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ABSTRACT

Conventionally, overall gene expressions from mi-
croarrays are used to infer gene networks, but it
is challenging to account splicing isoforms. High-
throughput RNA Sequencing has made splice vari-
ant profiling practical. However, its true merit in
quantifying splicing isoforms and isoform-specific
exon expressions is not well explored in inferring
gene networks. This study demonstrates SpliceNet,
a method to infer isoform-specific co-expression net-
works from exon-level RNA-Seq data, using large
dimensional trace. It goes beyond differentially ex-
pressed genes and infers splicing isoform network
changes between normal and diseased samples. It
eases the sample size bottleneck; evaluations on
simulated data and lung cancer-specific ERBB2 and
MAPK signaling pathways, with varying number of
samples, evince the merit in handling high exon to
sample size ratio datasets. Inferred network rewiring
of well established Bcl-x and EGFR centered net-
works from lung adenocarcinoma expression data
is in good agreement with literature. Gene level
evaluations demonstrate a substantial performance
of SpliceNet over canonical correlation analysis, a
method that is currently applied to exon level RNA-
Seq data. SpliceNet can also be applied to exon array
data. SpliceNet is distributed as an R package avail-
able at http://www.jjwanglab.org/SpliceNet.

INTRODUCTION

Cancer is a complex biological phenomenon where the dy-
namic interplay between various tumor associated genes
and their splice variants (isoforms) are curtailed in deter-
mining cell fate (1). With the progress in various graph the-
oretic techniques it is advantageous to map complex bio-
logical systems as networks/graphs (2). Network represen-
tation of such functional interactions provides an intuitive
advantage in visualizing and in systematically understand-
ing the cause and prognosis of various biological phenom-
ena including cancer (3,4).

Traditionally, DNA microarrays are used to quantify
gene expression patterns (5). Several studies demonstrated
the merits of microarrays in discerning cancer and other
biological phenomena (6,7). However, it is still challeng-
ing to account for the entire transcriptome using microar-
rays, especially in quantifying splice variations (8). Alterna-
tive splicing is the major factor that leads to functional di-
versity of proteins and various complications (1,9), almost
half of the human genes undergo alternative splicing (10).
Often different splice variants (isoforms) vary in their ex-
pression in different conditions, making them primary tar-
gets to explain biological anomalies (11). Splice variants
are found to be associated with different cancers viz. spleen
tyrosine kinase isoform-S (SkyS) (12) and human epider-
mal growth factor receptor (HER-2) (13) in breast cancer,
B-cell lymphoma-extra large (Bcl-xL), Kruppel-like factor
6 (KLF6) and peroxisome proliferator-activated receptor
gamma 1 (PPAR�1) in lung cancer (14) etc.

With the recent advances in next-generation sequencing,
RNA Sequencing (RNA-Seq) is gaining popularity in accu-
rately quantifying gene expression. RNA-Seq with its high
sensitivity, low background noise and a larger range of cov-
erage, is more robust when compared to traditional mi-
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croarrays (15). In RNA-Seq experiments, RNA is firstly
reverse transcribed and then sequenced. Sequences’ reads
are then mapped to the reference genome. The gene expres-
sion is quantified according to the abundance of mapped
cDNA. RNA-Seq offers a holistic picture of transcriptome
by significantly enhancing gene expression analysis both
qualitatively and quantitatively at multiple resolutions viz.
spliced variants, post-transcriptional RNA editing, exon-
level expression and allele-specific expression (15). In ad-
dition, RNA-Seq experiments can also reveal novel tran-
scripts, non-coding RNA and other small RNAs that are
not probed using microarrays. It is well recognized that
splice variants along with other genomic variations are im-
portant cancer driving factors (16). The variations in non-
coding genes and isoforms at exon-level can be efficiently
captured by RNA-Seq (8). Profiling such variations in can-
cer patients using RNA-Seq experiments is a promising ap-
proach in identifying potential biomarkers for cancer prog-
nosis, diagnosis and therapeutic targets.

Traditional gene network inference methods such as cor-
relation or mutual information based methods, covariance
selection, sparse graphical models and partial correlation
methods are based on overall gene expressions (17). How-
ever, RNA-Seq data offer a significantly increased level of
biological details (at base resolution) than just overall gene
expressions. It is necessary to explore expression difference
in genomic positions, exons and isoforms to identify po-
tential cancer biomarkers and therapeutic targets. Recently
Canonical Correlation Analysis (CCA) (18) is applied to
RNA-Seq data to infer co-expression network using exon
level expression data. Likelihood ratio test (LRT) can also
be used to infer the multivariable (exon expression) depen-
dency between two genes (19). However, the merit of RNA-
Seq in quantifying splicing isoforms is not explored in infer-
ring isoform-specific networks. Moreover, CCA and LRT
are designed under the assumption that the number of di-
mensions (exons per gene) is small while the sample size
tends to large. When the ratio of exons to sample size is
not small enough the results from corresponding methods
are not consistent. It may not be always practical to have
sample size much larger than the number of dimensions (ex-
ons per gene); small number of available tumor and normal
matched RNA-Seq samples support the argument.

