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A frequency-domain quantum mechanics and electromagnetics (QM/EM) method is developed.
Compared with the time-domain QM/EM method [Meng et al., J. Chem. Theory Comput. 8, 1190–
1199 (2012)], the newly developed frequency-domain QM/EM method could effectively capture the
dynamic properties of electronic devices over a broader range of operating frequencies. The sys-
tem is divided into QM and EM regions and solved in a self-consistent manner via updating the
boundary conditions at the QM and EM interface. The calculated potential distributions and cur-
rent densities at the interface are taken as the boundary conditions for the QM and EM calculations,
respectively, which facilitate the information exchange between the QM and EM calculations and
ensure that the potential, charge, and current distributions are continuous across the QM/EM in-
terface. Via Fourier transformation, the dynamic admittance calculated from the time-domain and
frequency-domain QM/EM methods is compared for a carbon nanotube based molecular device.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4853635]

I. INTRODUCTION

With the continuous miniaturization trend, the feature
size of transistors is expected to reach close to 10 nm in a
few years. In the meantime, operation frequencies increase
towards terahertz. Quantum effects, atomistic details as well
as propagation of electromagnetic waves should be taken
into account in modeling and designing emerging electronic
devices.1–3 The interaction between charge and electromag-
netic field plays an essential role in many other novel devices
and materials such as transistors,3, 4 photovoltaic devices,5–8

and metamaterials.9, 10 By balancing the accuracy and effi-
ciency, a hybrid method which combines quantum mechan-
ics (QM) and electromagnetics (EM), the QM/EM method,1, 2

has been developed.
In the QM/EM method, the active device regions are

modeled via the atomistic QM method while the interconnects
and substrates are modeled classically by solving Maxwell’s
equations via the computational EM solvers. Having been
successfully implemented for static1, 3 and time-dependent
fields,2 the QM/EM method is extended to the frequency-
domain in this work. The frequency-dependent bias voltage
is treated as a perturbation. Compared to the time-domain
QM/EM method, the frequency-domain QM/EM method is
expected to be particularly efficient in the low frequency
regime as long simulation time is required in the time-domain
method to capture low frequency characteristics.

An alternating current (AC) quantum transport theory
was developed recently to ensure both gauge-invariance and

a)Authors to whom correspondence should be addressed. Electronic
addresses: yamcy@yangtze.hku.hk and ghc@everest.hku.hk

current-continuity.11 The induced potential distribution due
to an external applied voltage is considered and obtained
self-consistently by solving the Poisson equation with proper
boundary conditions. The time-dependent density-functional
theory (TDDFT)12 has been exploited in this AC quan-
tum transport theory to investigate the dynamic properties
of molecular devices. For practical purpose, the wide band
limit (WBL) approximation is adopted13, 14 to describe the
electrodes and this has also been applied to study graphene
nanoribbon and carbon nanotube based molecular devices.15

By Fourier transformation of the time-domain equations
in the EM solver, the coupled frequency-dependent EM and
drift-diffusion equations can be solved to model electronic
devices, interconnects, substrates, and dielectrics.16–20 Based
on the finite volume method (FVM),21 the potential formal-
ism of Maxwell’s equations and a mimetic discretization of
differential operators are adopted to guarantee local charge
conservation. Instead of the electric field �E and the magnetic
field �H , the scalar potential V and vector potential �A are cho-
sen as basic variables which facilitate the interface with con-
ventional engineering solvers and the QM method.2 The EM
solver based on the potential formulation has been validated
for a number of cases in which the simulation results were
compared with measured data on test structures developed in
industry.22, 23 The solver has been transferred into a series of
commercial tools of MAGWEL.24 One can achieve the sim-
plicity of the frequency-domain solver by assuming the sys-
tem being excited by a sinusoidal perturbation with small am-
plitude (the small-signal assumption), which results in a pure
time-harmonic solution.25

Theoretical models at different scales (e.g., first-
principles methods and classical simulation methods) could

0021-9606/2013/139(24)/244111/6/$30.00 © 2013 AIP Publishing LLC139, 244111-1
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be integrated in “decoupled” or “coupled” schemes. Key pa-
rameters of the electronic systems are extracted from the QM
simulation and embedded in the EM simulation. Our QM/EM
method adopts a coupled integration scheme: The potential V
at the QM and EM interface calculated by the EM solver is
used as the boundary condition for the QM calculation. In re-
turn, the current density distribution at the interface resulted
from the QM calculation is used as a part of the boundary
condition for the EM solution.

