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Abstract—A Calderón preconditioner is developed for the anal-
ysis of electromagnetic scattering of perfect electrically conducting
(PEC) objects embedded in a layered medium. The electric field
integral equation (EFIE) is formulated with the kernel of layered
medium Green’s function to account for the effects from the
multilayered background. The Calderón projector is derived
based on the general source-field relationship and the extinction
theorem for inhomogeneous environment in electromagnetic
theory. The Calderón identities can be naturally deduced based
on this projector, which is then leveraged to precondition the
EFIE with layered kernel. An alternative implementation is then
proposed to make the implementation of the preconditioner as
efficient as the one in free space. Different numerical examples are
designed to show the performance of the preconditioner, where
the objects are located in different positions with respect to the
layered medium, or different types of excitation are adopted. It
is shown that the proposed effective and robust preconditioner
makes the EFIE system converge rapidly in all cases, independent
of the discretization density.

Index Terms—Calderón preconditioner, Calderón projector,
electric field integral equation, layered medium Green’s func-
tion, method of moments, numerical analysis, surface integral
equations.

I. INTRODUCTION

S URFACE integral equation (SIE) method [1] is widely
studied and used in the analysis of electromagnetic radia-

tion and scattering in almost all aspects in electrical engineering
where electromagnetic phenomenon is involved. Although the
number of unknowns is relatively small in solving the surface
integral equation by using the method of moments (MoM) [2],
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real-world problems are still unaccessible in the bare imple-
mentation of the SIE-MoM, such as in the analysis of radiation
of large-scale antenna arrays, or the scattering of an aircraft.
Fast algorithms for such purpose attracted lots of investigation
in the last two decades, and a variety of algorithms [3]–[6]
were successfully developed. However, these fast algorithms
cannot affect the spectrum properties of the original matrix
system. The solution of a particular problem may still fail if the
convergence of the iteration is unacceptable, especially in the
electric field integral equation (EFIE) for the analysis of perfect
electrically conducting (PEC) objects.
Hence, along with the trend of seeking fast integral-equation

algorithms, preconditioning techniques also attracted much at-
tention in computational electromagnetic community. Different
preconditioners are proposed to improve the spectrum of the
matrix system and, hence, improve the convergence in iterative
solvers [7]–[9]. Among them, the recently developed Calderón
preconditioner turns out to be one of the most promising candi-
dates [9]–[11]. This preconditioner is constructed by leveraging
the Calderón identities, which can be naturally deduced from
the Calderón projector [12]. The identities state that the square
of the EFIE operator (denoted as or ) equals to
perturbed by a compact MFIE (magnetic field integral equation)
operator (denoted as ). As we know, the operator
has an undesired spectrum that clusters around the origin and at
infinity. Hence, when the operator is discretized, the condition
number of the resultingmatrix grows rapidly with the discretiza-
tion density. On the other hand, the operator, expressed
as an ordinary integral after the extraction of the residue term, is
compact. Therefore, the spectrum of the operator can be
manipulated to be well behaved by simply operating upon itself
again. This self-regularizing property indicates that the
operator is a great preconditioning operator to EFIE, which is
also composed of .
Although the good property of the self-regularization is ap-

parently shown in the Calderón identities, the numerical con-
struction of the preconditioner is not trivial, since has no
closed-form solutions and the direct Galerkin discretization of

is impossible. One practical way is to discretize the two
independently and connect them with a Gram matrix. Un-

fortunately, such discretization strategy in dual finite-element
space requires the basis and testing functions satisfying specific
mathematical properties [13]. The direct utilization of the stan-
dard Rao–Wilton–Glisson (RWG) basis [14] leads to a singular
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Gram matrix [11]. After some initial work such as the splitting
of singular term and hypersingular term of to enforce the
vanishing nature of the square of the hypersingular term [10],
[15], a purely multiplicative Calderón preconditioner was suc-
cessfully developed in [9]. This preconditioner succeeds relying
on the introduction of a delicately designed Buffa–Christiansen
(BC) basis function [16], a subset of the Chen–Wilton (CW)
dual basis function [17], in addition to the use of the traditional
RWG basis function.
This novel multiplicative Calderón preconditioner then

