

Jc(t) =
1

1 + μ2B2

(
KDD

c (t) + sμKDD
c (t) × B(t)

+ μ2
(
KDD

c (t) · B(t)
)

B(t)
)
. (13)

The parameter |μB| � 1 allows to write

Jc(t) = KDD
c (t) + sμcKDD

c (t) × B(t). (14)

1The symbol μ is used ubiquitously in the present paper, but its meaning
is clear from the context.
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The current-continuity equations and the Poisson equations
complete the description of the drift-diffusion model, that is

∇ · Jc(t) + sR(t) + s∂tc(t) = 0 (15)

∇ (−ε∇V (t)) = ρ
(
V (t), φp(t), φn(t)

)
. (16)

Inside the metallic regions, the use of the approximation
|μHB| � 1 leads to the following expression for the current
density

J(t) = σE(t) + μHσE(t) × B(t). (17)

The current density satisfies the current-continuity equation
∇ · J + ∂tρ = 0. The magnetic field consists of two terms of
which one represents the self-induced field and the other the
external field Bext

B(t) = ∇ × A(t) + Bext(t). (18)

As can be seen from (5e), we now end up with a sys-
tem of equations that should be solved self-consistently, i.e.,
J(t) = J(V (t), �(t), A(t)) since A(t) = A(�(t)) and �(t) =
�(V (t), A(t), J(t)). The self-consistency requirement sustains
into the static regime as was already observed in [12].

IV. Discretization of the Lorentz Current

Densities

In order to prepare the discretization process, we slightly
modify (17) and cast it in the following form:

J(t) = JEM(t) + μHJEM × B(t)

= JEM(t) + JLF(t) (19)

(20)

with

JEM(t) = σE(t)

JLF(t) = μHJEM(t) × B(t). (21)

Equations (14), (17), and (19) show that the total current den-
sity consists of two contributions. The usual finite-integration
method will lead to the nodal current-balance equations∑

j

dijJ
EM
ij (t) +

∑
j

dijJ
LF
ij (t)

+sRi(t)�vi + s∂tci(t)�vi = 0 (22)

where dij is the dual area and �vi is nodal volume of node i,
and JEM

ij represents the current-density expression as obtained
without inclusion of the LF, e.g., for semiconductors it reads2

JEM
c,ij = KDD

c,ij =
μc,ij

hij

(
ciB(sXij) − cjB(−sXij)

)
(23)

B(x) =
x

exp (x) − 1
, Xij =

q

kT
(Vi − Vj + sgnij�ij) (24)

�ij = e · �. (25)

Here, e is an intrinsic unit vector along the direction of the
grid link and sgnij = +1 if e points from node i to node

2We drop the explicit time dependence in the notation, but it is tacitly
assumed.

Fig. 1. Mesh element illustrating the ingredients of the decomposition of
the LF vector product. Part of the dual area dij (see text) of the link 〈ij〉 is
enclosed by the vectors u, v, s, t. The distance between node i and j is hij .

neighbor j. If e points from node j to node neighbor i, we
have sgnij = −1. The variable hij is the length of the link.
Furthermore, JLF

ij represents the correction due to the Lorentz
force, e.g. for semiconductors it is

JLF
c,ij(t) = sμc

(
KDD

c (t) × B(t)
) · nij. (26)

The vector nij is the unit vector along the link 〈ij〉 pointing
from node i to node j and is parallel or antiparallel to e. We
will consider the discretization of (26). The current balance in
each node is achieved by summing all contributions from each
mesh element and its associated set of links that are attached
to the node under consideration. In particular, a contributing
link in some mesh element is a boundary segment of two
adjacent faces in the element. The situation is illustrated in
Fig. 1 for the link 〈ij〉 and the faces F1 = 〈ijk〉 and F2 = 〈ijl〉.
Since we need the contribution of K × B in the direction 〈ij〉,
we merely need the components of K and B in the plane of
the dual area dij . The dual area of a link is defined as the
surface element of the dual grid and is perpendicular to the
link. All mesh cells of the primary grid that have the link as
a boundary segment contribute to the dual area of the link. To
compute (K × B) · nij we exploit two local coordinate frames
in this plane; one coordinate frame {s, t} is used to perform
a decomposition of B, and another coordinate frame {u, v},
whose base vectors are perpendicular to the first ones, is used
to compute K in the volume segment spanned by the link 〈ij〉
and its dual area dij in the element. Using these two frames,
we obtain that (Fig. 2)

