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Durable Queries over Historical Time Series
Hao Wang, Yilun Cai, Yin Yang, Shiming Zhang, and Nikos Mamoulis

Abstract—This paper studies the problem of finding objects with durable quality over time in historical time series databases. For

example, a sociologist may be interested in the top 10 web search terms during the period of some historical events; the police may

seek for vehicles that move close to a suspect 70 percent of the time during a certain time period and so on. Durable top-k (DTop-k)

and nearest neighbor (DkNN) queries can be viewed as natural extensions of the standard snapshot top-k and NN queries to

timestamped sequences of values or locations. Although their snapshot counterparts have been studied extensively, to our knowledge,

there is little prior work that addresses this new class of durable queries. Existing methods for DTop-k processing either apply trivial

solutions, or rely on domain-specific properties. Motivated by this, we propose efficient and scalable algorithms for the DTop-k and

DkNN queries, based on novel indexing and query evaluation techniques. Our experiments show that the proposed algorithms

outperform previous and baseline solutions by a wide margin.

Index Terms—Durable query, time series, historical data, spatiotemporal databases

Ç

1 INTRODUCTION

THE top-k query [11], which selects k best objects based on
their ranking scores, is a common approach to obtaining

a small set of desirable objects from a large database.
Recently, top-k search has been extended to databases that
contain multiple versions of data objects, for example, web
archives, trajectory data, time series and so on. Ranked
retrieval in such applications may need to consider not only
an object’s value at one particular time instance, but also its
overall quality during a time period [9], [15], [20].

In this paper, we study in depth the problem of finding
objects of consistent quality during a time interval. We first
study the durable top-k (DTop-k) query that operates on a
historical database where each object is a 1D time series,
i.e., at each time instance, every series carries a single
scalar. Given k, time interval ½tb; teÞ (called the query
window), and percentage 0 < r � 1 (called the durability

threshold), a DTop-k query retrieves objects that appear in
the snapshot top-k sets for at least dr � ðte � tbÞe timestamps
during ½tb; teÞ. Fig. 1a shows an example with four series s1-
s4. Assuming higher scores are preferred, a durable top-2
query with ½tb; teÞ ¼ ½0; 4Þ, r ¼ 70% retrieves s1 and s2, since
they appear in the top-2 set in at least 70 percent
timestamps during ½0; 4Þ.

We also identify a natural extension of the DTop-k query:
the durable k nearest neighbor (DkNN) query, which
considers at each time moment the k nearest neighbors of
a reference series sref . Consider again the example of Fig. 1a,

and the DkNN query with sref ¼ s4, k ¼ 1, ½tb; teÞ ¼ ½0; 4Þ;
r ¼ 70%; i.e., we are interested in the sequences that are the
nearest neighbor of s4 on at least 70 percent of the
timestamps 0-3. The only series that qualifies this query is
s3, since it is the NN of s4 75 percent of the time in ½0; 4Þ. As
we show in the paper, the DkNN query is much more
challenging compared to DTop-k, since the former is rather
resistant to materialization and indexing.

Durable queries are useful in many real-world applica-
tions. For example, consider Google Zeitgeist,1 which
presents weekly statistics of search keywords, each of which
is associated with a time series of its search volumes. A
DTop-k (resp. DkNN) query can be used to identify key-
words that are frequently searched (resp. most related)
during some time period, which may be further used by
sociologists to understand the impact of certain historical
events. A similar application is Twitter Trendsmap,2 which
tracks frequently mentioned phrases and hashtags. In
SciScope,3 a geospatial search engine built upon a wide-area
sensor network, durable queries may be used by meteorol-
ogists to identify regions with consistently high environ-
mental indices in particular time windows. In general,
durable queries may serve as fundamental tools in time
series analysis; domain experts can use their results to better
understand their data and trigger further investigation. We
demonstrate some interesting examples in Section 6.

Durable queries can naturally be extended for multi-
dimensional time series, where at each time moment every
series carries an array of values. For top-k search, to rank
the series at every time instance, we need to define an
aggregate scoring function on the values in the individual
dimensions (e.g., a linear function). For NN queries, we use
a distance measure (e.g., euclidean distance) at each
timestamp between the reference series sref and the
sequences; for example, a police officer may investigate
on vehicles consistently moving close to a pivot,
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for example, a suspect or a witness. Fig. 1b illustrates an
example 2D time series data set containing the positions of
three moving objects s1-s3 at timestamps 0-3. Considering a
DkNN query with k ¼ 1 and a period ½0; 4Þ, object s1 satisfies
the query for r � 75%, since it is the snapshot NN of sref for
timestamps 1-3.

To our knowledge, currently there is a very narrow
selection of solutions for the DTop-k query, and no previous
work on the DkNN query. The only existing solutions for
DTop-k (reviewed in Section 2) employ either brute-force
search, or techniques that are limited to specific domains.
To fill this gap, we propose an efficient method called top-k
event scanning (TES). TES exploits the fact that real-world
time series typically exhibit a certain degree of smoothness,
meaning that the changes in the top-k set at adjacent
timestamps are usually small, if at all. TES indexes these
changes and incrementally computes the snapshot top-k
sets at each timestamp of the query window. To efficiently
support DkNN queries on 1D time series, we extend the
methodology of TES, and propose an efficient solution,
query space indexing (QSI), that indexes the query space.
Going one step further, we extend QSI to handle multi-
dimensional top-k and k-NN queries. Extensive experi-
ments using real and synthetic data confirm that the
proposed methods significantly outperform previous ones,
often by large margins. In the following, Section 2 surveys
related work; Sections 3 and 4 describe the proposed
solutions for DTop-k and DkNN queries on 1D time series,
respectively; Section 5 discusses query processing on
multidimensional series; Section 6 evaluates the proposed
methods experimentally; and Section 7 concludes the paper.

2 RELATED WORK

2.1 Consistent and Durable Queries

Lee et al. [15] were the first to study the consistent top-k
query, which is the special case of DTop-k with the
durability threshold r fixed to 100 percent. In the example
of Fig. 1a, a consistent top-2 query with time period ½0; 5Þ
retrieves only object s2. The basic idea of the solution in [15]
(referred to as LHL) is to exhaustively verify every object in
the data set against the query definition. For each object s,
LHL first checks whether s belongs to the top-k set at
timestamp tb. If so, LHL continues to check if s is a top-k
object at tb þ 1; otherwise, it discards s and starts with
another object. The process continues, until either s is
eliminated, or after checking the rank of s at every
timestamp in the query window. To accelerate snapshot
top-k membership checking, LHL precomputes the rank of
each object at every timestamp, and organizes this

information into a sorted list, stored on disk in a
compressed format. For instance, in Fig. 1a, LHL associates
the list ð1; 2; 2; 3; 3Þ to object s1, signifying that s1 ranks first
at timestamp 0, second at time 1-2, and third at time 3-4.
During query processing, LHL scans the rank list of an
object linearly from tb, until reaching either te or a value
larger than k.