It is also important to account for isoform-specific exon
expressions, as an exon can be shared by multiple isoforms
with different expressions. Unfortunately, none of the cur-
rent methods consider isoform-specific exon expressions. In
lieu of above, there is a strong need to develop efficient com-
putational methods for RNA-Seq expression data analysis
that can account isoform-specific exon expressions and are
least affected by the exons to sample size ratio (20). This
study proposes a novel method to address the challenges
in investigating large multi-dimensional RNA-Seq data. To
construct co-expression networks with isoform resolution,
firstly expressions of isoforms/genes are abstracted as mul-
tivariate variables (matrices). Next, a novel method, large
dimensional trace test (LDT), is employed to recover cor-
responding pairwise dependencies. In brief, a co-expression
edge is inferred by accepting or rejecting the null hypoth-
esis that is centered on the variance matrix of respective
isoform expressions (exon-expression matrices). The pro-

posed method hypothesizes an asymptotic distribution on
the trace of variance matrix using large dimensional theory,
which makes it more robust to the difference between num-
ber of exons and number of RNA-Seq samples.

The networks recovered by the proposed method perceive
isoform co-expressions. This study goes beyond differen-
tially expressed genes and comprehends diseases by infer-
ring isoform network differences, and can be used in un-
derstanding the molecular mechanisms of cancer and other
diseases (21). Furthermore, the method can also be ap-
plied to infer isoform mediated auto-regulatory relation-
ships (22) by computing intra-genic isoform dependencies.
An R package implementing the proposed approach for
constructing isoform-specific co-expression networks from
exon level RNA-Seq data, SpliceNet can be downloaded
from our website http://www.jjwanglab.org/SpliceNet/. Al-
though this study demonstrates the application of SpliceNet
to cancer genomic data, it can be applied to any exon level
RNA-Seq data or exon array data. A detailed explanation
of the proposed approach is given in the ‘Materials and
Methods’ section.

MATERIALS AND METHODS

Datasets

Exon-level (level 3) RNA-Seq data of lung, kidney and
liver cancers are downloaded from TCGA data portal.
In total 49 lung adenocarcinoma (LUAD), 45 lung squa-
mous cell carcinoma (LUSC), 50 liver hepatocellular carci-
noma (LIHC) and 72 kidney renal cell carcinoma (KIRC)
matched samples are used in this study. An in-depth descrip-
tion of RNA-Seq data is published elsewhere (23). Cancer-
specific ERBB2 and MAPPK signaling pathways are col-
lected from KEGG database (24). Tissue-specific gene ex-
pression profiles and gene expression correlations are down-
loaded from TiGER database (25) and Ensembl’s Human
BodyMap project 2.0 (26) respectively. Gene symbol to Ref-
seq ID mapping and their corresponding exon boundaries
are obtained from UCSC genome browser (27).

Constructing exon-expression matrix

Every isoform of a gene in the interest list is represented as
an exon-expression matrix (multivariate random variable)
of order p × n, where p is the number of exons mapped to the
isoform and n is the number of samples (RNA-Seq) as illus-
trated in Figure 1. Firstly a gene G is mapped to its isoforms
and then to their corresponding exon boundaries accord-
ing to the coordinates of HG-19 (UCSC genome browser)
reference genome. Secondly, exon boundaries of each iso-
form from 1,.., m of gene G are matched to exon-positions
of each level 3 RNA-Seq sample and corresponding exon-
expression values are extracted. An exon is considered only
if it is expressed in at least 50% of the samples, as any
inference with half of the data missing (no expression) is
not reliable. Considering sequencing errors an error mar-
gin of ±5 nt positions is allowed in mapping exon bound-
aries. The error margin of ±5 nt is a reasonable tradeoff
between the acceptable sequencing errors and the smallest
human exon of 15 nt (28) and can avoid imprecise exon
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Figure 1. Illustration of extracting exon-expression matrix for each isofom
of a gene in interest list. G is the gene of interest, I is the isoform, e is the
exon, S is the sample, m is the number of isoforms, p is the number of
exons, n is the number of samples. Em ,n ,p, Cexm ,n ,p and Wm ,n ,p are raw
expression, corrected expression and correction weight for pth exon of mth
isoform in nth sample, respectively. Im ,n is the expression of mth isoform
in nth sample (from isoform expression files). It can be observed that exon
E1 is shared by two isoforms I1 and I2. Thus, corrected exon-expression
value of exon 1 in sample 1 for isoform 1 is computed as Cex111 = [E111 ×
{I1,1/(I1,1 + I2,1)}].