K × B = (Kuu + Kvv) × (Bss + Btt)

= KuBs(u × s) + KvBt(v × t)

+ KuBt(u × t) + KvBs(v × s). (27)

As can be seen from Fig. 2, the first two contribution will
dominate the result whereas the last two terms vanish for
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Fig. 2. Illustration of the decomposition of the LF vector product in the local
coordinate bases.

orthogonal faces. For the last two terms, it is observed that
their contribution seems maximal for acute angles between
the adjacent faces, but then the dual area diminishes, resulting
again in a small correction. Specifically, for the meshes that
are used in this paper, the last two terms do not contribute.
Therefore, we will implement the first two terms only which
definitely suffices for structured grids and which will capture
a large portion of the LF effects on unstructured grids [16].
The magnetic fields perpendicular to the primary grid surfaces
F1 and F2, i.e., Bt and Bs, are obtained from the circulation
of the vector potential along these surfaces. The self-induced
magnetic field is given by

B⊥ =
1

�S

N∑
k

Akhk (28)

where Ak 	 A·ek and N is the number of links with lengths hk

around the surface and �S is the surface area. For complete-
ness, we mention that the electric field is obtained in the finite-
integration method from the voltage differences of the nodes
of the discretization grid and the link variable representing the
first-order time derivative of the vector potential as is seen in
(24).

Finally, in order to obtain the variables Ku and Kv, a
weighted sum is taken from the current-density projection
along 〈il〉 and 〈jl〉 for Ku and in the same way for Kv, from
〈ik〉 and 〈jk〉. The weights include the angles α and the lengths
of the sides of the surface. The details of the K-calculation
are found in (29)

Ku =
hik

hik + hjk

sin(αjik)Kik +
hjk

hik + hjk

sin(αijk)Kjk

Kv =
hil

hil + hjl

sin(αjil)Kil +
hjl

hil + hjl

sin(αijl)Kjl.

(29)

The motivation for this procedure is found in the requirement
that the final current density along the link 〈ij〉 should be
antisymmetric in its indices, i.e., Kji = −Kij . This antisym-
metry guarantees the aforementioned charge conservation. The
Lorentz current is a vector and the magnetic induction is a
pseudovector. Therefore, K needs to be a vector. It can be
achieved by using the same K expressions when assembling
the contribution to the link 〈ij〉 from the node i to the node
j as when assembling the contribution to the link 〈ji〉 from

the node j to the node i. The requirement itself is needed to
guarantee current balance. Let us now return to (26). Referring
to (18), we observe that

K(t) = K(V (t), φp(t), φn(t), A(t), �(t), Bext(t)) (30)

and find that the Lorentz contribution to the total current
depends only on the instantaneous time for which the current
is evaluated. In other words, the LF does not generate terms
containing explicit time derivatives. Remember that the time
derivative of A is given by �.

To compute the time derivatives of the degrees of freedom,
we apply a BDF rule. In general, the BDF discretization
performs the following substitution:

∂f

∂t
=

1

h0

∑
i=0

α−if (t−i). (31)

The parameters α depend on the time step sizes, and t0
corresponds to the latest time instance. Our implementation
is limited to the second-order BDF. In this case, we have

α−1 = − t0 − t−2

t−1 − t−2
.

α−2 = − t0 − t−1

t0 − t2
× t0 − t−1

t−2 − t−1
.

α−0 = −α−1 − α−2. (32)

For equal time step sizes, the values are α−1 = −2, α−2 = 1
2 ,

and α0 = 3
2 , respectively.

