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Abstract

To establish the link between an arrested suspect and a crime case based
on a DNA mixture, one of the two main statistical tools used by forensic
scientists is the random man not excluded (RMNE) probability. The tradi-
tional RMNE approach omits any knowledge on the number of contributors
and is commonly regarded as being less powerful than the likelihood (LR)
approach. In view of the simplicity of interpretation of RMNE, which is the
major advantage of using it to present DNA evidences in court, we present
a new concept for the interpretation and calculation of the RMNE proba-
bility. A new approach for determining the non-exclusion of a random man
is proposed, upon which a general formula for the calculation of RMNE
probability is developed. By taking account of the number of contributors,
the new RMNE probability can be much more powerful for evaluating the
evidentiary value of non excluded suspects, compared to the traditional
RMNE approach. As illustrated by an example based on a real rape case,
our approach can be easily implemented and can shorten the gap between
the two approaches by utilizing more information of the case.

Keywords: Deoxyribonucleic acid, Probability of exclusion, Random man
not excluded

1 Introduction

When a crime is committed, it may happen that the biological trace found
at the crime scene is a mixed blood stain or semen, from which a mixture of
Deoxyribonucleic acid (DNA) from more than one person is obtained. In the
context of forensic analysis on DNA mixtures, the probability of exclusion (PE)
is the probability of excluding a random person as a possible contributor to the
observed DNA mixture. If a suspect is not excluded as the unknown contributor
to the DNA mixture according to the DNA profiles, a large value of the PE
will indicate a strong evidence to convict the suspect. This method is often
referred to as the “random man not excluded” (RMNE) approach whereas the
RMNE probability is the mathematical complement of PE (Buckleton et al.,
2005; Gill et al., 2006; Fung and Hu, 2008; Nieuwerburgh et al., 2009). The
RMNE probability evaluates the proportion of the population that would by
chance have the DNA profiles present in the mixture. If a mixture contains alleles
{a, b} at a particular locus, any individual with genotype aa, ab, or bb is not
excluded as the possible contributor and the corresponding RMNE probability
at this locus is (pa + pb)2 where pa, pb are respectively the allele frequencies
of a, b. In the calculation of such RMNE probability, only the DNA profiles
of the mixture and the known contributors are taken into account, while the
DNA profile of the suspect and other quantitative data such as the number
of contributors is not used. In contrast, the likelihood ratio (LR) approach
that fully utilizes all the available information is commonly accepted as being
more powerful. However, the result obtained from the RMNE approach is still
conceptually correct and the simplicity of the method makes it much easier than



the LR approach to present the DNA evidence in court (Buckleton et al., 2005;
Gill et al., 2006). See Buckleton and Curran (2008) for a thorough discussion
on the merits and drawbacks of the two approaches. It was concluded that “the
RMNE statistic wastes information that should be utilized” while the “LRs are
more difficult to be presented in court”. In fact, LRs are not only difficult to be
presented in court, but also difficult to be understood by the jury. People without
statistical training may easily fall into the trap of the Prosecutor’s Fallacy by
misinterpreting the LR as posterior odds (Evett and Weir, 1998). Nevertheless,
the debates on whether the RMNE approach or the LR approach should be
used in court is still ongoing, despite the extensive reviews and discussions in
the literature, see for example Gill et al. (2006) and Buckleton and Curran (2008)
among others. In this article, we seek to provide a unified and generic approach
for the calculation of RMNE probability that also takes into account the number
of contributors, thereby shortening the gap between the two approaches.

The remaining part of the paper is organized as follows. Firstly, we present
a general formula for calculating the RMNE probability for any known number
of contributors. The formula is simple and generic, and therefore can be easily
implemented into a computer program. The implementation of the formula is
demonstrated by a real example, which shows that the proposed method is much
more powerful than the traditional approach. Finally, some concluding remarks
are provided.

2 Methods

For a particular locus l, l = 1, 2, · · · , L, denote Ml as the set of alleles found
in the mixed stain. A person would not be excluded as a possible contributor
to the mixture if all the alleles of his/her genotype at this locus are present in
Ml. Under Hardy-Weinberg equilibrium, traditionally, the RMNE probability
at this locus can be evaluated as

RMNEl =

 ∑
Ai∈Ml

pi

2

, (1)

where pi is the population allele frequency of allele Ai at locus l. Assuming link-
age equilibrium, i.e. independence of alleles across all loci, the overall RMNE
probability is calculated as

RMNE =
L∏

l=1

RMNEi. (2)

The calculation of the RMNE probability, and hence the exclusion prob-
ability PE = 1 − RMNE, does not take account of the DNA profile of any
individual involved in the case and also the number of contributors to the mix-
ture. In some practical crime cases such as rape cases, the mixed stain found at
the body of the victim may be observed as the mixing of body fluids that contain
DNA from both the victim and the perpetrator. Therefore some of the alleles in
the mixture are known to be contributed by the victim. For instance, suppose
in a rape case the mixture M = {A1, A2} is found to be contributed by a victim
with genotype A1A1 and an unknown contributor. The allele A1 in the mixture
is explained by the victim’s genotype while allele A2 remains unexplained. The
genotype of the perpetrator involved in this case must be either A1A2 or A2A2.