mappings. Thus, each isoform is represented as an expres-
sion matrix with exons and samples as columns and rows
respectively. However, it is well established that a significant
fraction of mammalian genes overlap and share common
exons. In the light of this fact it is not reasonable to assign
same expression value to an exon for all its instances that
are shared by multiple isoforms/genes. This makes it diffi-
cult to distinguish isoforms that share a significant number
of exons or overlapping genes and is not accounted by previ-
ous studies (17,18). Moreover, isoform expression is tissue-
and condition-specific i.e. isoforms of a gene express dif-
ferentially in different tissues and conditions. Assigning the
same expression value to all the instances of an exon will re-
sult in farcical imputations. For example, B-cell lymphoma-
extra, Bcl-x, a very well studied cancer associated gene, has
two isoforms Bcl-xS (short) and Bcl-xL (long). The two
isoforms differ only by one exon but with totally distinct
expressions and functions. Any inferences using uniform
exon-expression values for both the isoforms will be inac-
curate. This problem is addressed by normalizing the ex-
pression value of each instance by relative abundance of
the corresponding isoform in a specific sample. Firstly, all
known HG-19 isoforms are scanned for shared exon bound-
aries and summarized to a sharing exon file with each row
representing an exon and its isoform instances as shown in
Figure 1. Corrected exon-expression value for each isoform
is computed as follows:

Cexm,n,p = Em,n,p × Wm,n,p (1)

Wm,n,p = Imn∑K
i=1 Ii

(2)

where Cexm,n,p, Em,n,p and Wm,n,p are corrected expression,
raw expression and correction weight of pth exon in nth
sample for mth isoform, Imn is the expression of mth iso-
form in nth sample and K is the number of isoforms shar-
ing a common exon p. This normalizes every instance of
an exon with the relative abundance of the corresponding
isoform and sample. For example, from Figure 1 it can be
observed that exon E1 is shared by two isoforms I1 and I2.
Thus, corrected exon-expression value of exon 1 in sample
1 for isoform 1 is computed as Cex111 = [E111 × {I1,1/(I1,1
+ I2,1)}]. Sample wise exon-level expressions and isoform
expressions are downloaded from TCGA data portal.

Constructing isoform co-expression networks using large di-
mensional trace (LDT)

Isoform-specific co-expression networks are constructed by
identifying pairwise dependencies between the isoforms of
different genes, using exon-level RNA-Seq data. Previous
studies have used classical statistical methods, which are
designed under the assumption that the number of ex-
ons per gene (dimensions) is small while the sample size
is sufficiently large (17,18). However, when both number
of exons per gene and sample size are large with com-
parable magnitude, the classical methods are no longer
effective. To handle such situations an LDT method is
employed in this study. The asymptotic results of LDT
are derived using large dimensional theory, where dimen-
sions of data are significantly large together with the sam-
ple size. The proposed method abstracts expressions of
genes as multivariate random variables with different num-
ber of dimensions (exons). Consider two isoforms/genes
X(1) and X(2) with p and q number of exons respectively.
Exon-level expressions of the sample are represented as[
x(1)

1 , .., x(1)
p

]T
and

[
x(2)

1 , .., x(2)
q

]T
respectively. x(1)

i and x(2)
i

correspond to the expression of the ith exon in X(1) and X(2)

and the sample size is n. Suppose that the exon-expression

matrix X =
[

X(1)

X(2)

]
follows a (p + q)-dimensional normal

distribution N(μ,Σ), where μ is the mean vector and Σ is
the population covariance matrix of X.

μ = E(X) =
(

μ1
μ2

)
and

Σ = E(X − E(X))(X − E(X))T =
(

Σ11 Σ12
Σ21 Σ22

)
, (3)

where Σ11 and Σ22 are the variance matrices of X(1) and
X(2) respectively, and Σ12 is the covariance matrix of X(1)

and X(2), Σ21 being the transpose form of Σ12.
In particular, Σ12 = 0 identifies a zero correlation and in-

dependence between the two multivariate random variables,
X(1) and X(2). Accordingly, the null hypothesis of two in-
dependent isoforms (sets of variables) is represented as fol-
lows:

H0 : Σ12 = 0 versus H1 : Σ12 �= 0. (4)
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The unbiased estimators of Σ ij are

Σ̂ i j = 1
n − 1

∑n

k=1

(
x(i )

k − x̄(i )
) (

x( j )
k − x̄( j )

)T
,

x̄(i ) = 1
n

∑n

k=1
x(i )

k for i and j = 1 and 2. (5)

To test the hypothesis H0, we use the LDT statistic de-
fined as follows:

Ln = tr(A21 A−1
11 A12 A−1

22 ), (6)

Ai j = (n − 1)Σ̂ i j , (7)

where tr denotes the trace of a matrix. The elements on the
main diagonal of (A21 A−1