attracted much study and was extended to most aspects in
integral equation method. Such an extension includes, but
is not limited to, preconditioned combined field integral
equation (CFIE) for bounded spectrum and resonant-free
solution [18], remedies of low-frequency breakdown or inac-
curacy of EFIE [19]–[21], modeling of dielectric objects via
Poggio–Miller–Chang–Harrington–Wu–Tsai (PMCHWT) or
N-Müller equations [22]–[24], large-scale computation free
from spurious internal resonance corruption [25], high-order
basis functions [26], etc. Besides time-harmonic problems,
transient problems were also studied in [13], where the
time-domain Calderón identities were derived and applied to
precondition the time-domain (TD) EFIE.
However, the work mentioned above only considers the

radiation or scattering in an unbounded homogeneous back-
ground, where no scattering effects from the inhomogeneous
background is considered and, hence, the integration kernel is
relatively simple. There are other applications where the wave
phenomenon occurs in an inhomogeneous environment. One
of the most useful models of such inhomogeneity is the pla-
narly layered medium [27], [28], and the application includes
microstrip antennas and microwave circuits, geophysical ex-
ploration, and remote sensing. However, the extensibility of
this novel preconditioner to the EFIE with a layered medium
Green’s function is still in question.
In this paper, we investigate the Calderón preconditioner for

the EFIE analysis with a layered medium Green’s function. The
rest of the paper is organized as follows. Section II first reviews
the general formulations of the integral equations with a lay-
ered medium Green’s function. The Calderón projector and the
corresponding Calderón identities are derived in general where
scattering effects from the inhomogeneous background are in-
volved in Section III. After that, in Section IV, the implemen-
tation of the Calderón preconditioner in a layered medium is
introduced, and an alternative implementation is suggested to
make the construction of the preconditioner as efficient as the
one in free space. Finally, in Section V, several numerical re-
sults are presented to validate the great performance of the pre-
conditioner, regardless of the discretization density, the types of
excitations, or the relative position of the objects in the layered
medium.

II. GENERAL FORMULATION OF INTEGRAL EQUATIONS WITH
LAYERED MEDIUM GREEN’S FUNCTION

Consider that a PEC object with a closed boundary is lo-
cated in the background of a layered medium. The object can
be in the outermost layer, embedded inside one internal layer,

Fig. 1. A PEC object is located in the background of a layered medium. It
can be in the outermost layer, embedded inside an internal layer, or straddling
different layers. The quantities in the extinction theorem are also shown.

or straddling different layers, as is shown in Fig. 1. The mate-
rial of each layer is denoted as the relative permittivity and
relative permeability where losses have been accounted for.
The outward pointing unit normal vector of is denoted as .
This object is illuminated by an incident plane wave, or excited
by a Hertzian dipole. Surface current is then induced to coun-
teract this electromagnetic disturbance. Such current can be de-
termined via the EFIE by enforcing the boundary condition on
, namely the tangential component of the total field vanishes:

(1)

where the total field is the summation of the field generated
by (scattered field) and the incident field . The integration
operator maps the electric current at source position
to the electric field at observation point via the Green’s
function [1], [28]:

(2)

where is the -type dyadic Green’s function in a lay-
ered medium, which can be expressed as

(3)

where (the subscripts are the indices of
source and observation layers). The scalar function is
composed of a Sommerfeld integral [29]

(4)
where is the position vector in the cylindrical coor-
dinate system, is the dispersion relation in the
source layer, and is the Bessel function of order 0. The
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propagation factor characterizes the propa-
gation (reflection and transmission) of a plane wave with TE
and TM modes in a layered medium. The expression depends
on the relative position of the source point and observation point
[29]–[31]. When they are in the same layer, namely , we
have