II. METHODOLOGIES

A. Electromagnetics simulation

The differential forms for the Maxwell’s equations are
listed as26, 27

∇ · �D = ρ, (1)

∇ · �B = 0, (2)

∇ × �E = − ∂

∂t
�B, (3)

∇ × �H = �J + ∂

∂t
�D, (4)

where �D, �E, �B, and �H denote the electrical induction, the
electric field, the magnetic induction, and the magnetic field,
respectively. And ρ and �J denote the charge and current den-
sities, respectively.

The following constitutive relations are employed to
relate the inductances �D and �B to the field strengths �E
and �H :

�D = ε �E, (5)

�B = μ �H, (6)

where ε and μ are the material permittivity and permeabil-
ity, respectively. In the following simulations, we assume the
structure is nonmagnetic, i.e., μ = μ0.22, 23

In lieu of the original Maxwell’s equations that use vector
field �E and �H as basic variables, an alternative version of the
Maxwell’s equations based on potentials (the scalar potential
V and vector potential �A) could be derived by employing the
transform relations

�B = ∇ × �A, (7)

�E = −∇V − ∂

∂t
�A. (8)

Combined with Eqs. (7) and (8), Eqs. (1) and (4) are rewritten
as

∇ ·
[
ε

(
−∇V − ∂

∂t
�A
)]

− ρ = 0, (9)

∇ ×
[

1

μ
(∇ × �A)

]
−

[
�J + ∂

∂t

(
ε

(
−∇V − ∂

∂t
�A
))]

= 0.

(10)
An additional constraint (or gauge condition) is neces-

sary to uniquely determine potentials �A and V for any given �E

and �B. Two commonly used gauges are Coulomb gauge and
Lorentz gauge.26 Without loss of generality, Lorentz gauge is
employed throughout the numerical simulations as

∇ · �A + με
∂

∂t
V = 0. (11)

The frequency-domain Maxwell’s equations can then be ob-
tained by replacing all time differentials with iω:

�E = −∇V − iω �A, (12)

∇ · [ε(−∇V − iω �A)] − ρ = 0, (13)

∇ ×
[

1

μ
(∇ × �A)

]
− [ �J + iω(ε(−∇V − iω �A))] = 0,

(14)

∇ · �A + iωμεV = 0, (15)

where ω is the frequency. Therefore, Eqs. (7) and (12)–(15)
form together the governing equations for solving the electro-
magnetic waves in the frequency-domain. Finally, all solved
field or potential quantities are the phasor equivalents of the
corresponding time-domain solutions.

In Eq. (14), the operator ∇ × (∇ ×) is intrinsically sin-
gular. To recover a Laplacian-like operator and thus eliminate
the singularity, Eq. (14) is subtracted by the divergence of the
gauge condition Eq. (15), which yields

∇ × (∇ × �A) − ∇(∇ · �A) + Kiωε(∇V + iω �A)

−K∇ (εiωV ) − K �J = 0. (16)

The dimensionless constant K = (1/c2)(λ/τ )2, where c is the
speed of light in vacuum, and λ and τ denote the scaling pa-
rameters for lengths and time, respectively.23

The dependency of the current �J on the electric field and
the free carrier densities is determined by the medium under
consideration in the EM region. For the conductors in the sys-
tem, the current �J is given by classical Ohm’s law,

�J = σ �E = σ (−∇V − iω �A), (17)

where σ is the conductivity of the conductor. The current
density satisfies the current continuity equation and no free
charge densities need to be solved inside the conductor,

∇ · �J + iωρ = 0. (18)

In dielectrics, there are also no free charges and the dielectric
losses are neglected. Therefore, no current equation needs to
be solved in insulators.22, 23

For the semiconductors, the current due to electrons (or
holes) is split into drift and diffusion terms

�Jn = qμnn �E + kBT μn∇n

= qμnn(−∇V − iω �A) + kBT μn∇n, (19a)