11 A12 A−1
22 ) comprehend the essen-

tial information of correlation between the exons of respec-
tive isoforms/genes. Thus, the sum of these diagonal ele-
ments, defined as trace, quantifies the degree of dependency
among isoforms. Under the null hypothesis, the statistic Ln
converges to a normal distribution and is close to zero. A co-
expression edge is drawn between any two isoforms/genes
based on accepting or rejecting the null hypothesis by com-
paring the observed value of test statistic, T to the criti-
cal value Z at significance level α. If the null hypothesis is
rejected, an edge is inferred connecting corresponding iso-
forms. The critical value for testing the hypothesis is com-
puted by deriving an asymptotic distribution of the statistic
(29). As p, q →∝ and n →∝, the asymptotic distribution
of Ln is as follows:

T = V− 1
2 (Ln − E) → N(0, 1) (8)

V = 2pq(n − 1 − p)(n − 1 − q)
(n − 1)4

and E = q × p
n − 1

, (9)

where V is the variance and E is the expected value of Ln. A
co-expression edge is placed if T > Zα at significance level α.
The critical value Zα is the αth upper quantile of standard
normal distribution. Intuitively, the edges can be weighted
according to the P-value of the corresponding test statistic
T. Compared to traditional criteria in multivariate analysis
for testing the independence hypothesis, the advantage of
the LDT criterion is that it can handle large datasets with
large dimensions p and q, provided that the ratios p/n and
q/n are close to 1.

In contrast, the CCA criterion is based on standard con-
sistent estimate of population CCA, provided that the di-
mensions p and q are small enough compared to sample
size (low-dimensional assumption). When the ratios of di-
mension to sample size p/n and q/n are not small enough
(e.g. p = q = 20, n = 50), from recent high-dimensinonal
statistic literature, we knew that standard estimation is not
consistent. Therefore, test procedure based on CCA is not
reliable. Experiments in the results section clearly show that
SpliceNet significantly outperforms CCA.

Inferring differential cancer co-expression networks

The method described in the previous section can essen-
tially infer isoform-specific co-expression networks from
cancer and normal samples (RNA-Seq data) respectively.

Figure 2. Illustration of inferring differential cancer co-expression net-
work: isoform-specific co-expression network inferred from (a) Normal
samples, (b) cancer samples and (c) differential cancer network. Solid lines
in red and blue are the edges lost and gained in cancer samples respectively
when compared to normal samples. Dotted lines are the removed common
edges.

Nevertheless, to systematically understand the cause, prog-
nosis and to identify confident therapeutic targets it is very
important to distinguish cancer and normal samples. Dif-
ferentially expressed genes are often identified as disease
causing/target genes. The limitation of discounting rela-
tionships among genes in such studies advocates the need
of new approaches. This study goes beyond differentially
expressed genes and theorizes genes as networks to thor-
oughly comprehend a disease by inferring differential can-
cer co-expression networks.

A differential cancer co-expression network is defined as
a network with co-expression edges that are either observed
only in cancer or in normal samples. Firstly, two indepen-
dent co-expression networks are inferred using the pro-
posed methods from tumor-matched and normal-matched
RNA-Seq samples respectively. Then, a graph comparison
operation is performed to remove all common edges. The
remainder, differential co-expression edges can be ranked
based on the corresponding P-values. According to Figure
2a, in normal samples isoform I1,1 of gene G1 is co-expressed
with isoforms I2,1 and I2,3 of gene G2, and I1,2 of G1 with I2,3
of G2. On the other hand, in cancer samples (Figure 2b), I1,1
of G1 is co-expressed with I2,1 and I2,2 of G2, and I1,2 of G1
with I2,3 of G2. A differential cancer co-expression network
in constructed by removing common edges, I1,1 – I2,1 and
I1,2 – I2,3. Thus the resultant differential network (Figure
2c) has two edges, I1,1 – I2,2 (blue) and I1,1 – I2,3 (red).

RESULTS

The key merit of SpliceNet is in handling large dimensional
data, where the number of exons per gene is large and com-
parable to sample size i.e. when the ratio of number of ex-
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ons per gene to sample size is large. Firstly, to thoroughly
evaluate the performance and stability of SpliceNet, sim-
ulations are performed by varying number of exons (di-
mensions) and samples. The performance of existing R
package, RNASeqNet is also evaluated on the same data.
The results summarized in Table 1 demonstrate the compe-
tence of SpliceNet in abstracting dependencies from exon-
expression (high-dimensional) data. Secondly, SpliceNet
and RNASeqNet are evaluated on cancer-specific ERBB2
and MAPK signaling pathways from KEGG database with
different number of samples. The results summarized in
Figure 3 evince the merit of SpliceNet over RNASeqNet
in handling low sample datasets. Further, to appreciate the
insights of differential cancer networks and their applica-
tions, a detailed work out of SpliceNet on Bcl-x and EGFR
centered network is illustrated (Figures 4 and 5). Differen-
tial edges inferred by SpliceNet converged to cancer-specific
splice variants reported in literature. Finally, to demonstrate
the practical pertinence, performance of SpliceNet is also
evaluated on real RNA-Seq data from three different tis-
sues viz. lung, kidney and liver, alongside RNASeqNet. The
F-scores reported in Table 4 demonstrate a significantly en-
hanced performance of SpliceNet over RNASeqNet.