(5)

with

(6)

(7)

where is the generalized reflection coefficients recur-
sively defined based on the Fresnel reflection coefficients
to account for the multiple reflections and transmissions in a
multilayered medium [29], and

(8)

In (6), represents the primary interaction at the absence of
the inhomogeneous background, which when substituted back
into (3), has the simple form of

(9)

It is actually the spatial dyadic Green’s function in an un-
bounded homogeneous medium (or free space), where the
scalar Green’s function is .
The secondary term in (7) contains four subterms ac-
counting for the scattering effects from the inhomogeneous
layered medium. Particularly, if the source and observation
points are in the top layer (outermost layer), , hence
only one subterm in (7) is left, which shows that the scattering
comes only from the lower layers. In general, the Sommerfeld
integrals for the secondary term cannot be cast into a closed
form, which is different from the primary term.
A direct Galerkin discretization scheme with the standard

RWG basis function to the EFIE in (1) usually leads to an ill-
conditioned system, as was introduced in the previous section.
Conventionally, the CFIE is suggested in radar applications in
a layered medium [32], [33], as is also normally done in free
space. However, as has been mentioned in [18], the CFIE in-
herits the unbounded nature of the spectrum of EFIE and may
deteriorate or fail when an extremely dense mesh is required in
certain multiscale problems.
In the following sections, we will investigate the possible ex-

tensibility of the Calderón preconditioner to the layeredmedium
problems.

III. CALDERÓN PROJECTOR AND CALDERÓN IDENTITIES IN
LAYERED MEDIUM

The Calderón projector and the Calderón identities in an
inhomogeneous medium can be derived from the general
source-field relationship and the extinction theorem [28], [29],
following that of [12]. Due to the much complex kernels in-
volved in the layered medium, the notations here are slightly
different from those in the literature for free-space case [9],
[12], in order to keep the physical meanings of each operation
clear.
The general source-field relationship forming the basis of in-

tegral equations reads

(10)

(11)

In free space, we have [1], [34]

(12)

(13)

(14)

(15)

where

(16)

(17)

In (17), stands for the Cauchy principal value integration,
and is either the electric current or magnetic current .
The “ ” in (13) corresponds to the case when the observation
point approaches the boundary along the direction of outward
pointing unit normal vector and “ ” from the opposite direc-
tion. In (14), is the wave impedance in
free space. The Calderón identities can be derived following the
procedure in [12]:

(18)

(19)

For the layered medium, three other integral operators are
needed in addition to in (2):

(20)

(21)

(22)

where the -type Green’s function in (21) and (22) is

(23)
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with . The detailed expressions of the kernels
can be found in [28] andwill not be repeated here. As is shown in
(3) and (23), the -type Green’s function and the -type coun-
terpart are dual with each other in a general layered medium.
Therefore, the operators with -type and -type kernels have no
simple direct relations as in (14) and (15). The relation can only
be obtained implicitly by invoking the duality principle [28].
For simplicity, we first assume that the source and observation

points are in the same layer . In this case, we can always
separate the integration kernel as well as the operator into two
parts: the primary term and the secondary term, as is also shown
in (5)

(24)

(25)

where are essentially those in free space, as are
shown in (12)–(15).
Consider an object filled with material and immersed in

a layered medium, as is shown in Fig. 1. It has a closed boundary
, and the outward pointing unit normal vector of is denoted
as . Two mathematical surfaces and are defined with an
infinitesimal distance from the real surface in region and
, respectively. The corresponding “outward pointing” unit

normal vectors and are defined on and . Apparently,
we have . Two sets of electromagnetic sources

, are also defined on and , and similar
relations of , hold. In order
to activate the layered medium Green’s function, we invoke the
exterior part of the extinction theorem and assume that no exci-
tation exists in region . If we put the source point on and
the observation point on , namely, , , the ex-
tinction theorem reads [29]