Under Hardy-Weinberg equilibrium assumption, the RMNE probability should
be calculated as 2p1p2 + p2

2. The traditional approach ignores the information
of the victim, and evaluates the RMNE probability as p2

1 + 2p1p2 + p2
2, which is

larger and less discriminative. Therefore the allele information from the known
contributors, as well as the number of contributors, can enhance the power of
the RMNE probability as a measure of the evidentiary value of an non-excluded
suspect, using the following formulation of RMNE.

Suppose there are x unknown contributors of the mixture M beside the
known contributors (e.g. the victim). For simplicity, here we consider only a
particular locus l and drop the subscript l from the symbols of the DNA profiles.
Denote U as the set of alleles present in M but not in the DNA profiles of the
known contributors, S as the set containing all the alleles of k (k < x) suspects,
and G as the set containing all the alleles of x− k arbitrary individuals. These
k suspects will not be excluded as the possible contributors if U ⊂ (S ∪G) ⊂M
for some G, subject to the constraint that 1 ≤ |G| ≤ 2(x − k) where | • | is the
cardinality of a set.

Proposition 1

U ⊂ (S ∪G) ⊂M for some G if and only if |U \ S| ≤ 2(x− k) and S ⊂M .

Proof:

We only consider the case with k < x as it is trivial for k = x. Suppose that
there exists G such that U ⊂ (S ∪G) ⊂M . Then for this G, we have

U ⊂ (S ∪G)⇒ (U \ S) ⊂ (G \ S) ⊂ G⇒ |U \ S| ≤ |G| ≤ 2(x− k)

and
S ∪G ⊂M ⇒ S ⊂M.

On the other hand, suppose |U \ S| ≤ 2(x− k) and S ⊂ M . If U \ S = φ, then
U ⊂ S and hence U ⊂ (S ∪ G) for any arbitrary G. Since S is not empty, we
can let G be the set containing only one of the alleles in S. For this G we have
(S ∪G) = S ⊂M . If U \S 6= φ, we can let G = U \S as it fulfills the constraint
that 1 ≤ |G| ≤ 2(x − k). Therefore there exists G such that S ∪ G = U and
hence U ⊂ (S ∪G) ⊂M as U ⊂M .

By Proposition 1, the k suspects will not be excluded as the possible contributors
if |U \ S| ≤ 2(x− k) and S ⊂M . The calculating formula of the corresponding
RMNE probability is

RMNE =
∑
R1

· · ·
∑
Rk

(
I|U\R|≤2(x−k)IR⊂M

)
P (R1) · · ·P (Rk) (3)

where IA represents the indicator function that takes the value of 1 if A is satisfied
and 0 otherwise; Ri, i = 1, 2, . . . , k are the set of alleles running over all the
possible genotypes; and R = ∪k

i=1Ri. Assuming Hardy-Weinberg equilibrium,
the genotype probabilities P (Ri) can be simply computed by

P (AiAj) =
{
p2

i if i = j
2pipj if i 6= j

.



The general equation (3) can be used for calculating the RMNE probability, and
hence the PE, for any number of contributors as well as any number of random
persons considered. It can be easily implemented into a computer program by
brute force evaluation on all possible genotypes.

3 Implementation

We consider a case reported by Robert Goetz in New South Wales, Australia
(Buckleton and Curran, 2008). A woman was sexually assaulted by a number
of men. As told by the woman, there were allegedly three or four men involved.
The DNA profile of the mixed stain found at the crime scene revealed that there
were at least three contributors. However, the victim was excluded as being
one of the contributors as her DNA profile did not match the mixture. Three
suspects were arrested, with their DNA profiles determined. Table 1 shows the
DNA profiles of the mixture and the suspects at three STR loci, as well as the
allele frequencies of the Caucasian in New South Wales given in Ayres et al.
(2002). Since there was no known contributor, all the alleles in the mixture were
unexplained and hence U = M . For simplicity, here we assume Hardy-Weinberg
equilibrium.

From the testimony of the victim, the prosecution alleged that the three sus-
pects were the contributors of the mixture and set up the following prosecution
and defense hypotheses:

Hp : the mixture contains the DNA of suspects 1-3 and no others;
Hd : the mixture contains the DNA of three unknown persons.