Simulation study
Simulations are performed by varying number of exons per
gene (dimensions) and samples to analyze the influence of
the same on the performance of SpliceNet. For gene pair
G1–G2, number of exons are set to 5-5 (low), 20-20 (high)
and 20-5 (high-low), and number of sample to 25, 50, 75
and 100 i.e. in total there are 12 experimental setups. For
every setup, 100 000 replications are performed at 5% signif-
icance level i.e. a dependency is considered statistically sig-
nificant if the P-value is ≤0.05. For independent gene pair
(no co-expression), random sample Z = (Z1 Z2)T is drawn
from population following multivariate normal distribution
N(0,I) of sample size n, where Zi = (zi1, . . . , zi pi )

T, i = 1,2
and p is the number of exons. For dependent gene pairs (co-
expressed), sample X = (X1 X2)T is drawn such that

Xi = Zi + c0 Zpi
m , i = 1, 2;

Zpi
m =

{
Zpi

1 = (z11, . . . , z1pi )
T, p1 ≥ p2,

Zpi
2 = (z21, . . . , z2pi )

T, p1 < p2.
(10)

where c0 is a constant that is inversely proportional to the
distance between null and alternative hypothesis. The per-
formance and stability of SpliceNet is demonstrated by sim-
ulating each experimental setup with three different c0 val-
ues, 0.2, 0.4 and 0.6. A measure of accuracy, F-score (30)
is reported for each experimental setting in Table 1. The
F-score measures the trade-off between precision p and re-
call r.

F = 2 × p × r
p + r

(11)

p = true posi tives
true posi tives + f alse posi tives

;

r = true posi tives
true posi tives + f alse negatives

From Table 1, firstly it can be observed that the perfor-
mance of RNASeqNet significantly dropped with the in-
crease in noise (inversely proportional to c0). In contrast the
performance of SpliceNet is extremely stable between c0 val-
ues 0.6 and 0.4, and adequately stable between 0.4 and 0.2.
The overall performance drop of SpliceNet is <10%, veri-
fying the stability of SpliceNet. Secondly, number of exons
and sample size are also found to influence the performance
of respective methods. A general trend of increasing perfor-
mance is observed as the sample size increases from 25 to
100 for both RNASeqNet and SpliceNet. However, the per-
formance of SpliceNet is quite significant when compared
to RNASeqNet even with smaller sample size and stabi-
lizes quickly (at sample size 50 in the current experimental
setup). This demonstrates the suitability of SpliceNet even
to smaller datasets, which is a major bottleneck for the cur-
rent methods. Efficiently handling smaller sample size is one
of the prime requirements of any analytical tool in biologi-
cal domain, as it is not always practical to have large num-
ber of samples of a specific cancer/disease/condition, small
number of available tumor and normal matched RNA-Seq
samples support this argument. The F-scores of SpliceNet
on different exon combinations 5-5 (low), 20-20 (high) and
20-5 (high-low) are quite comparable, with maximum at 5-
5 followed by 20-20 and 20-5. This suggests the merit of
SpliceNet in handling genes with both small and large num-
ber of exons. It is important to note that SpliceNet has ef-
fectively handled high dimensional cases (20-20), especially
when the total number of exons (40) is greater than the sam-
ple size (25). In contrast, RNASeqNet failed to make any
inferences when total number of exons is greater than sam-
ple size (marked by superscript a in Table 1). In addition,
the performance of RNASeqNet on 20-5 exon combina-
tion dropped sharply (marked by superscript b in Table 1)
and was shadowed by a slow increase (at c0 values 0.2 and
0.4) as the sample size increased from 25 to 100. This phe-
nomenon suggests the influence of dimensions to sample
size ratio than just the sample size on the performance of
CCA based RNASeqNet. In contrast, an increasing trend
of performance is observed for other combinations (5-5 and
20-20). It is speculated that a square matrix structure, when
the sample size (25) is exactly equal to the total number of
exons (20 + 5) is relatively important than sample size for
RNASeqNet. To validate this speculation, RNASeqNet is
evaluated on a second simulated dataset representing the
conditions described above with medium noise level (c0 =
0.4), and the results are summarized in Table 2.