LHL does not support DTop-k queries with r < 100%. To
handle such cases, we extend LHL as follows: For each
object s, we scan the part of its rank list from timestamp tb to
te, and count the number of times that s is in the snapshot
top-k sets. During the scan, if we find that s is outside the
top-k set for more than ð1� rÞ � ðte � tbÞ timestamps, we
drop s since it cannot possibly reach the durability thresh-
old r. The set of objects that pass the verification are
reported as results. The main drawback of LHL is that it
scales poorly with the number of objects, as each object
initiates a list scan with at least one I/O read.

U et al. [20] studied durable top-k queries in the context
of keyword search in web archives, where each object is a
web document that gets edited or replaced over time. In
addition to the parameters k, ½tb; teÞ, and r, a durable query
in [20] also involves a keyword list Kw. The score of a
document version is calculated based on its relevance to the
keywords in Kw with an IR model. There are important
differences between our work and [20]. First, computing the
relevance of a document to an arbitrary Kw is both hard and
expensive. Therefore, preprocessing methods cannot be
used to accelerate search, as in [15] and in our work.
Second, the data domain, i.e., versional documents, is quite
special: the relevance of keywords to documents remains
relatively constant in adjacent timestamps. When this
assumption does not hold, for example, if all objects change
values at every timestamp, as in Fig. 1a, the methods in [20]
reduce to brute-force search. Hence, the solutions in [20]
are tailored to a specific domain, and are not suitable for
DTop-k queries in the general case.

2.2 Other Related Temporal Queries

Numerous solutions (e.g., [1], [8], [14]) have been proposed
for indexing time series to support similarity search. Such
queries retrieve time series that are closest to a reference
series, according to a certain distance measure. Two
popular distance measures are 1) the euclidean distance
in the space defined by considering each time instance as a
dimension and 2) dynamic time warping (DTW) [14], which
improves robustness over the euclidean distance by
allowing mapping of shifted sequence elements. The
Gemini framework [8] addresses the dimensionality curse
in time-series indexing and search using dimensionality
reduction; popular methods in this direction include
Chebyshev polynomials [2], piecewise linear approxima-
tion [5], APCA [3] and so on. These methods do not apply
to durable queries, as they focus on an object’s overall
similarity to a query, rather than their properties at
individual timestamps.

There is also a vast amount of existing work in indexing
and searching trajectories, where each record contains the
locations of a moving object at different timestamps.
TrajStore [6] is a full-featured storage engine for trajectories
using adaptive quad-tree indices. Sherkat and Rafiei [18]
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propose a new class of robust summaries for high-
dimensional time series. Chen et al. [4] propose a new
distance measure for multidimensional time series, as well
as the corresponding indexing and searching methods.
Another line of work focuses on spatiotemporal queries on
moving objects trajectories. Yu et al. [22] propose efficient
methods for continuous nearest neighbor search, which
continuously updates the nearest neighbor of a query as
objects update their locations. Güting et al. [9] study a
similar problem, termed TCkNN, but focus on retrieving the
nearest neighbors during a historical period rather than the
current ones. Specifically, a TCkNN query finds, at each
timestamp during the given period, the NN of a reference
trajectory. The technical focus in [9] is to organize
trajectories into an R-tree-like structure [10], and then take
advantage of some pruning heuristics.

Compared to similarity queries, there is little work on top-
k queries for time series data, despite the importance of such
queries. Although it is possible to simulate a top-k query by a
k-NN query with an imaginary reference time series that has
the largest domain value at each time moment, such a
reduction is often “far from satisfactory” [16]; methods
designed for similarity search do not capture well the unique
properties of top-k search. Li et al. [16] conducted a thorough
study on the evaluation of snapshot top-k queries (i.e., find
the top-k objects at a given timestamp) on continuous time
series with a piecewise linear representation. The focus of
[16] is clearly different from ours, both in terms of the query
nature and the data model used.

Jestes et al. [12] study aggregate top-k queries on temporal
data with a piecewise linear representation. The goal is to
find the top-k objects with the highest aggregation scores
(e.g., average, sum, etc.) in a given time interval. The focus
and the data model of [12] are clearly different from ours,
and their solutions do not apply to durable queries. Another
piece of related work is the interval skyline query [13]. An
object si dominates another sj, if an only if si is better than sj
in at least one timestamp, and no worse in all other
timestamps. The set of objects that are not dominated is then
reported as the interval skyline. The interval skyline and the
durable top-k, however, retrieve very different results. The
former’s result set includes objects with high values in a
small number of timestamps, whereas the latter identifies
objects with durable quality. For instance, in Fig. 1a, s1 is on
the interval skyline as long as the query window contains
timestamp 0 (where s1 is the best object), regardless of its
scores in other time instances. Consequently, the solutions
of [13] are inapplicable to our problems. The probabilistic
top-k query [17], which finds objects with high probability
to be in the top-k set, is also remotely related to this work,
since one can view each timestamp as a possible world, and
calculate the probability for each object. On the other hand,
the focus of [17] is clearly different from ours, and their
methods do not apply to durable queries.

Finally, recent-biased time series (i.e., recent timestamps
are assigned higher weights than older ones) have been
studied in the context of online analysis of streaming data.
The focus of this work is different, however, since we focus
on offline queries over historical data. For instance, in the
various application scenarios mentioned in Section 1, it is

generally more natural to consider timestamps within the
query window as equally important, than giving higher
weights to more recent time instances. For this reason, in
the following, we focus on the equal-weight time series
model, as is done in many existing work involving
historical data, for example, [12], [13], [15]. Possible
extensions of the proposed algorithms to handle recent-
based time series is discussed in Section 7.

3 DURABLE TOP-kk PROCESSING

This section focuses on DTop-k processing in settings where
each object s is associated with a single value (i.e., its score)
at each timestamp t. In other words, the top-k scores of the
objects at all timestamps are known before query time. In
practice, the value of k is usually only a fraction of the total
number of objects in the database [11]. Hence, we use kmax

to denote the largest supported value of k in the target
application. For the ease of presentation, we assume that all
series in the data set are sufficiently long to cover the query
window, i.e., each of them has a value at every timestamp
during ½tb; teÞ. If a series starts after tb or terminates before
te, we simply put a (conceptual) value of �1 on each of its
undefined timestamps. Meanwhile, we use �min ¼ dr � ðte �
tbÞe to denote the minimum number of timestamps for
which an object should satisfy the corresponding snapshot
top-k query to appear in the DTop-k results.

Besides LHL [15] described in Section 2.1, another naı̈ve
solution (referred to as NAI) for the DTop-k query is to
compute the snapshot top-k results at every timestamp, and
report the objects that appear in no less than �min snapshot
top-k sets. Clearly, this technique has a high cost when the
query window is long. In the following, we present a novel
solution TES that significantly outperforms both LHL and
NAI. Section 3.1 describes the general framework of TES.
Sections 3.2 and 3.3 present methods for storing and
retrieving the differences of the top-k sets along a time
interval. Section 3.4 discusses the general applicability of
TES to any query that aggregates top-k results from
multiple consecutive timestamps. Table 1 summarizes
common symbols used throughout this section.