As can be seen from Table 1, the three suspects have matched DNA profiles
with the mixture and were not excluded. According to the traditional method
and using equations (1) and (2), the overall RMNE probability is calculated
as 0.3362, i.e. one out of three random men would not be excluded as being
the contributor of the mixture. Therefore the weight of evidence is weak if
the number of contributors is not taken into account. However, based on the
proposed method, using equation (3) with k = 3 and x = 3, the overall RMNE
probability is calculated as 4.787 × 10−6 which is approximately 1 in 200,000,
providing a much stronger evidence to convict the suspects.

For illustrative purpose, consider the following hypothetical scenario. Sup-
pose suspects 1 and 2 had confessed to the crime. However, the defense attorney
representing suspect 3 argues against the setting of the hypotheses by claiming
that suspect 3 was not involved in the sexual assault despite the fact that sus-
pects 1 and 2 did perpetrate this crime. According to this claim, the prosecution
and defense hypotheses would become

Hp : the mixture contains the DNA of suspects 1-3 and no others;
Hd : the mixture contains the DNA of suspects 1 and 2 and one

unknown person.

Based on the traditional approach, the overall RMNE probability is still 0.3362,
despite having a new set of hypotheses. Using the proposed RMNE method by
equation (3) with k = 1 and x = 1, the overall RMNE probability is calculated
as 0.0009 which is approximately 1 in 1000. The RMNE probability becomes
larger, but is still much smaller than that obtained by using equation (1) ac-
cording to the traditional method. The power of the RMNE probability as a
measure of the weight of evidence is therefore enhanced, by taking account of



Table 1: DNA profiles of the mixture and three suspects in a group rape case
in New South Wales, Australia reported in Buckleton and Curran (2008). The
allele frequencies are estimated from a sample of Caucasians in New South Wales
Ayres et al. (2002)

Locus Mixture Suspect 1 Suspect 2 Suspect 3 Frequency
D3 14 14 0.0978

15 15 0.2640
16 16 16 0.2696
17 17 0.1983
18 18 0.1522

vWA 16 16 0.2277
17 17 17 0.2849
19 19 0.0698
20 20 20 0.0140

FGA 20 20 0.1327
21 21 21 0.1872
24 24 0.1355
25 25 0.0810
26 26 0.0377

the number of contributors and the observed DNA profiles. In fact, taking the
reciprocals of the RMNE probabilities give exactly the LRs of the evidence
under the prosecution and defense hypotheses in both the original setting and
the hypothetical scenario. With the aid of our proposed formula in calculating
the RMNE probability, the difference between the RMNE and LR approaches
becomes less significant than they used to be according to the common claim.

4 Discussion

In this article we have proposed simple representation of the criteria for checking
the non-exclusion of arbitrary number of individuals as being the contributors to
a DNA mixture, given the known number of contributors and the DNA profiles
of the known contributors. Based on the criteria presented in Proposition 1, we
have derived a computational formula of the RMNE probability that can be
applied in general situations, including the scenario when there are more than
one suspect involved. As illustrated by a numerical example, our approach can
utilize more information and is shown to be more powerful than the traditional
approach as a measure of the evidentiary value of non-excluded suspects.

It should be pointed out that we are not suggesting the use of RMNE prob-
ability as a replacement of the LR approach. Both approaches have their own
merits. In practice, we may not rely on just one statistical approach in evaluating
and interpreting the DNA evidence. In statistics, there is always more than one
way to tackle a problem. We concur with the suggestion of Budowle et al. (2009)
that forensic scientists should acquire knowledge and skills for both statistical
approaches. Here we strongly recommend incorporating as much available in-
formation as possible in the calculation if the RMNE probability is chosen as a
measure of evidentiary value of the DNA evidence to be presented in the court.

The calculation of the RMNE probability illustrated in the previous section



is based on the assumption of Hardy-Weinberg equilibrium. In reality, Hardy-
Weinberg equilibrium may not be satisfied. To correct for the possible deviation
from this assumption, we can make use of the coancestry coefficient which is the
chance that random alleles taken from two individuals are identical by descent
(ibd) (Fung and Hu, 2008; Evett and Weir, 1998), and the formula suggested
by the NRC II Recommendation 4.1 (National Research Council, 1996). Such
correction will have little effects on the complexity of the RMNE probability
calculation using equation (3). Nevertheless, one key assumption of equation (3)
is the independence among the genotypes of the random men involved. In prac-
tical crime cases the involved persons may come from a structured population
in which the independence assumption would be violated and NRC II Recom-
mendation 4.2 may be adopted (National Research Council, 1996). Therefore
seeking for a general procedure for calculating joint probabilities of genotypes
under structured populations constitutes a possible direction of our future work.
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