The performance of RNASeqNet (Table 2) dropped
sharply first and then increased slowly, as the sample size
increased. This supports the suspicion on the relative im-
portance of dimensions to sample size ratio (square matrix
structure) over sample size. However, it is not valid at low
noise level (c0 = 0.6), raising consistency concerns on the
performance of CCA. Over all, it is evident from Table 1
that SpliceNet outperformed RNASeqNet in all the experi-
mental setups. Precision of SpliceNet is slightly better than
recall when the sample size is small. However, they are al-
most equivalent when the sample size is moderated to large
(see the Supplementary Data). The stability of SpliceNet at
different noise levels and consistency with varying exon to
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Table 1. F-scores of SpliceNet and RNASeqNet on simulated data with varying number of exons (dimensions), sample size and c0 (inverse noise level)
values

c0 Gene pair Number of samples

G 1 G 2 25 50 75 100

RNASeqNet SpliceNet RNASeqNet SpliceNet RNASeqNet SpliceNet RNASeqNet SpliceNet

0.2 5 5 0.132 0.684 0.258 0.713 0.393 0.744 0.525 0.769
20 20 NaNa 0.671 0.174 0.696 0.319 0.731 0.491 0.763
20 5 0.575b 0.668 0.116 0.682 0.177 0.697 0.272 0.715

0.4 5 5 0.416 0.748 0.657 0.791 0.677 0.795 0.677 0.794
20 20 NaNa 0.685 0.582 0.786 0.675 0.793 0.678 0.795
20 5 0.572b 0.676 0.420 0.749 0.620 0.786 0.665 0.793

0.6 5 5 0.652 0.782 0.675 0.793 0.677 0.795 0.68 0.795
20 20 NaNa 0.702 0.681 0.795 0.678 0.790 0.679 0.793
20 5 0.580 0.694 0.654 0.791 0.676 0.796 0.679 0.794

aTotal number of exons is greater than sample size.
bPerformance drop of RNASeqNet.

Table 2. Performance of RNASeqNet on simulated data II showing the relative importance of dimensions to sample size ratio over sample size

G1 G2 F-score/number of samples

5 5 0.55/10 0.09/20 0.14/30 0.20/40
10 10 0.57/20 0.11/30 0.17/40 0.23/50
15 15 0.57/30 0.14/40 0.19/50 0.27/60

sample size ratios makes it best suitable for practical appli-
cations when compared to RNASeqNet.

Evaluation on cancer-specific ERBB2 and MAPK signaling
pathways

To draw a parallel, SpliceNet is evaluated on the same non-
small cell lung cancer-specific pathway used by RNASe-
qNet (18). Cancer-specific ERBB2 and MAPK signaling
pathways are downloaded from KEGG database. Firstly,
a total of 45 LUSC matched samples are used to infer the
edges and the results are summarized in Figure 3a. Shown in
black are the true edges that are also inferred by SpliceNet
and shown in red are the true edges that are inferred by both
SpliceNet and RNASeqNet. It can be observed from Fig-
ure 3a that RNASeqNet inferred only four edges using 45
samples in contrast to what is observed using 225 samples
(18). On the other hand, SpliceNet recovered all the true
edges. Next, the sub network that is inferred by RNASe-
qNet with 45 samples (red edges in Figure 3a) is re-inferred,
but with a reduced sample size 30 and the results are shown
in Figure 3b. As the total number of exons (dimensions) of
any two genes is greater than the sample size (30), RNASe-
qNet failed to infer any edge (see the Supplementary Data).
In contrast, the performance of SpliceNet is least affected.
Over all, Figure 3a and b evince the merit of SpliceNet
over RNASeqNet in handling high exon to sample size ratio
(smaller sample size) datasets.

Isoform-specific differential cancer networks from non-small
cell lung adenocarcinoma (LUAD) samples

To comprehend the advantages and the applications of
isoform-specific Differential Cancer Networks, a detailed
work out of SpliceNet on Bcl-x and EGFR centered net-
work is demonstrated here. Bcl-x gene is well established

Figure 3. (a) Inferred non-small cell lung cancer pathway using the
SpliceNet and RNASeqNet. (b) Re-inferred ERBB2 signaling pathway,
but with a reduced sample size.

to be involved in majority of non-small cell lung cancers
(31). It has two splice variants Bcl-xL and Bcl-xS with anti-
apoptotic and pro-apoptotic functions respectively (32).
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Figure 4. (a) Gene level dependencies from normal and cancer samples.
(b) Differential network with isoform resolution, of the same. Shown
in black are the dependencies observed in both cancer and normal
samples, in red are the dependencies lost and in blue are the depen-
dencies gained in cancer samples when compared to normal samples.
(c) Dependencies inferred by RNASeqNet from cancer and (d) nor-
mal samples. CFLAR isoforms: 1-NM 001202519, 2-NM 001202515, 3-
NM 001127183, 4-NM 001127184, 5-NM 003879, 6-NM 001202518, 7-
NM 001202516 and 8-NM 001202517.

Figure 5. (a) Gene level dependencies from normal and cancer samples. (b)
Differential edges of the same.