3.1 General Framework of TES

In many applications, due to time series continuity, the
relative ranks of an object at consecutive timestamps tend to
be stable. Accordingly, the top-k set may not change at
every time instance; when it indeed changes, the differences
between the old and new top-k sets are usually small. For
instance, in Fig. 1a, the top-2 set remains the same at the
first three timestamps, and changes only partially later.
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Thus, it is unnecessary to compute the snapshot top-k

results from scratch at each timestamp. TES builds on this

observation; Algorithm 1 shows its general framework. The

basic idea of TES is to 1) compute the top-k set at timestamp

tb; 2) find the next timestamp t0 > tb where the top-k set

changes and update it; and 3) repeat step 2 until t0 > te.

Algorithm 1. Top-k Event Scanning (TES).

TESðqÞ
// Input: q ¼ fk; ½tb; teÞ; rg is the durable top-k query

1: �min  r � ðte � tbÞd e; t tb, CS  ;, RS  ;
2: while t < te do

3: Retrieve from disk the snapshot top-k set S�t at

time t

4: Find the next timestamp t0 (t < t0 < te) where

S�t0 6¼ S�t ; if no such t0 exists, t0  te
5: for each object s 2 S�t do

6: if s 62 CS [RS and t � te ��min then

7: Add s to CS with �s ¼ t0 � t
8: else if s 2 CS then add t0 � t to �s

9: if �s � �min then

10: Delete s from CS and add s to RS

11: if t > te ��min then

12: Remove from CS every object s satisfying

�s < �min � te þ t0
13: if CS ¼ ; then break

14: t t0

15: return RS

While the top-k set is being updated, the durability of the

objects found in the set are also updated and the objects that

make it to the top-k durable result are output. The

durability �s of an object s is defined by the number of

timestamps in ½tb; teÞ for which the object is in the top-k.

Two sets of objects are maintained during the algorithm; a

set CS of candidate objects that are not yet confirmed to be

durable top-k results and a set RS of confirmed results.

Whenever an object s is found for the first time in the top-k

set, s is moved to CS if it is possible for s to make it to the

top-k result, based on the number of remaining timestamps

until te (line 7). As soon as a candidate object is found at

least �min times in the top-k set, it is moved to RS (line 10).

If there are not enough timestamps for new objects to make
it in the result and CS is empty, the algorithm terminates,
before having to reach te (line 13).

Example. Consider the data in Fig. 2 and a DTop-3 query q
with ½tb; teÞ ¼ ½0; 7Þ, and durability threshold r ¼ 70%,
meaning that a result object must be in the top-k set for at
least �min ¼ 5 timestamps. The steps of the algorithm are
illustrated at the bottom of the figure. Initially, TES
computes the top-k set S�tb at time tb ¼ 0, adds fs1; s2; s3g
to CS, and sets t ¼ tb. The next timestamp � t that the
snapshot top-k set changes is t0 ¼ 2. Thus, TES increases
the durability counters of all objects in the previous top-k
set (i.e., fs1; s2; s3g) by t0 � t ¼ 2. It also updates t to 2 and
the top-k set to S�t ¼ fs1; s2; s4g. In the next iteration, t0 ¼
5 is found and the durabilities of S�t ¼ fs1; s2; s4g are
increased by t0 � t ¼ 3. Since counters �1 and �2 reach
�min ¼ 5, s1 and s2 are confirmed results, and moved to
RS. Meanwhile, candidate s3 is purged from CS, since it
cannot meet the five timestamps durability threshold,
even if it is a top-k object in all remaining time instances
(i.e., 5-6). In the third iteration, the only candidate s4 is
promoted to RS, leaving CS empty. Now, there are only
two timestamps left, insufficient for any new top-k object
(e.g., s5) to reach the durability threshold �min ¼ 5.
Hence, TES terminates reporting fs1; s2; s4g.

In the above example, TES only computes the top-k
result at two timestamps (2 and 5) at which the snapshot
top-k set changes, and applies two updates to the top-k set
(s4 replacing s3 at time 2 and s5 replacing s4 at time 5).
Furthermore, the algorithm stops early, before reaching te.

Clearly, the most expensive modules in the TES frame-
work are computing the snapshot top-k sets and finding the
next timestamp. Since the data are historical, the overall
query cost can be alleviated by 1) precomputing the
snapshot top-k sets at every timestamp and 2) indexing
the timestamps where the top-k set changes. Compared to a
naı̈ve algorithm that re-computes the top-k results at each
timestamp, TES clearly performs considerably fewer opera-
tions. The overall efficiency of TES, however, depends upon
the implementation of the module that finds the next
change of the top-k set. In the next sections, we discuss
appropriate implementations for this module.

3.2 TES�
We first describe an intuitive implementation of TES,
namely TES�. The main idea is, for all possible values of k, to
directly materialize the changes between consecutive top-k
sets. For instance, in Fig. 2, changes to the top-3 set are: 1) s4

replaces s3 at timestamp 2, 2) s5 replaces s1 at time 5, and
3) s3 replaces s5 at time 6. Assuming that kmax ¼ 4, Table 2
lists, for all k � kmax the changes occurring between adjacent
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snapshot top-k sets; for example, 2ðþs4;�s3Þ means that at
timestamp 2, s4 enters the top-3 set, and s3 leaves. Although
in this particular example, at each timestamp, at most one
object enters or leaves any top-k set, multiple changes may
happen to a top-k set in the general case.

TES� materializes the entire table that encodes the
changes for each k along the timeline (e.g., Table 2); each
row of the table is packed into disk blocks, stored in a
separate file, and indexed with a Bþ-tree with time as the
key. Given a DTop-k query, the top-k set for t ¼ tb is first
retrieved from disk. Then, TES� searches the Bþ-tree
corresponding to the k-value of the query and finds the
entry with the smallest timestamp t0 > t. All timestamps
between t and t0 are skipped, and the new top-k set S�t0 at t0

is computed by updating the previous top-k result S�t with
the retrieved changes. For example, for a query with k ¼ 3,
tb ¼ 0, and te ¼ 6, after the top-3 set fs1; s2; s3g is found at
tb ¼ 0, the Bþ-tree of the third row is searched for the first
entry with timestamp >0; that is entry 2(þs4, �s3). This
entry implies that the top-3 set becomes fs1; s2; s4g at t0 ¼ 2.
By linearly scanning the entries while t0 < te, TES� retrieves
all changes in the top-k set during the query interval.

Performance analysis. The efficiency of TES� depends on
the volatility of the data set. Let � � k � ðte � tbÞ be the total
number of times that any object enters or exits the top-k set
during the query window, the total I/O cost of TES� is
OðlogB T þ �

BÞ, where B is the size of a disk block. In the
worst case, the entire top-k set changes at every timestamp
and TES� reduces to the naı̈ve algorithm. Such cases are
rare; TES� usually answers a DTop-k query with a
significantly lower cost. The main drawback of TES�,
however, is that it imposes high storage overhead, because
rank changes of objects are replicated across multiple rows
of the table. In our example, the fact that s1 moves from
rank 1 to rank 3 at timestamp 4 is reflected in two entries
timestamped 4: one in the first row and one in the second
row, because s1 exits the top-1 and top-2 sets at the same
time. Due to this replication, in the worst case, the space
complexity of TES� reaches Oðk2

max � T=BÞ. We address this
issue in a more sophisticated implementation of TES,
presented next.