We have now all ingredients available to build the dis-
cretized equations. Using the implicit BDF scheme, the solu-
tion at the latest time instance is found by applying a Newton–
Raphson solver to the full set of equations. The degrees of
freedom are the temporal nodal variables Vi(t), φ

p
i (t), and

φn
i (t) and the link variables Ai(t) and �i(t). If we denote the

Poisson equation or the current-continuity equation in metallic
domains, i.e., (5a) as P(V, φp, φn, �, A) = 0, the hole current
continuity (5c) as J p(V, φp, φn, �, A) = 0, the electron current
continuity (5b) as J n(V, φp, φn, �, A) = 0, the Maxwell–
Ampere equation (5e) as M(V, φp, φn, �, A) = 0 and the �

defining relation (5d) as Q(A) = 0, then the Newton–Raphson
updates �V , �φp, �φn, ��, �A are computed from the
following linear system:⎡
⎢⎢⎢⎢⎢⎣

∂P
∂V

∂P
∂φp

∂P
∂φn

∂P
∂�

∂P
∂A

∂J p

∂V
∂J p

∂φp
∂J p

∂φn
∂J p

∂�
∂J p

∂A
∂J n

∂V
∂J n

∂φp
∂J n

∂φn
∂J n

∂�
∂J n

∂A
∂M
∂V

∂M
∂φp

∂M
∂φn

∂M
∂�

∂M
∂A

∂Q
∂V

∂Q
∂φp

∂Q
∂φn

∂Q
∂�

∂Q
∂A

⎤
⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎣

�V

�φp

�φn

��

�A

⎤
⎥⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎢⎣

P
J p

J n

M
Q

⎤
⎥⎥⎥⎥⎦ .

The fragments ∂P
∂A

, ∂J p

∂A
, and ∂J n

∂A
are induced by the LF

whereas other parts get additional contributions from the LF.
Furthermore, we note that ∂Q

∂V
= ∂Q

∂φp = ∂Q
∂φn = 0. Another

interesting observation is that ∂Q
∂�

and ∂Q
∂A

are diagonal matrices.
Therefore, it is straightforward to solve for �A in terms of
��. The solution is

�A = −
(

∂Q
∂A

)−1 [
Q +

∂Q
∂�

��

]
. (33)
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Fig. 3. Typical ESD current pulse used in the simulation of the fast-transient
signals.

Fig. 4. 2-D cross section of the silicon wire.

In this way, we can eliminate the last column of the matrix
system⎡
⎢⎢⎢⎢⎣

∂P
∂V

∂P
∂φp

∂P
∂φn

∂P
∂�

− ∂P
∂A

(
∂Q
∂A

)−1 ∂Q
∂�

∂J p

∂V
∂J p

∂φp
∂J p

∂φn
∂J p

∂�
− ∂J p

∂A

(
∂Q
∂A

)−1 ∂Q
∂�

∂J n

∂V
∂J n

∂φp
∂J n

∂φn
∂J n

∂�
− ∂J n

∂A

(
∂Q
∂A

)−1 ∂Q
∂�

∂M
∂V

∂M
∂φp

∂M
∂φn

∂M
∂�

− ∂M
∂A

(
∂Q
∂A

)−1 ∂Q
∂�

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎣

�V

�φp

�φn

��

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎣

−P + ∂P
∂A

(
∂Q
∂A

)−1 Q
−J p + ∂J p

∂A

(
∂Q
∂A

)−1 Q
−J n + ∂J n

∂A

(
∂Q
∂A

)−1 Q
−M + ∂M

∂A

(
∂Q
∂A

)−1 Q

⎤
⎥⎥⎥⎦ .

We found that a submission of the matrix system without
using this elimination to the indirect solver combo consisting
of reordering, preconditioning, and linear solving soon led to
too much fill-in due to the fact that ∂Q

∂A
and ∂Q

∂�
are of the

same numerical size. Therefore, there will be a complete fill-
in triggered in the lower right corner of the matrix. Remember
that the corresponding size is of the order of the number of
links and is three times the order of number of nodes. As
a consequence, even such a partial fill-in is deteriorating the
solving process. However, there are no issues anymore with

Fig. 5. ESD voltage pulse computed in the simulation of the fast-transient
signals at the injection contact.

Fig. 6. Current density at 0.30 × 10−9 sec. Some reduction is observed in
the center due to the skin effect.

fill-in at the preconditioning stage for the second version of
the matrix system. As a postprocessing step after solving we
apply (33) for obtaining the update on the vector potential.