Dependence of Bcl-x on SIVA1 and CFLAR genes are in-
vestigated in both cancer and normal samples and respec-
tive networks are shown in Figure 4. Proteins encoded by
SIVA1 and CFLAR play an important role in apoptosis cy-
cle (tumorigenesis) and are reported to be interacting with
Bcl-x (33,34). It can be observed from Figure 4a that there
is no difference between the networks derived from cancer
and normal samples, and is difficult to explain tumorige-
nesis. Hence it is imperative to investigate isoform interac-
tions to decode the underlying tumorigenic molecular in-
teractions. SpliceNet offers intuitive conclusions in under-

standing the role of molecular interactions in various bio-
logical phenomena, here LUAD. Figure 4a shows the differ-
ential network with isoform resolution, of the same. The dif-
ferential edge (red) between Bcl-xL and SIVA1-NM 006427
hints at role of Bcl-xL in cancer. The role of Bcl-xL can also
be inferred by relative isoform expressions. However, the
mechanism still remains an unsolved puzzle. The inferred
differential edge suggests a possible loss of dependency (in-
teraction) between Bcl-xL and SIVA1-NM 006427, which
is in agreement with literature. SIVA1 binds to Bcl-xL to
inhibit its anti-apoptotic function (33). Thus in cancer sam-
ples the corresponding dependency is lost. The dependency
here indicates co-expression including molecular interac-
tion. CFLAR can act as a critical link between cell death
and survival pathways in mammalian cells. Both the iso-
forms of Bcl-x have differential edges to the isoforms 5 and 7
of CFLAR. Additionally, Bcl-xL also has differential edges
to CFLAR 1 and 8 indicating their relative importance in
lung tumorigenesis. However, CFLAR isoform functional
differences are still unclear and such inferences needs to be
experimentally validated. On the other hand, RNASeqNet
recovered only intra gene dependencies from both cancer
and normal samples (Figure 4c and 4d). Only a possible
role of CFLAR isoforms in cancer can be inferred from
this, which can also be concluded from a simple differential
expression study. Detailed isoform dependencies in normal
and cancer samples respectively are given in the Supplemen-
tary Data

Another small network including EGFR (four isoforms)
and two other well-established cancer related genes viz.
CD44 (35), eight isoforms and CEACAM1 (36), 6 iso-
forms, is studied at both gene and isoform levels. The re-
sults are summarized in Figure 5. Both CD44 and CEA-
CAM1 are reported to have interactions with EGFR in
STRING database (37) with experimental evidence. It can
be observed from Figure 5a that there is no difference in de-
pendencies inferred from normal samples and cancer sam-
ples i.e. the genes EGFR, CD44 and CEACAM1 are co-
expressed in both cancer and normal samples and does
not give any insights into respective tumorigenic mech-
anisms. On the other hand, isoform-specific dependen-
cies (Figure 5b) revealed cancer associated isoforms of
EGFR. Out of the four isoforms of EGFR, NM 201283
and NM 201284 have edges only in cancer samples (Fig-
ure 5b and Supplementary Data) suggesting their impor-
tance in tumorigenesis when compared to other two iso-
forms. EGFR variant 3, NM 201283 is reported to be
strongly associated to lung cancer by several studies (38–
40). Exploring NM 201283’s differential edges, critical iso-
forms of other genes can also be inferred. CD44 variant,
NM 001001390 and CEACAM1 variant, NM 000610 are
found to be linked to NM 201283 of EGFR, in cancer sam-
ples and are also in reported to be critical in non-small cell
lung cancers (41,42). The same are also differentially linked
to NM 201284 of EGFR in agreement with the earlier ob-
servation (NM 201283 and NM 201284 have edges only in
cancer samples). Detailed isoform-specific differential de-
pendencies of EGFR centered network are given in the Sup-
plementary Data.
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Table 3. Correlation between different tissue types with respect to overall
gene expressions from Human BodyMap 2.0

Tissue Kidney Liver Lung

Adipose 0.826 0.563 0.235
Blood 0.267 0.240 0.502
Brain 0.764 0.530 0.173
Breast 0.834 0.579 0.328
Colon 0.897 0.581 0.251
Heart 0.789 0.570 0.121
Kidney 1.000 0.624 0.180
Liver 0.624 1.000 0.216
Lung 0.180 0.216 1.000
Lymph 0.047 0.136 0.905
Ovary 0.518 0.463 0.521
Prostate 0.525 0.409 0.353
Skeletal
muscle

0.808 0.643 0.117

Testes 0.788 0.495 0.171
Thyroid 0.679 0.527 0.222

Table 4. Gene level evaluation of SpliceNet and RNASeqNet on real
RNA-Seq samples from lung, kidney and liver tissues