(26)

Here, in the last line does not include the residue term any-
more and the subscript has been skipped. Consequently

(27)

Similarly, for the field

(28)

Hence,

(29)

Again, the residue term is excluded from . Inmatrix notation,
(27) and (29) become

(30)

The operator in (30) is the Calderón projector, which maps the
vector into itself. The following identities can then be
derived based on the procedure in [12]:

(31)

(32)

(33)

(34)

It is shown in (31) and (34) that and in inhomo-
geneous medium are not commutable, which is different from
the one in free space.
These identities can be derived due to the fact that the op-

erators can be naturally decomposed into the primary term and
the secondary term, shown in (24) and (25). Physically, the pri-
mary term corresponds to the direct interaction between the
source and the field, while the secondary term describes the scat-
tering caused by the inhomogeneous background. Apparently,
the latter is a secondary contribution to the field and is usu-
ally weaker than the former. Hence, the secondary term can be
viewed as a perturbation to the primary term. From a mathemat-
ical point of view, the primary term usually contains strong sin-
gularities. As the discretization density increases, the singularity
becomes more severe. The eigenvalues of the two branches of
the singular and hypersingular terms in discretized devi-
ates more, leading to a larger condition number. This operator is
unbounded and also ill-posed. For , however, due to the
extraction of the residue term, the remaining term involving or-
dinary integral is compact. On the other hand, no similar singu-
larity issues occur in the weaker secondary term since the field
has to propagate to the inhomogeneous boundary and then re-
flect back. This operator is supposed to be compact. Therefore,
(31) can be utilized to construct a Calderón preconditioner for
the EFIE in a layered medium.
The Calderón identities in (31)–(34) are true for object con-

fined in one single layer (which is the most common situation
in layered medium applications) where always holds.
For object-straddling different layers, we have in cer-
tain source–field interactions. In this situation, the identities are
not naturally derivable. However, it can be shown that the spec-
trum of can also be improved by for general
straddling cases. Consider that an object straddles layers in
an -layered medium. The operator (discretized) can always
be divided into an block system. It can be easily
found that the blocks of the case are always the di-
agonal blocks, and those of are off-diagonal. For
, only the secondary term exists. It corresponds to the trans-
mitted field in different layers, and usually falls into the category
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of well-separated interactions. These weak interactions have
no similar singularity issues either. Hence, a “dual-squared”
system of leads to a block system with its
diagonal blocks filled with perturbed by compact oper-
ators, and off-diagonal blocks filled with compact operators.
Such a system is well behaved. Therefore, is still a
good preconditioning operator for straddling objects. Note that
this argument is very similar to the case in the preconditioned
system for dielectric objects in free space, where 2 2 systems
are always set up [22].

IV. CALDERÓN PRECONDITIONER IN LAYERED MEDIUM

The Calderón identity in (31) can be applied to construct a
Calderón preconditioner to the EFIE in (1). The preconditioned
system is formulated as

(35)

The inner is discretized by using the div-conforming
RWG basis functions as the expansion function in the
domain space, and the curl-conforming RWGs as
the testing function in the range space; while the outer
is discretized by the div- and quasi-curl-conforming BC basis
functions and the curl- and quasi-div-conforming BCs

for expansion and testing, respectively. After discretization,
the matrix system is

(36)

As a consequence of this delicate discretization scheme, the
Gram matrix linking the domain of and the range of

can be made well conditioned

(37)

The impedance matrices in (36) are

(38)

(39)