Another interesting observation is that the complete non-
linear system of equations, i.e., F(X) = 0, where X =
{V, φp, φn, �, A} can be reformulated as

F0(X) + �F(X) = 0 . (34)

Here, F0(X) consists of all terms that do not contain any
reference to the LF while �F(X) refers exclusively to terms
induced by the LF. An iterative solution method can be real-
ized that simplifies the Newton–Raphson matrix substantially.
The pseudocode reads as follows:

1) compute the initial guess X = X0 using F0(X) = 0 ;
2) while |Xn+1 − Xn| ≥ ε solve Xn+1 using F0(Xn+1) =

−�F(Xn) .

An alternative approach performs the full Newton–Raphson
matrix assembling but computes an intermediate solution
based on the following pseudo code:
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Fig. 7. Electric field intensity at 0.30×10−9 s. Some reduction in the center
is observed due to skin effect and the value is ∼ 103 V/m.

Fig. 8. Magnitude of ∇V at 0.30 × 10−9 s. The maximum value is ∼ 103

V/m.

1) compute an initial guess X = X0 using F0(X) = 0 ;
2) compute an update �X from ∂F

∂X |X0 · �X = −�F ;
3) solve F(X) = 0 using X0 + �X as initial guess.

V. Applications

A. Silicon Wire

Continuing with the example that was given in [12], we
first consider a silicon wire. The purpose is to demonstrate the
convergence behavior of the solution scheme that is proposed
in this paper and to obtain a first impression of the size of the
modifications induced by the magnetic field effects as well as
the LF in the transient regime. In Fig. 3, a typical ESD current
pulse is shown. The spike of the currents ramps up within a
nanosecond. We consider a silicon wire with a square cross
section of 40 x 40 μm2. Contacts with areas of size 20 x 20
μm2 are placed at the ends. A structured grid is used in this
example although not essential. A 2-D cross section of the
wire that is embedded in a 100 x 100 μm2 block of oxide is
shown in Fig. 4. The wire length is 100 μm. The doping of
the silicon wire (N-type) is 1020 cm−3. We apply a current
boundary condition at one contact and a voltage boundary

Fig. 9. Magnitude of the pseudocanonical momentum � = ∂tA at 0.30 ×
10−9. The maximum value is ∼ 103 V/m.

Fig. 10. Magnitude of the vector potential A at 0.30 × 10−9 sec. The
maximum value is 3 ∼ ×10−7 Vsec/m.

condition (V = 0) at the other end contact of the wire. The
calculations are performed on a mesh of 4851 nodes. Since a
current boundary condition is applied at the current injection
contact, the contact voltage is computed. The result is shown
in Fig. 5. The two curves correspond to simulations with the
magnetic field components switched on (curve EM) and with
the magnetic field switched off (curve E). As can be seen,
there is a large difference at the ramp-up stage. This can be
understood as follows: In order to push the current through
the silicon wire an applied voltage must be set. Due to the
induced electric field, this counteracts the applied field, and
a higher voltage must be applied. This is confirmed in the
various plots of the field components. Fig. 6 shows the current
density in the silicon wire at the time instance 0.30 × 10−9 s,
Figs. 7–9 show the electric field intensity, the contribution
∇V to the electric field, and the induced contribution � to
this field. Both contributions are roughly equal in magnitude.
For completeness, we also show the magnitude of the vector
potential, A in Fig. 10. The peak value is ∼ 10−7 Wb/m.
Finally, Fig. 11 shows the magnetic induction. All field plots
are taken at 0.30 × 10−9 sec. At this time instance, the fast-
transient phenomena are very pronounced. Finally, Fig. 12



900 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 6, JUNE 2014

Fig. 11. Magnitude of the magnetic induction, B at 0.30 × 10−9 sec. The
maximum value is ∼ 10−2 T.

Fig. 12. Relative change in the voltage of the current injection contact due
to the Lorentz force.