3.3 TES�
TES� aims at achieving similar query performance as
TES� with much lower space requirements. The main idea
is to compress the changes in the snapshot top-k sets using
a novel interval representation for rank changes. As
discussed above, at any timestamp t, objects may enter
or exit multiple top-k sets for different values of k; these k
values form a continuous range, which we call a rank-
change interval. In Fig. 2, at timestamp 4, s1 leaves both the
top-1 and top-2 sets. Instead of replicating these changes to
two rows (as done by TES� in Table 2), TES� represents
this event with a tuple �s1; ½1; 3Þh i, which signifies that s1

leaves all top-k sets for k 2 ½1; 3Þ. Such a representation
saves significant space for long rank-change intervals.

Fig. 3 (left side) illustrates a more complex example
involving eight objects s1-s8, and three timestamps 0-2, with
kmax ¼ 8; different markers (e.g., triangles, squares, etc.) are
used for different objects. At timestamp 1, object s4 leaves
the top-4, top-5, and top-6 sets, generating a �s4; ½4; 7Þh i
rank-change interval. At the same time, s8 generates a

þs8; ½6; 8Þh i event. The right side of Fig. 3 presents a tree
structure of 7 nodes storing all rank change events at
timestamps 1 and 2, as 14 rank-change intervals. The
directions of the arrows on the intervals indicate whether
the object enters (up) or leaves (down) the corresponding
top-k sets. For example, the rightmost interval indicates that
s1 leaves the top-3 and top-4 sets at time 2.

To answer a DTop-k query, TES� retrieves all rank-
change intervals that overlap with k during the query
window, ordered by time. Then, from these intervals, TES�
extracts the corresponding objects, and applies the changes
to the previous top-k set. For instance, consider a DTop-3
query spanning the time window of Fig. 3. No interval
corresponding to timestamp 1 intersects with the horizontal
line k ¼ 3, indicating no change to the top-3 set at time 1;
concerning the second timestamp, the two rightmost
intervals overlap with k ¼ 3, signifying that object s1 leaves
and s6 enters the top-3 set.

Next, we clarify how TES� organizes and retrieves rank-
change intervals. The classic data structure for intervals,
which answers stabbing queries efficiently, is the interval
tree [7]. A straightforward implementation of TES� would
be to construct an interval tree for each timestamp t, to
efficiently obtain intervals containing k at each timestamp
t 2 ðtb; teÞ. However, this would require one tree search for
each t 2 ðtb; teÞ, i.e., high I/O cost for long query windows.
Instead, TES� employs a novel data structure, called the
conceptual joint interval tree (CJI-tree). In Fig. 3, the 14
intervals are organized into a CJI-tree with seven nodes N 1-
N 7. Essentially, the CJI-tree consists of seven lists of
intervals, one for each node.

The rank-change intervals are assigned to the CJI-tree
nodes as follows: Each node N i is associated with a value
N i:v; these values define a hierarchical partitioning of the
rank domain, explained soon. A rank-change interval I is
added to the highest tree node N i for which N i:v 2 I. To
insert I to the tree, I is first tested against the root node
N r. If I contains N r:v, then I is stored at N r; otherwise,
if I is to the left (resp. right) of N r:v, I is recursively
tested against the root of the left (resp. right) subtree of
N r. The values associated with the nodes must ensure
that each interval overlaps with at least one of such
values in the entire tree. The CJI-tree is a binary tree with
exactly dlog2 kmaxe levels of nodes, among which the leaf
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nodes are associated with middle points between two
adjacent ranks. In Fig. 3, the leaves N 4-N 7 are assigned
values 1.5, 3.5, 5.5, and 7.5, which are the midpoints of
rank pairs (1, 2), (3, 4), (5, 6), and (7, 8). Values assigned
to internal nodes are the averages of the values for their
corresponding children. Continuing the example, for the
next level N 2 and N 3, N 2:v ¼ ðN 4:vþN 5:vÞ=2 ¼ 2:5, and
N 3:v ¼ ðN 6:vþN 7:vÞ=2 ¼ 6:5. Finally, for the root, N 1:r ¼
ðN 2:vþN 3:vÞ=2 ¼ 4:5. Since a rank-change interval has
length at least one, it must intersect with at least one of
the values in the CJI-tree.

The CJI-tree is stored on disk as follows: A separate file is
created for each node N i of the tree. The intervals of N i are
sorted and grouped by time (recall that each interval
corresponds to the change in the ranking of an object at a
specific timestamp). Each file is indexed by a Bþ-tree using
time as key.

Algorithm 2 shows how the top-k set at a given
timestamp t is incrementally updated using the CJI-tree.
The main idea is to search the tree for nodes that may
contain intervals intersecting with rank k. For each such
node N , TES� finds the partition corresponding to time-
stamp t, and then obtains the set of intervals overlapping k,
as in the traditional interval tree search algorithm [7]. The
top-k set changes corresponding to the retrieved intervals
are applied to the current top-k set (lines 5-8). In our
running example, to compute the top-3 set at timestamp 2,
TES� initializes the top-k set to the previous one fs1; s2; s3g
at time 1, and searches the CJI-tree starting from the root N1.
It then scans the partition for t ¼ 2, and retrieves two
intervals overlapping k that correspond to objects s1 and s6.
Thus, s6 replaces s1 in the current top-k set. After that, TES�
descends the tree to the left child N 2 of N 1. Since N 2 does
not contain a partition for t ¼ 2, TES� continues to N 5,
which is empty. Since N 5 is a leaf, the algorithm stops the
traversal, and returns the current top-k set fs2; s3; s6g.

Algorithm 2. Updating the Top-k Set using the CJI-tree.

Compute Top-kðk; t; S�t�1Þ
// Input: k is the query parameter; t is the current

timestamp; S�t�1 is the snapshot top-k set at

the previous timestamp t� 1

// Output: The snapshot top-k set S�t at t

1: Initialize S�t to S�t�1

2: Use k to calculate the set of nodes, IN, that needs to be

accessed

3: for each node N 2 IN do

4: Retrieve from disk the list of rank-change intervals

residing at N that correspond to t, and overlap

with k

5: for each interval I retrieved in the last step do

6: Let s be the object corresponding to I

7: if s 2 S�t�1 then remove s from S�t
8: else Add s to S�t
9: return S�t

Note that the set of nodes (e.g., N 1, N 2, N 5) correspond-
ing to a specific k (e.g., k ¼ 3) are fixed throughout DTop-k
evaluation. This means that, to evaluate a DTop-k query, we
first use the Bþ-trees of the files corresponding to these
nodes to find the smallest time point >tb in them, and then
scan these linearly and concurrently from these time points.

Cost balancing using �. Although TES� saves storage, it
incurs additional I/O and CPU costs during query
processing for traversing the CJI-tree. To strike a balance
between storage and query response time, we introduce a
parameter �ð� 1Þ into TES�: we store in the CJI-tree only
those rank-change intervals with length at least �, since
intuitively longer intervals lead to higher space savings. In
particular, when � ¼ 2‘ with integer ‘, the CJI-tree only
needs dlog2 kmaxe � ‘ levels to ensure that each interval is
stored at one node. The rest of the rank change information
are directly stored as in TES�. To incrementally compute a
snapshot top-k set, TES� retrieves rank change information
from both the TES� table and the CJI-tree. A smaller value
of � leads to lower storage cost but higher query overhead;
the reverse is also true.