Finally, the preconditioned EFIE system takes the form of

(40)

where the excitation is obtained by testing the incident
field with . To define the BC basis function,
a barycentric mesh is required in addition to the original mesh
[16]. As the BCs as well as the RWGs in the original mesh can be
expressed as a linear superposition of the RWGs in the barycen-
tric mesh, the impedance matrices and can be ob-
tained by the impedance matrices assembled with RWGs in the
barycentric mesh. Such operations can be achieved via the linear
transformation matrices and [9]. For the same reason, the
Gram matrix can also be obtained from RWGs in the barycen-
tric mesh. Detailed information can be found in [9].
Compared with the Calderón preconditioner in free space, it

is observed that another full impedance matrix involving
is required in layered medium, as is shown in (40). This

may lead to extra complexity and computational cost. To make

the construction of the preconditioner as convenient as in free
space, one can heuristically apply as the preconditioning
operator

(41)

Although not guaranteed by the Calderón identities, this precon-
ditioned system may still succeed due to the dominant primary
term, where

(42)

This is essentially the case in (14), which can be deduced from
(2) and (21), since [28]. The secondary term, ac-
cording to our previous argument, is a perturbation to the domi-
nant primary contribution. Hence, although , we may
weakly have the following approximate relation for “precondi-
tioning purpose”:

(43)

Based on this argument, it is reasonable to utilize as
an alternative preconditioning operator in the layered medium.
In this case, the preconditioned system can easily be obtained
based on the existing EFIE code, without the necessity to invoke
the extra -type Green’s function.
The preconditioned system in (41) is exactly the same as the

one in free-space problems [9]. Although the use of is
justified rigorously from the Calderón identities in free space, it
is only a heuristic suggestion with approximations in layered
medium. However, numerical tests show that this alternative
choice works very well in different situations.

V. NUMERICAL RESULTS

Several numerical results are presented to validate the effec-
tiveness of the Calderón preconditioner in this section. The gen-
eralized minimal residual (GMRes) algorithm [35] is adopted as
the iterative solver. The targeted relative residual error is set to
be in all cases. Both preconditioned systems in (35) and
(41) are investigated.

A. Sphere at Top Layer of a Three-Layer Medium

First, the scattering of a PEC sphere with 1 m situated at
the top layer of a three-layer medium is analyzed. The configu-
ration as well as the material parameters of the layered medium
are shown in Fig. 2. The sphere is illuminated by a -polarized
plane wave of 150 MHz with normal incidence. Fig. 3
shows the number of iterations required to achieve the targeted
relative residual error, with respect to the discretization density
(wavelength /mesh size ). It is shown that the number of it-
erations in EFIE increases rapidly as the mesh becomes denser.
However, the Calderón preconditioned EFIE has a very low and
stable number of iterations. It is also shown that the alterna-
tive implementation in (41) (denoted as preconditioner) per-
forms almost the same as the original one in (35) (denoted as

preconditioner) in this case. For instance, at the finest mesh
( ), the number of iterations is both 14 in the two pre-
conditioned EFIEs, while the number is 555 in the EFIE without
preconditioner.
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Fig. 2. A PEC sphere located above a three-layer medium is excited by a plane
wave of 150 MHz, where , (unit: m). The material parame-
ters of each layer are shown in the figure.

Fig. 3. Analysis of scattering from the sphere. Number of iterations required in
GMRes to achieve a relative residual error of versus discretization density

.

B. Cuboid Confined in the Middle Layer of a 3-Layer Medium

Next, a cuboid with 2 m, 1 m is totally confined
in the middle layer of a three-layer medium, shown in Fig. 4.
It is illuminated by a -polarized plane wave of 75 MHz
with normal incidence. The number of iterations to achieve the
targeted relative residual error versus discretization density is
shown in Fig. 5. Again, the preconditioned EFIEs converge
rapidly to the targeted error and are independent with respect
to the discretization density. When , the number of it-
erations in preconditioner is 22, in preconditioner is 25,
and the number in EFIE is 1759.