Fig. 13. Circuit layout for use of a Silicon-Controlled Rectifier (SCR). The
location of the SCR is encircled and is presented in more detail in Fig. 14.

gives the relative change in the voltage of the current-injection
contact. The peak value is ∼ 0.07%, which is more or less
inline with the observations for the static case [12]. All results
were obtained with a relative current balance being of the order
of ∼ 0.0001%. This accuracy is sufficiently high in order to
detect the impacts of the various mechanisms.

Fig. 14. Device implementation the SCR. The left picture is a stretched view
of the actual implementation that is presented in Fig. 15.

Fig. 15. Actual implementation of the SCR structure.

Fig. 16. Change in the voltage of the current injection contact due to
magnetic effects.

B. ESD Protection

A second illustration deals with a stacked diode pair that
serves as a prototype for a circuit topology corresponding to
an ESD protection structure [17]. The circuit lay-out is found
in Fig. 13 and a physical realization is shown in Figs. 14
and 15. The latter shows a stretched view of the silicon-
controlled rectifier (SCR) by stacking N-doped and P-doped
regions. The N-gate contact, the third layer counted from
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Fig. 17. Change in the gate current due to magnetic effects.

Fig. 18. Change in the gate current and change in the voltage of the current
injection contact (LVDS) due to switch-on of the Lorentz force for the majority
carriers.

below, is surrounded by a metallic ring at which the gate
contact is placed with a load of 50 . The current is as given
in Fig. 3 and is injected through the top contact LVDS. A
ground contact (Gnd) is inserted at the bottom of the stack.

The results of the simulation of the voltage at the LVDS
contact are found in Fig. 16. The effect of the magnetic field
on the gate current is shown in Fig. 17. Both results clearly
illustrate that the electromagnetic response has an important
effect. There is a significant signal delay more than a change
in amplitude of the signals. Finally, we consider the inclusion
of the LF in the calculation. This is done in two stages. First,
we switch on the LF corrections for the majority carriers, i.e.,
in the N-doped regions, the LF effect is included for electrons,
whereas in P-doped regions it is included for holes. At a
second stage, we include the LF for both types of carriers
in both types of doped regions. In Fig. 18, the impact of
the majority-carrier inclusion on the results is shown. The
dashed line shows the comparison of the voltage value at the
current injection with and without inclusion of LF, whereas the
continuous line shows the comparison for the gate current.
In order to see the impact of the LF for minority carriers,
we compare the results of the calculation with inclusion of
the majority-carrier Lorentz-force with the results obtained by

Fig. 19. Change in the voltage of the current injection contact (LVDS,
dashed line) and change in the gate current (continuous line) due to an
additional switch-on of the Lorentz force for the minority carriers.

Fig. 20. Relative change in the voltage of the current injection contact
(LVDS) due to an additional switch-on of the Lorentz force for the minority
carriers.

switching on all terms, i.e., the LF correction is applied to
both majorities and majorities. Fig. 19 shows the difference
of the voltage value at the current injection (dashed line), and
the difference for the gate current (continuous line) with and
/without inclusion of the minority-carrier LF term. As seen in
Fig. 19, the minority carriers induce a change of the injection
voltage value of approximately 1.82 V, which corresponds to
a relative change of 3.5% as seen in Fig. 20.

VI. Conclusion

We presented a full simulation picture of fast-transient
phenomena. Besides the electromagnetic effects, we provided
a method to compute the impact of the LF. We applied the
proposed method to a silicon wire. Furthermore, we applied
the method to a simplified implementation of a SCR that serves
as a local protection structure for forward stress. There is
convincing evidence that the magnetic contributions are of
the same order of magnitude as the electric contributions.
On the other hand, the LF effects are very minor and can
be ignored for most practical purposes (despite the fact that
it is an arduous task to compute these effects). In the fast-
transient applications that we have done, their impact is of the
order of ∼ 0.07% in normal operation but minorities subjected
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to the LF and fast-transient conditions lead to an appreciable
deviation (∼ 3%) for the voltage values that are needed to
realize the large transient currents. The proposed method for
calculating the LF induced modifications may be applied to
other fields of engineering and physics in which the LF plays
a more dominant role. For example, the numerical scheme can
be applied to simulate Hall sensors.
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