�Jp = qμpp �E − kBT μp∇p

= qμpp(−∇V − iω �A) − kBT μp∇p, (19b)

where n and p correspond to the electron and hole densities,
respectively. μn(p) is the mobility of the electron(hole). kB

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  147.8.31.43

On: Fri, 12 Sep 2014 04:26:08



244111-3 Meng et al. J. Chem. Phys. 139, 244111 (2013)

denotes the Boltzmann constant and T the temperature. The
continuity equations for the electrons and holes are

∇ · �Jn − qiωn − qR (n, p) = 0, (20a)

∇ · �Jp + qiωp + qR (n, p) = 0, (20b)

where R is the charge carrier generation rate. Finally, the total
charge density in semiconductors is given as

ρ = q (p − n + ND − NA) , (21)

where ND and NA are the donor and acceptor concentrations
due to the doping, respectively.

Any independent variable X in the frequency-domain is
comprised of a static (or DC) component and a frequency-
domain response (or AC) component:

X = XDC + XAC exp(iωt), (22)

where X could be V, n, p, �A. In the frequency-domain method,
the AC signal (VAC, nAC, pAC, �AAC) is solved as a perturbation
of the static solution (VDC, nDC, pDC, �ADC).

The local charge conservation can be satisfied by apply-
ing the spatial gridding scheme based on the FVM and adopt-
ing a mimetic discretization of differential operators.22, 23 The
application of boundary conditions and interface conditions
for the frequency-domain EM solver is similar to one for the
time-domain simulations.2 In the current implementation, the
EM solvers are coded in MATLAB, and we assume that there
is no charge generation or recombination, i.e., the net charge
generation rate R(n, p) in the current continuity equations is
set to zero.2

B. Quantum mechanical simulation

Unlike electromagnetic simulations which treat systems
as continuous media, quantum mechanical simulations have
abilities to capture features of electrons in atomic scale at the
cost of high computational time. During last few years, many
efforts have been devoted into the area of time-dependent
quantum transport in open systems.13, 14, 28–31 Based on the
Keldysh non-equilibrium Green’s function (NEGF)32 formal-
ism, the current through electrode α can be expressed as

Iα(t) = e

h

∫
dt1T r[G<(t, t1)�a

α(t1, t)

+Gr (t, t1)�<
α (t1, t) + C.C.], (23)

where Gγ and �γ are the Green’s functions and self-energies,
respectively, and γ = r, a, <. The system couples to the lead α

via the self-energy �α and Eq. (23) gives the real-time current
at lead α. Through a double-time Fourier transform, Eq. (23)
is converted into the frequency-domain, and the frequency-
dependent current is given by

Iα(ω) = e

¯

∫∫
dE

2π

dE1

2π
T r[Gr (E + ¯ω,E1)�<

α (E1, E)

+G<(E + ¯ω,E1)�a
α(E1, E)

−�<
α (E + ¯ω,E1)Ga(E1, E)

−�r
α(E + ¯ω,E1)G<(E1, E)], (24)

where the double-time Fourier transform is defined as

F (E1, E2) =
∫

f (t1, t2) exp (E1t1 − E2t2) dt1t2, (25)

In practice, we assume the applied bias is small enough to be
treated as a perturbation. Thus, a first order approximation33

is applied

Gγ (E1, E2) = G
γ

0 (E1, E2)δ(E1 − E2) + δGγ (E1, E2)
(26)

�γ (E1, E2) = �
γ

0 (E1, E2)δ(E1 − E2) + δ�γ (E1, E2),

where G0 and �0 are ground state Green’s function and self-
energy when no AC bias voltage is applied. Within the WBL
approximation, the AC current in the frequency-domain is
given by

Iα(ω) = e2

h

∫
dE

ω
(f − f +)T r

[−iGa
0�αG

r,+
0 vα

+Ga
0�αG

r,+
0 �β(vα − vβ)

]

+ e

h

∫
dE(f −f +)T r

[
iV (ω)Ga

0�αG
r,+
0

]
, (27)

where α, β are indices of lead, and f is the Fermi distribu-
tion function. For simplicity, f, f +, and Gr, + represent f(E),
f(E + ¯ω), and Gr(E + ¯ω), respectively. να is the AC bias
on lead α and V (ω) gives the frequency dependent potential
distribution inside the device, projected on the atomic basis.
Compared to previous work,34, 35 the real space self-consistent
potential distribution11, 36 V (�r, ω) is included explicitly by
solving the Poisson equation to ensure gauge invariance,