C. Multi-Scale Composite Cylinder Structure Confined in One
Internal Layer of a Four-Layer Medium

In the following, a multiscale composite cylinder structure is
confined in one internal layer of a four-layer medium, with the
parameters shown in Fig. 6. The radius and the height of the
bottom cylinder are 0.5 m and 0.2 m, while the
numbers of the top cylinder are 0.05 m and 0.3 m.
To test the performance of the preconditioner for different types
of excitation, the structure is excited by a Hertzian dipole lo-
cated at m, with polarization of

Fig. 4. A PEC cuboid is totally confined in the middle layer of a three-layer
medium, where , (unit: m). It is excited by a plane wave of

75 MHz. The material parameters of each layer are shown in the figure.

Fig. 5. Analysis of scattering from the cuboid. Number of iterations required in
GMRes to achieve a relative residual error of versus discretization density
( ).

Fig. 6. Multiscale composite cylinder structure is totally confined in one
middle layer of a four-layer medium, where , , ,

(unit: m). It is excited by a Hertzian dipole with 300 MHz. The
material parameters of each layer are shown in the figure.

30 60 . The working frequency is 300 MHz.
The convergence history is shown in Fig. 7, where the precon-
ditioned EFIEs converge quickly. However, the convergence
rate of the EFIE is extremely low. The number of iterations in

preconditioner is 112, in preconditioner is 115, and the
number in EFIE is 15 483. To show the accuracy of our method,
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Fig. 7. Analysis of scattering from the composite cylinder structure. Iteration
history recorded in GMRes to achieve a relative residual error of .

Fig. 8. Analysis of scattering from the composite cylinder structure. Scattered
near field distribution validated by FEKO.

the scattered near field is further collected along the observa-
tion line ( ) m. It can be seen that
the results agree well with the reference data calculated by the
commercial software FEKO, as is shown in Fig. 8.

D. Block Straddling Different Layers

The last example is designed to show the effectiveness of
the preconditioner for straddling objects. The dimension of the
block is , 1 m. It is penetrating the three-layer
medium, shown in Fig. 9. The structure is excited by a dipole
with 150MHz located either at
(denoted as dipole 1 in the top layer) or at

(denoted as dipole 2 in the middle layer), with
polarization of 20 30 . It is observed from Fig. 10
that the preconditioners also work well for this case. For dipole
1, the number of iterations in preconditioner is 13, in
preconditioner is 20, while the number in EFIE is 298. The
performance for dipole 2 case is similar: 12 in precondi-
tioner, 22 in preconditioner, and 355 in EFIE. Although in
both cases, deteriorates slightly compared to in this sit-
uation, the difference is trivial if compared with the number
of iterations of the original system. To show the accuracy, the
scattered near field is also collected along the observation line

Fig. 9. A block with , (unit: m) is straddling different layers
of a three-layer medium. It is excited by a Hertzian dipole with 150 MHz.
The material parameters of each layer are shown in the figure.

Fig. 10. Analysis of scattering from the straddling block. Iteration history
recorded in GMRes to achieve a relative residual error of . The structure
is excited by either dipole 1 or dipole 2.

Fig. 11. Analysis of scattering from the straddling block. Scattered near field
distribution validated by FEKO. The structure is excited by either dipole 1 or
dipole 2.

m, which is further validated by
FEKO, as is shown in Fig. 11. Again, good agreement can be
achieved for both cases.
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VI. CONCLUSION

A Calderón multiplicative preconditioned electric field inte-
gral equation with a layered medium Green’s function is devel-
oped for the analysis of electromagnetic scattering of perfect
electrically conducting objects in the layered medium. Moti-
vated by the Calderón projector and Calderón identities in free
space, their counterparts in the layered medium are carefully
studied. By applying the Rao–Wilton–Glisson and Buffa–Chris-
tiansen basis functions, a multiplicative preconditioner based on
Calderón identities is constructed. To make the construction of
the preconditioner as convenient as the one in free space, an al-
ternative implementation is suggested. It is shown through dif-
ferent numerical examples that excellent convergence can al-
ways be achieved for different types of excitations, or different
positions of the scattering objects in the layered medium. It is
also shown that the convergence of the iteration is independent
of the discretization density.
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