Performance analysis. We first analyze the storage savings
of TES� with � ¼ 1. At each timestamp, in the worst case all
top-k results are different from the previous timestamp,
leading to 2k rank-change intervals. Since each interval is
stored exactly once in the CJI-tree, the space overhead of the
tree is bounded by Oðkmax � T=BÞ, where kmax, T and B are
the maximum supported value for k, total number of
timestamps in the data set, and block size, respectively.
Note that this is significantly lower than the storage cost
Oðk2

max � T=BÞ of TES�. When � > 1, intervals with length
up to � are duplicated for up to � times. Thus, the overall
space complexity of TES� is Oð� � kmax � T=BÞ.

Regarding query processing, the number of CJI-tree
nodes that have to be searched and scanned is
dlog2ðkmax=�Þe. These searches cost Oðlog2ðkmax=�Þ � logB T Þ
due to the use of Bþ-trees. The data (i.e., intervals) that
have to be retrieved from each node depend on the length
of the query window W ¼ te � tb and the number of
objects that enter/exit the top-k set at each timestamp
inside the window. Assuming that the total number of
times any object enters or exits the top-k set during W is
�, the scanning cost is Oð�=BÞ. Thus, the overall I/O cost
for answering a DTop-k query is Oðdlog2ðkmax=�Þe �
logB T þ �=BÞ, which degenerates to TES� when � � kmax.

3.4 Generality of TES

So far we have discussed the case where there is a given
durability threshold r and only objects that pass this
threshold are output. In some applications, it might be
hard for the user to give an appropriate value for r. For such
cases, an alternative is to ask the user to specify the number
m of objects to be retrieves with the highest durability. TES
can be easily adapted to support this version of the DTop-k
query: instead of using the fixed threshold �min for pruning
candidates, we use a floating �min threshold defined by the
mth durable object found so far, which we keep track of
while updating the durabilities of the candidates.

In addition, although we have presented TES in the
context of the DTop-k query, this method can be used to
answer any query that postprocesses all top-k query results
inside a given time interval ½tb; teÞ. For example, a data
analyst might be interested in the objects that enter and exit
the top-k set the maximum number of times during the
query window. In this case, the durability threshold can be
replaced by an instability threshold.
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4 DURABLE kk-NN PROCESSING

This section studies the evaluation of DkNN queries on 1D
time series. Recall from Section 1 that a DkNN query contains
a reference series sref , which has te � tb values, one for each
timestamp in the query window. Hence, there is a vast space
of possible DkNN queries, making effective materialization
much more difficult. A naı̈ve approach (referred to as NAI)
is to simply compute the snapshot k-NN results at every
timestamp, and combine them to answer the DkNN query.
NAI is clearly inefficient, because 1) the k-NN set may not
change at every timestamp and 2) snapshot k-NN computa-
tions are expensive as they cannot be precomputed as in the
DTop-k case. In the following, we describe a novel solution,
namely query space indexing, which indexes the results of all
possible DkNN queries, and stores them compactly.

Fig. 4 illustrates an example with four object values at a
particular timestamp t. Assume that k ¼ 1. Observe that as
long as the value of the reference series sref at time t is above
the bisector of s1 and s2, the snapshot NN of sref at t is
always s1. Meanwhile, s1 cannot possibly be the NN of sref ,
when sref falls below the bisector of s1 and s2. Similarly, the
snapshot NN of sref is s2, if and only if srefðtÞ lies between
the bisector of s1 and s2, and that of s2 and s3. Accordingly,
we split the value domain into four partitions as in Fig. 4a,
using the bisectors of adjacent objects. The snapshot NN of
sref at t can be derived based on the partition where srefðtÞ
lies in. Figs. 4b and 4c show the situations for k ¼ 2 and
k ¼ 3, respectively. Specifically, for k ¼ 2, we partition the
value domain with the bisector of s1=s3 and that of s2=s4; for
k ¼ 3, the split point is the bisector of s1 and s4.

In general, consider N time series s1; s2; . . . ; sN and a
given time t. Without loss of generality, assume that
s1ðtÞ < s2ðtÞ < � � � < sNðtÞ. Moreover, with respect to a given
k, let B0 ¼ �1, Bi ¼ 1

2 ðsiðtÞ þ siþkðtÞÞ for i ¼ 1; 2; . . . ; N � k,
and BN�kþ1 ¼ þ1. Sequence fBig defines a partition of the
value domain ð�1;þ1Þ, �ðtÞ ¼ f�1; �2; . . . ; �N�kþ1g, where
�i ¼ ½Bi�1; BiÞði ¼ 1; 2; . . . ; N � kþ 1Þ. We have the follow-
ing lemma.

Lemma 1. If the reference series sref satisfies srefðtÞ 2 �i, then the
k-NN set of sref at time t is S�t ð�iÞ ¼ fsi; siþ1; . . . ; siþk�1g.

Proof. By definition it is clear that si�1ðtÞ < Bi�1 <
Bi < siþkðtÞ. For any srefðtÞ 2 �i and any j satisfying
i � j � iþ k� 1, let dj denote the distance jsrefðtÞ �
sjðtÞj, then we have dj < minfdi�1; diþkg. Considering
the fact that from si�1ðtÞ to siþkðtÞ there are exactly kþ 2
distinct values, we thus achieve the conclusion: the k-NN
set of sref at time t is indeed S�t ¼ fsi; siþ1; . . . ; siþk�1g. tu

Using Lemma 1, the k-NNs of a reference series sref at
time t can be directly obtained from the corresponding set
S�t ð�iÞ of the interval �i that contains srefðtÞ.

The proposed solution (QSI) materializes the above
partitioning at every timestamp in the data set; for every
possible value of k, the corresponding partitions and
their associated k-NN sets are stored in a file indexed by
a Bþ-tree with time as key. During the processing of a
DkNN query, the snapshot k-NN set at any time t is directly
retrieved from disk based on the value of srefðtÞ, rather than
computed from scratch as in NAI. To further improve
performance, QSI materializes additional information to
avoid unnecessary k-NN retrievals. Specifically, observe
that for each interval �i at t (denoted as �iðtÞ), its k-NNs can
be identical to that of an interval �j in the following
timestamp t0ð>tÞ, i.e., S�t ð�iÞ ¼ S�t0 ð�jÞ. QSI exploits this fact
by linking such partition intervals together into a partition-
time index (PTI), stored on disk along with the partitions.
Fig. 5 exhibits an example where the first interval �1 at time
0 shares the same 2-NN set fs1; s2g with the interval �1 at
timestamps 1 to 3, and the interval �2 at 5. Accordingly, QSI
links these intervals, starting from �1ð0Þ, as shown in the
figure. Similarly, QSI links the interval �2ð0Þ with �1ð6Þ via
�2ð1Þ; �2ð2Þ; �2ð3Þ; �1ð4Þ, and �1ð5Þ, since they have the same
2-NN set fs2; s3g.

QSI performs the following steps to answer a DkNN
query. First, it selects the interval �� that contains the
reference series sref at the first timestamp tb of the query
window, and returns the corresponding k-NNs. Then, the
method skips the subsequent timestamps where the snap-
shot k-NN sets of sref can be derived from previous results,
by following the links. The process continues, until QSI
finishes processing all timestamps in ½tb; teÞ.