Tissue SpliceNet RNASeqNet

Lung 0.76 0.64
Liver 0.69 0.62
Kidney 0.73 0.66

Gene level evaluation of inferred co-expressions from RNA-
Seq data
To demonstrate the practical applicability, SpliceNet is also
evaluated on real RNA-Seq data from three different tissues
viz., lung, kidney and liver. Only normal-matched RNA-
Seq samples are used for the following evaluation. A to-
tal of 49 lung adenocarcinoma (LUAD), 50 LIHC and 72
KIRC samples are downloaded from TCGA data portal.
Due to the lack of adequate experimental evidence for iso-
form co-expression networks, evaluation is performed at
gene level. Firstly, tissue-specific gene lists and gene expres-
sions are downloaded from tissue-specific gene expression
and regulation, TiGER database (25), and Ensembl’s Hu-
man BodyMap 2.0 (26) respectively. From the extracted
tissue-specific gene lists, 100 gene pairs belonging to the
same tissue are labeled as positive pairs i.e. co-expressed
and another 100 gene pairs belonging to different tissues
are labeled as negative pairs (no co-expression). Despite of
using tissue-specific genes, a small fraction of negative gene
pairs (from different tissues) may be co-expressed. This is
because, the gene lists from TiGER database are not true
tissue-specific genes, but significantly expressed in a spe-
cific tissue. To avoid any such correlated pairs in negative
dataset, tissues for compiling the negative pairs are chosen
such that the overall gene expression correlation between
them is the least. This ensures the heterogeneity between
tissues and there by minimizes correlated pairs in nega-
tive dataset. Comprehensive gene expressions for each tis-
sue type are collected from Ensembl’s Human BodyMap
2.0 and respective correlations are computed (Table 3). It
can be observed from Table 3 that skeletal muscle, lymph
and lung are least correlated with lung, liver and kidney,
and thus used to compile negative datasets respectively. Ac-
cordingly, three sets of positive and negative datasets are

extracted for lung, kidney and liver tissues. These labeled
gene pairs are used as a benchmark to validate SpliceNet.
To draw parallel, RNASeqNet is also evaluated on the same
datasets. The F-scores reported in Table 4 evince a signif-
icantly enhanced performance of SpliceNet over RNASe-
qNet. Higher precision is observed for SpliceNet (see the
Supplementary Data). Tissue-specific gene lists and gene
expressions can be downloaded from TiGER database (25)
and Ensembl’s Human BodyMap 2.0 (26), respectively.

DISCUSSION

Network inference is the first step towards understand-
ing any complex biological phenomenon (3,43,44). The
dynamic interplay of genes and their splice variants can
help us to comprehend fundamental mechanisms in various
biological abnormalities including cancer. Conventionally,
microarrays are used to quantify gene expressions. How-
ever, it is challenging to account whole transcriptome using
microarrays. Recent high-throughput RNA-Seq has made
splice variant profiling practical. Recent studies demon-
strated the use of RNA-Seq data in constructing gene net-
works. However, the merit of RNA-Seq in quantifying splic-
ing isoforms is not explored in inferring isoform-specific
networks. Moreover, previous studies are designed under
the assumption that the number of dimensions is small
while the sample size tends to infinity. This advocates the
need of more robust methods investigating RNA-Seq data.

This study demonstrates a novel method to infer isoform-
specific co-expression networks from exon-level RNA-Seq
data using LDT. The proposed method, SpliceNet abstracts
expressions of genes as multivariate random variables with
different number of dimensions (exons) and tests the corre-
sponding dependencies by approximating an empirical dis-
tribution. Isoform-specific exon expressions are computed
from sample-wise isoform expression data, which was esti-
mated by TCGA project team using RSEM algorithm (45).
However, RSEM estimates may not be always accurate. In
simulation study, existing method RNASeqNet (based on
CCA) failed to make any inferences when total number of
exons per gene (dimensions) is greater than sample size. In
contrast, SpliceNet performed well suggesting its merit in
handling genes/isoforms with both small and large num-
ber of exons, especially when the total number of exons is
greater than the sample size. In addition, SpliceNet has an
appealing property that the edge is determined by hypoth-
esis testing instead of a discretionary threshold. Evaluation
on both simulated and real RNA-Seq data substantiates the
performance of SpliceNet. Recovered edges of lung cancer-
specific ERBB2 and MAPK signaling pathways, with vary-
ing number of samples demonstrate the merit of SpliceNet
over RNASeqNet in handling high exon to sample size
ratio (smaller sample size) datasets. This study goes be-
yond differentially expressed genes and infers network dif-
ferences between normal and diseased samples at isoform
level. Inferred differential cancer networks on well estab-
lished Bcl-x and EGFR centered networks in non-small cell
lung cancer concede with cancer-specific splice variants re-
ported in literature. Differential edge between Bcl-xL and
SIVA1-NM 006427 hints at role of Bcl-xL association with
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SIVA1 in cancer. Thus, provides a more comprehensive pic-
ture to our understanding of the disease. Differential edges
of CD44 variant, NM 001001390 and CEACAM variant,
NM 000610 with EGFR-NM 201283 clues their collective
role in cancer and are also reported to be critical in non-
small cell lung cancers. Although this study demonstrates
the application of SpliceNet to cancer genomic data, it can
be applied to any exon level RNA-Seq data or exon array
data. Furthermore, by computing intra-genic isoform de-
pendencies SpliceNet can also infer isoform mediated auto
regulatory relationships. Networks inferred by SpliceNet
are non-directional. In future, SpliceNet can be extended
to infer directionality by integrating Chip-Seq data (43,44),
and further enhance our understanding of the underlying
molecular mechanisms.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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