∇2V (�r, ω) = ρ(�r, ω), (28)

where ρ is the charge density in the device part under an AC
bias, and can be expressed with the corresponding electron
density matrix σμν as

ρ (�r) =
∑
μν

σμνφμ (�r) φν (�r) , (29)

where φ (�r) is the electron basis function. In our implementa-
tion, the induced electron density matrix is obtained from the
first order lesser Green’s function via

δσ̂ = ie

h

∫
dE

2π
δG<(E + ¯ω,E), (30)

δG<(E + ¯ω,E) = Gr
0(E + ¯ω)δ�<

0 (E + ¯ω,E)Ga
0(E)

+Gr
0(E + ¯ω)V (ω)G<

0 (E)

+G<
0 (E + ¯ω)V (ω)Ga

0(E). (31)

Equations (28)–(31) are solved in a self-consistent fashion
and the current flowing through the electronic device can be
evaluated using Eq. (27). It is noted that the current evaluated
from Eqs. (23), (24), and (27) is particle current. In cases of
charge depletion or accumulation within the electronic device,
displacement current should be considered to ensure current
conservation. This can be obtained readily from the rate of
change of electric field.
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C. Boundary condition at QM/EM interface

In the frequency-domain QM/EM simulations, the cou-
pled QM and EM solvers are integrated together. Similar to
the time-domain QM/EM method, potential distribution and
current density are used as boundary conditions in QM and
EM solvers for information exchange. Initially, the scalar po-
tential distribution is calculated by the EM solver for the
whole system including the QM region. The complex poten-
tial V at the QM and EM interface is used as the boundary con-
dition for the QM solver. Then the complex current density at
the interface calculated from the QM method is fed back to
the EM solver as the boundary condition. The whole process
is iterated until the potential distribution and current density
converge. In the current implementation, due to the simplic-
ity of the systems, convergence is readily achieved within few
cycles. Depending on the complexity of the systems, more so-
phisticated convergence acceleration techniques are required,
for instance, Broyden’s mixing.37

To realize the seamless coupling between the EM and
QM solvers, the following equations for the scalar and vec-
tor potentials in the QM region should be solved2

∇ · [ �JQM + iωε(∇V + iω �A)] = 0, (32)

∇ × (∇ × �A) − ∇(∇ · �A) + Kiωε(∇V + iω �A)

−K∇(iωεV ) − K �JQM = 0, (33)

where the particle current density �JQM is calculated by the
QM method. The displacement current is defined by the term
iωε(∇V + iω �A) in Eq. (32), and the total current should be
conserved through the entire system.

III. RESULTS AND DISCUSSIONS

The frequency-domain QM/EM method has been applied
to a carbon nanotube (CNT) electronic device. Figure 1 shows
the cross-section of the three-dimensional device. The system
comprises of a (5, 5) CNT connected to two aluminum elec-

FIG. 1. Schematic diagram to illustrate the dynamic multiscale QM/EM ap-
proach. Region enclosed in the central box is simulated by quantum mechan-
ics with full atomistic details while the outer EM region is simulated by the
EM method.

trodes embedded in a silicon substrate. The entire structure
has a dimension of 8 × 5 × 5 nm3: CNT and part of elec-
trodes (totally 128 aluminum atoms and 60 carbon atoms) are
included in the QM region with the size of 4 × 1 × 1 nm3

and the rest of the system is included in the EM region. The
QM region contains full atomistic details while the continuum
model is used in the EM region. In the EM region, the con-
ductivity of aluminum electrodes is set as 3.37 × 107 S/m,2

and an undoped silicon substrate with a relative permittivity
of 11.9 is used.2 The FVM discretization generates 15 × 11
× 11 nodes and 4994 links.