Fig. 5 illustrates QSI on an example data set, where
k ¼ 2, ½tb; teÞ ¼ ½0; 7Þ. The symbol “-” (e.g., at timestamps 2
and 3) indicates that the k-NNs of sref are the same as in
the previous linked time instances. At tb ¼ 0, the interval
containing sref is �2, and its corresponding 2-NN set is
fs2; s3g. �2ð0Þ links to �2ð1Þ; �2ð2Þ; �2ð3Þ; �1ð4Þ, �1ð5Þ, and
�1ð6Þ, with the first three actually containing sref .
Therefore, QSI skips timestamps 1 to 3 and starts a new
iteration at timestamp 4. The same applies to the rest of
the query window ½4; 7Þ. The candidates after timestamp 4
are s1, s2, and s3. s3 is immediately reported as a final
result since it already satisfies the durability requirement.
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s1 is no longer a candidate since it cannot possibly reach
the durability threshold. s2 remains a candidate until
being purged at timestamp 6.

Algorithm 3 summarizes the QSI algorithm. At each
iteration, QSI checks the first timestamp t in the current
query time queue � and picks the �iðtÞ which contains sref .
Subsequent timestamps at which there is an interval
containing sref and linked from �iðtÞ are collected into a
set T (lines 4-6). QSI computes the k-NNs of sref at
timestamp t, and removes T from the query time queue
(line 7). If the number of the timestamps together with the
current timestamp satisfies the durability condition
jT j þ 1 � �min, the k-NNs S�t are moved to the result set
RS. Otherwise, all objects in S�t are merged into the
candidate list CS and their counters are updated with jT j þ
1 (lines 8-11). Finally, all candidates are confirmed as final
results (line 12) or purged as non-results (line 13). The
iterations terminate when all query timestamps are pro-
cessed or the candidate set becomes empty.

Algorithm 3. Algorithm QSI for DkNN queries.

QSIðqÞ
// Input: q ¼ fsref ; k; ½tb; teÞ; rg is the durable k-NN
query

1: �min  dr � ðte � tbÞe; CS  ;; RS  ;
2: Initialize the priority query time set � ½tb; teÞ
3: while � 6¼ ; and CS 6¼ ; do

4: t firstð�Þ and remove t from �

5: Retrieve from disk the partition �iðtÞ of sref at

timestamp t

6: T  ft0 2 �jsrefðt0Þ 2 �0iðt0Þ. and �0iðt0Þ is
derivatively linked by �iðtÞg

7: Retrieve from disk the k-NN set S�t for �iðtÞ and

� �� T
8: ifjT j þ 1 � �min then

9: RS  RS [ S�t , and CS  CS � S�t
10: else

11: Add each s 2 S�t into CS with �s increased by

jT j þ 1

12: Add fs 2 CSj�s � �ming into RS

13: Remove fs 2 CSj�s þ j�j < �ming from CS

14: return RS

QSI accelerates DkNN processing in two ways. First,
similar to TES, QSI can skip the retrieval/computation of
snapshot k-NNs, when the reference series stays in the same
linked intervals. Second, QSI operates on a compact
representation of the data, which only keeps the rank list
of the time series IDs, rather than their specific values at
each timestamp. The links between intervals in different
timestamps are kept into a separate index file. Hence, QSI is
expected to be more efficient than NAI, especially when
snapshot k-NNs change infrequently. The main drawback
of QSI, however, is its precomputation cost for building the
PTI for different values of k. Nevertheless, since k in k-NN
queries are typically much smaller compared to top-k
queries, we expect this cost to be bearable.

Performance analysis. The efficiency of QSI depends on
how well the query sref is consistent with the links. At every
timestamp t, OðlogBðN � kÞÞ I/O is required to locate sref

into a certain partition �iðtÞ. Let � � te � tb be the total
number of times that sref deviates from the PTI links within

the query window, then a cost Oð��kB Þ is needed to retrieve
the k-NN sets. Therefore, the overall query cost of QSI is
Oððte � tbÞ � logBðN � kÞ þ ��k

B Þ. In the worst case � ¼ te � tb,
making QSI no better than the naı̈ve solution that retrieves
k-NN set at every timestamp; however, such cases are rare.
As to the storage cost, for each k � kmax, OððN � kÞ � T=BÞ
space is used to store the bisectors. Therefore, the total
storage cost is

Pkmax

k¼1 OððN � kÞ � T=BÞ ¼ Oðkmax � T � ðN �
kmax � 1Þ=BÞ.

5 MULTIDIMENSIONAL QUERIES

QSI (described in Section 4) can be adapted to answer
DkNN queries on multidimensional time series, for exam-
ple, trajectories. In this problem, every data object (and the
reference series) has a multidimensional value at each
timestamp, and the distance between two such values is
given by the euclidean metric. Given a timestamp t, a part
of value space with identical k-NNs at t is an order-k
Voronoi cell [7].

Fig. 6a shows an example 2D durable k-NN query with
three data objects s1-s3, and their corresponding Voronoi
cells, assuming that k ¼ 1. For instance, all possible
positions of sref that fall into the upper cell containing s1

have s1 as their nearest neighbor. Similar to the 1D case, QSI
partitions the value space using a regular grid, whose
granularity � is a user-defined parameter. Given a partition
P and a timestamp t, the k-NNs of P at t can be uniquely
determined, if P is completely contained in a single Voronoi
cell, for example, P1 in the example. In this situation, the PTI
index contains the snapshot k-NNs of P at time t, as well as
the next timestamp t0 > t that k-NN set changes. Otherwise
(e.g., partition P2), QSI marks in the PTI index that the k-NN
set of P as undetermined. The query processing algorithm
is the identical to that of the 1D case (i.e., Algorithm 3).

QSI can also be extended to answer multidimensional
DTop-k queries where the scores of the objects are obtained
by a linear function f as part of the query. Fig. 6b illustrates
a 2D example with four objects s1-s4. Suppose that all
objects have positive values on both dimensions, and that
the score function takes the form f ¼ axþ ð1� aÞy;
0 � a � 1. The space for all possible ranking functions can
be represented by the line xþ y ¼ 1, on which each point p
represents the score function that intersects xþ y ¼ 1 on p.
Different portions of the line segment xþ y ¼ 1, 0 � x � 1
correspond to score functions with different top-k results
[21]. For instance, the parts of the line that correspond to s1,
s2, s3 as the top-1 result are shown in Fig. 6b. QSI splits the
line segment xþ y ¼ 1 into a user-defined number � of
partitions, each of which may have a deterministic top-k set
(e.g., P1, whose top-1 is s2), or not (e.g., P2). The PTI index
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can be constructed accordingly, and the query processing

module can directly be used. We found in our experiments

that QSI is most effective on 1D DkNN queries. Its efficiency

gains for 2D queries is relatively small; for higher (>2)

dimensional queries, the query cost reduction of QSI is

marginal, and does not justify its high storage overhead.

Hence, how to effectively handle high-dimensional durable

queries remains an open problem.

6 EXPERIMENTAL EVALUATION

We implemented all proposed algorithms and their

competitors in C++. The experiments were run on a Linux

2.6.28 server with an Intel Core 2 Quad 2.66-GHz CPU and

4 GB of RAM. The page size is set to 4 KB, the default page

size of the OS. We use four data sets:

1. AOL (from www.gregsadetsky.com/aol-data) is a
real web search log of around 650k users from Mar 1
to May 31, 2006. We count the frequency of every
search term on each day, and obtain a time series
data set of 9,098 terms over 92 days. Terms with very
low frequencies are ignored.

2. Stock (from wrds-web.wharton.upenn.edu) contains
real daily closing prices of 13k stocks traded in the
New York Stock Exchange from Jan 1, 2000 to Dec
31, 2009 (2,515 working days in total). We consider
each stock as a time series, and each working day as
a timestamp; stocks are ranked in decreasing order
of their prices.

3. Air pollution index (API) (from www.epd-asg.gov.hk)
summarizes the hourly air pollution condition in
various districts of Hong Kong, for the past 10 years.
The total number of series and timestamps is 14 and
95,844, respectively, and smaller pollution values are
preferred in the top-k ranking.

4. Synthetic data sets were generated with a random
walk model [19], which contains 5k series and 10k
timestamps. For each time series si, we first
generate an initial value sið0Þ uniformly from
½0; 100�. Then, for each timestamp t 2 ½1; 10,000Þ,
we randomly choose a value �ðtÞ from the normal
distribution with mean 0 and standard deviation �,
and set siðtÞ to siðt� 1Þ þ �ðtÞ. � is a parameter
evaluated in the experiments.

Before evaluating efficiency, we demonstrate the useful-

ness of durable queries with several sample queries on AOL

and Stock. Table 3 shows the results of three DTop-100

queries over AOL, using r ¼ 50%. The first query has a time

window of one month. As expected, most results are

general terms related to daily lives (e.g., google, yahoo,

map), which have relatively high durability. As we narrow

down the time window to a fortnight (second query) or a

week (third query), we start seeing results related to certain

historical events. For clarity, results of the first query are not

repeated for the second and the third query. For example,

American Idol, a popular singing competition, was ap-

proaching a season finale during that time. Also, May 14

was the Mother’s Day in 2006 and “mother” is a popular

keyword in the third query.
Results of sample DTop-10 queries on Stock data are

shown in Table 4. The table contains the five stocks that

appear most frequently in the daily top-10 stocks by

turnover during the specified query periods. Observe that

the results of queries with different time windows can be

radically different. These experiments indicate that dur-

able queries can be very useful to financial time series

analysts; further analysis of their results is beyond the

scope of this paper.
Table 5 summarizes the query parameters used in the

efficiency experiments. In each experiment, we vary one

parameter and set all others to their defaults. Note that the

API data set uses smaller values for parameters k and kmax,

since it contains relatively few (14) time series. The

parameter w ¼ ðte � tbÞ=T is the relative query window

length, where T is the total number of timestamps. The start

point of the query window tb is randomly chosen from the

range [0, T � dw � Te], and te is calculated accordingly. For

DkNN queries, the reference time series sref is computed by

averaging 10 random data series at each timestamp.

WANG ET AL.: DURABLE QUERIES OVER HISTORICAL TIME SERIES 603

TABLE 4
Sample DTop-10 Queries and the Results on Stock

TABLE 3
Sample DTop-100 Query Results on AOL

TABLE 5
Query Parameters (Default Values in Bold)



In all the experiments, we execute the methods
100 times, and average their number of page accesses
and CPU time. It is worth mentioning that, although our
data sets are small enough to fit into memory, we decide to
implement all methods on disk-based data, and use cold
buffers. The reason is that our methods are not dedicated
to specific data set sizes, and other real data sets (e.g.,
Google Zeitgeist data or an AOL-like web search log over a
much longer time period) can be too large to fit into the
memory. We used relatively small data sets, because
1) some of the (naı̈ve) methods do not scale well with
the database size and 2) we could not find larger real data
sets. Still, the results on these data provide useful
conclusions about the relative efficiency of the methods.
In the following, Sections 6.1 and 6.2 present the results for
DTop-k and DkNN experiments, respectively.

6.1 Durable Top-kk Evaluation

We first evaluate methods LHL [15], NAI, TES�, and TES�
for DTop-k queries. To be fair, we compare with an efficient
NAI implementation, which employs a file organization
that materializes the top-kmax rankings for all timestamps,
orders them by time and packs them to disk pages. This file
is then indexed by a Bþ-tree. Given a DTop-k query, NAI
uses the Bþ-tree to find the first top-kmax ranking inside the
query time range and then sequentially accesses all top-k
rankings in the file that are relevant to the query. Note that
the worst-case query costs of LHL and NAI are OðN � te�tbB Þ
and OðlogB T þ ðte � tbÞ � kBÞ, respectively, which are costly
when N is large or the query window is long. In addition,
for TES�, we fix the value of � to 1, meaning all rank
changes are stored in the CJI-tree, which maximizes space
efficiency but increases query processing costs. The impact
of � is evaluated toward the end of this section.

Figs. 7a and 7b plot the I/O cost and CPU time,
respectively, as functions of parameter k on the AOL data
set, and Figs. 8a and 8b on Stock data. Parameters w and r
are set to their defaults. On Stock, we exclude the results for
LHL [15], because its I/O and CPU costs are at least an
order of magnitude higher than the remaining methods in
all settings, as LHL exhaustively checks all 13k series.
Clearly, TES� consistently beats both naı̈ve methods in all
settings, in terms of both I/O and CPU costs. While TES� is
not so competitive with very short queries (see Figs. 7a and
7b, where the query window has length d92� 10%e ¼ 10), it
shows significant advantage when the query window gets
longer (see Figs. 8a and 8b, where the query length is
d2515� 10%e ¼ 252).

The I/O cost of NAI is not sensitive to parameter k,
because it retrieves the materialized top-kmax results for

each timestamp from disk during the query window . The
I/O cost of TES increases with k, for two reasons. First,
larger k leads to the retrieval of more rank change
information (the probability that the top-k result changes
increases with k) . Second, a larger k decreases the chance
for early termination; manually checking reveals that when
k > 25, early termination rarely occurs. Comparing the two
variants of TES, TES� is considerably more efficient than
TES� in terms of I/O, since the latter requires accessing
multiple nodes in the CJI-tree. The main advantage of TES�,
however, is its flexibility, evaluated later.

The CPU time of all methods grows linearly with k. Both
versions of TES consistently beat NAI by a wide margin.
Unlike I/O, the difference in CPU time between TES� and
TES� is marginal, since they share the same module for
candidate set updates, which dominates the CPU overhead.
Fig. 8b also shows the number of DTop-k results with the
polyline and the vertical axis on the right. The number of
results increases with k, since a larger k lowers the
threshold for objects to enter the top-k set.