To simulate dynamic properties, the steady state of the
system is first obtained by grounding both contacts 1 and
2. AC bias voltages at different frequencies with amplitude
of 0.1 mV are then applied on the electrodes. To increase
the efficiency, the density-functional tight-binding (DFTB)38

Hamiltonian is adopted in Eq. (27) to simulate AC quantum
transport in the QM region. In the simulations, the total cur-
rent and the particle current across the surface S in Fig. 1
are evaluated and analyzed. To verify our frequency-domain
QM/EM method, time-domain QM/EM2 calculations are per-
formed which sinusoidal transient bias voltages with different
amplitudes (0.1 mV, 0.01 V, and 1.0 V) and period of 5 fs
are applied at t = 0 to the same system. The simulation re-
sults are then Fourier transformed to the frequency-domain
for comparison.15 It is noted that the particle current flowing
through the substrate is insignificantly small since the sub-
strate is built from undoped silicon. Therefore, the particle
current across S essentially equals to the particle current (IQM)
flowing through the QM region.

Figure 2 plots the dynamic admittance G(ω) = I(ω)/V(ω)
for the particle current. Our frequency-domain QM/EM is a
linear response theory with respect to the bias voltage. As
long as the applied voltage is small enough, the results from
the time-domain and frequency-domain simulations agree
well over frequencies up to 0.6 eV (∼140 THz) which vali-
dates the frequency-domain QM/EM method. At a high AC
bias voltage (1.0 V), where the system is far from equilib-
rium, it is shown that the dynamic admittance obtained from
time-domain simulation results deviates from that obtained at
low AC bias voltages (0.1 mV and 0.01 V) due to the nonlin-
ear effect. It is also observed that the deviation becomes more

FIG. 2. The comparison of the dynamic admittance for the particle currents
calculated by the time-domain (with the bias voltage of 0.1 mV, 0.01 V, and
1.0 V, respectively) (TD) and frequency-domain (FD) QM/EM simulation
methods at different operating frequencies.
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FIG. 3. The comparison of the dynamic admittance for the total currents
calculated by the time-domain (with the bias voltage of 0.1 mV) (TD) and
frequency-domain (FD) QM/EM simulation methods at different operating
frequencies.

prominent at higher frequencies. Being a linear response the-
ory, the dynamic admittance, however, remains the same in
the frequency domain calculations for both high and low AC
bias voltages. This shows that our method is valid at the low
AC bias voltage and low frequency regime. To simulate non-
linear effect at the high bias voltage, a small-signal technique
is commonly used where a DC bias voltage is applied to drive
the system out of equilibrium and a small AC bias is applied
as a perturbation around this bias point.

Figure 3 shows the dynamic admittance for the total cur-
rent. In our simulations, the displacement current contributes
only to the susceptance (the imaginary part of the admit-
tance) since the applied voltage is a real number. From Fig. 3,
the magnitude of the susceptance increases as the frequency
increases which shows that the displacement current con-
tributes a significant component to the total current at high
frequencies.

The dynamic characteristics of electronic devices at low
operating frequencies could be investigated efficiently by the
frequency-domain QM/EM method. At low frequencies, the
potential distributions and charge densities resemble that of
the steady state, and the self-consistency is in general read-
ily achieved. For instance, at frequencies lower than 1011 Hz
(∼1 meV), the self-consistent QM calculations [Eqs. (28)–
(31)] converge within 20 cycles. In contrast, a resolution of
1011 Hz in the time-domain simulations requires propagation
time of about 60 ps. Thus, the frequency-domain QM/EM
method serves as an efficient alternative to the time-domain
QM/EM method in the low frequency regime. However, at
high frequencies, the time-domain QM/EM method is more
effective, since a significant charge redistribution occurs in the
electronic devices which requires more iterations to achieve a
self-consistent frequency-domain QM/EM solution.

IV. SUMMARY

The family of our multiscale QM/EM simulation
methods has been supplemented by the newly developed
frequency-domain method. Through the application to a
carbon nanotube molecular device, the time-domain and
frequency-domain QM/EM methods are compared with the

good agreement. Compared with the time-domain counter-
part, the frequency-domain QM/EM method is found to be
more efficient in the low frequency regime, in particular, in
the operating frequencies of electronic devices, and is thus an
important modeling method for emerging electronic devices.
While it has been employed to simulate the electronic devices
so far, the QM/EM method can be used to study the plasmonic
effects such as plasmon enhanced optical phenomena.
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