Fig. 9 repeats the same experiments on the API data. The
results for LHL are also included, since there are few
(i.e., 14) time series, and the query windows are long; these
settings favor LHL. TES is again the clear winner in all
settings in terms of I/O. LHL has the lowest CPU overhead
for this data set, since scanning the compressed rank lists
takes negligible time. However, its I/O cost is considerably
higher than TES, and I/O is the dominating factor here, as
the CPU times of all methods are below 10 ms, which is
equivalent to less than 2 random I/Os on our server.
Hence, LHL incurs the highest overall query response time.
The performance of NAI and TES leads to similar
conclusions as on the Stock data set, except that random
fluctuations have a higher impact, due to the abnormal
shape of the data, i.e., few, but very long time series.
Finally, the number of DTop-k results increases with k, for
the same reason as on the Stock data. We omit testing the
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Fig. 7. Effect of k on AOL. Fig. 8. Effect of k on Stock.

Fig. 9. Effect of k on API.



effect of k on synthetic data, since the results are similar to
those of Stock. In addition, we exclude additional experi-
ments on AOL from the paper, because this data set shows
similar results as Stock with short query windows.

Fig. 10 investigates the effect of query window size w.
The performance advantage of TES is clear in all settings.
The I/O and CPU costs for all methods increase with w,
since a longer query window causes more snapshot top-k
retrievals in NAI and TES, and the scanning of longer
portions of the rank lists in LHL. TES is generally more
robust against w than LHL and NAI in terms of I/O. The
number of results decreases with w, since fewer objects
exhibit durable quality over a longer time frame. Results on
Synthetic are omitted, since they lead to similar conclusions.

Next, we focus on the impact of the durability
threshold r. We show results only for Stock in Fig. 11,
which are consistent with the results on other data sets.
Results for LHL are omitted since it imposes orders of
magnitude higher costs. The I/O and CPU costs for all

methods remain stable with different r, and their relative
performance remains the same as in previous experi-
ments. r affects the I/O cost only if it can help early
termination. Larger values of r can achieve a cost
decrease this way, but for the default values of the other
parameters (k and w) the effect is not dramatic.

Fig. 12 studies the impact of time series smoothness,
using synthetic data sets generated with different values of
�, i.e., the scale of the random walk at each timestamp.
Other parameters are fixed to their defaults. Increasing �
has little effect to NAI, since NAI retrieves the top-k set at
each timestamp irrespective of the data volatility. On the
other hand, as � increases, more changes occur in the top-k
sets between consecutive timestamps, which negatively
affects TES. Still, even for the largest value of � TES is much
faster than NAI. The number of query results drops with �
as fewer sequences satisfy the durability constraint when
volatility increases.

Having established the superiority of TES over the naı̈ve
methods, we next analyze the intrinsic properties of TES.
Fig. 13 demonstrates the flexibility of TES� on the Stock
data, with default values for k, w, and r, and varying �, i.e.,
the minimum length for a rank-change interval to be stored
in the CJI-tree. � ¼ 0 corresponds to the TES� tested above,
and � ¼ þ1 reduces to TES�. Clearly, a small � saves
storage space, but also decreases query I/O performance.
The CPU time, on the other hand, is not significantly
affected by �, indicating that the CJI-tree imposes
negligible CPU overhead. In practice, the choice of �
depends on the target application; we recommend setting �
as large as the amount of storage permits to obtain high
query performance.

Finally, Table 6 lists the index sizes for TES� and TES�
with � ¼ 1 on Stock for various values of kmax, i.e., the
maximum allowable value for k and on Synthetic for various
values of the volatility parameter �. With large kmax or �, the
index size of TES� can be several times higher than that of
TES�. The difference increases with kmax, as longer rank
change intervals exist, which are replicated in TES�.
Similarly, larger volatility increases the average length of
the intervals. Nevertheless, in all settings, even for TES� the
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Fig. 10. Effect of w on real data sets.

Fig. 11. Effect of r on Stock.

Fig. 12. Effect of � on synthetic data sets.

Fig. 13. Effect of � on Stock.

TABLE 6
Index Size (Unit: MB)



index size remains manageable. Considering its high query
performance, TES� is the ideal solution for DTop-k queries
in applications involving data with similar sizes as the ones
used in our experiments.

6.2 Durable kk-NN Evaluation

Next, we present experimental results for DkNN processing.
Fig. 14 shows the impact of k on the I/O and CPU costs
(both in logarithmic scale). The proposed algorithm QSI
consistently beats the naı̈ve method NAI, sometimes by more
than an order of magnitude. The computational costs for
both methods increase with k, for similar reasons as in the
DTop-k experiments. With growing k, the performance gap
between QSI and NAI gradually closes, because the k-NN
sets at adjacent timestamps share fewer objects, forcing QSI
to retrieve more data. Compared to DTop-k, there are
considerably fewer DkNN results with the same parameters.
The reason is that objects’ ranking scores tend to be stable,
whereas their similarity to a reference object exhibit
significant variations at different timestamps.

Figs. 15 and 16 present the results with varying query
window size w and durability threshold r, respectively. QSI

is again the clear winner in all settings; the performance gap
between QSI and NAI is not significantly affected by w or r.
The costs of both methods increase with w, and decrease
with growing r, as expected. The benefits of using QSI are
more pronounced on API than on Stock, since recomputing
snapshot k-NN sets in NAI is more expensive on Stock with
a large number of series.

Finally, Fig. 17 evaluates NAI and QSI on the synthetic
data, with varying smoothness levels controlled by �.
Unlike the DTop-k results, here the I/O and CPU costs
for both QSI and NAI decrease with increasing � (meaning
less smooth data). This is because as the data becomes more
volatile, the number of results drops quickly. After �
reaches 0.4, the number of results approaches zero, which
often leads to early termination. For � > 0:4, further
increase of � has negligible effects on query performance.

Summarizing the experiments, the proposed methods
TES and QSI significantly outperform their naı̈ve counter-
parts, often by over an order of magnitude. Meanwhile,
TES can be tuned to effectively balance its storage overhead
and query efficiency. The costs of TES and QSI are
generally low (i.e., up to hundreds of random I/Os and
tens of milliseconds), suggesting that durable queries can
be readily applied in practice.

7 CONCLUSION

We studied the evaluation of durable queries over historical
time-series databases, which find application in a variety of
analytical tasks. For durable top-k queries, we proposed the
TES framework, which exploits time series smoothness to
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Fig. 14. Effect of k on real data sets.

Fig. 15. Effect of w on real data sets.

Fig. 16. Effect of r on real data sets.

Fig. 17. Effect of � on synthetic data sets.



reduce query costs. For durable k-NN, we developed a
novel solution QSI, which indexes the query space and
avoids unnecessary snapshot k-NN queries. By experimen-
tation with both real and synthetic data, we showed that the
proposed methods are very efficient compared to naı̈ve
alternatives and the previous state-of-the-art.

Currently, all proposed solutions are discussed under the
assumption that each timestamp is equally important; thus,
an interesting topic for future work is to extend them to
handle applications with different weights on different
timestamps. For example, for top-k queries, the user might
be interested in objects that appear in the top-k sets
frequently at the beginning or at the end of the query
window. In this situation, a possible adaptation of TES
would be to maintain the time-weighted sum �s for each
candidate object s, and devise pruning strategies accord-
ingly. Similarly, extensions for durable k-NN queries to the
time-weighted model is also an interesting direction for
further investigation. Finally, we also plan to study the
robustness of durable queries in the presence of noise,
which is common in the time series data.
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