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Determining the Convergence of Variance
in Gaussian Belief Propagation via

Semi-definite Programming
Qinliang Su and Yik-Chung Wu

Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
E-mail: {qlsu, ycwu}@eee.hku.hk

Abstract—In order to compute the marginal distribution from
a high dimensional distribution with loopy Gaussian belief
propagation (BP), it is important to determine whether Gaussian
BP would converge. In general, the convergence condition for
Gaussian BP variance and mean are not necessarily the same,
and this paper focuses on the convergence condition of Gaussian
BP variance. In particular, by describing the message-passing
process of Gaussian BP as a set of updating functions, the
necessary and sufficient convergence condition of Gaussian BP
variance is derived, with the converged variance proved to be
independent of the initialization as long as it is greater or equal
to zero. It is further proved that the convergence condition can
be verified efficiently by solving a semi-definite programming
(SDP) optimization problem. Numerical examples are presented
to corroborate the established theories.

I. INTRODUCTION

In signal processing and machine learning, many problems
eventually come to the issue of computing the marginal mean
and variance of an individual random variable from a high
dimensional joint Gaussian probability density function (PDF).
A direct way of marginalization involves the computation of
the inverse of precision matrix in the joint Gaussian PDF. The
inverse operation is known to be computationally expensive
for a large dimensional matrix, and is even impossible to be
carried out in distributed scenarios.

By representing the joint PDF with a factor graph , Gaussian
BP provides an alternative to calculate the marginal mean
and variance for each individual random variable by passing
messages between neighboring nodes in the factor graph [1].
It is known that for a factor graph with loops, if the marginal
mean and variance in Gaussian BP converge, the true marginal
mean and an approximate marginal variance are obtained [2].

With the ability to provide the true marginal mean upon
convergence, Gaussian BP has been successfully applied in
communication systems [3], fast solver for large sparse linear
systems [4], etc. In addition, the distributed property inherited
from message passing algorithms is particularly attractive to
the applications requiring distributed implementation, such
as distributed beamforming [5], synchronization in wireless
sensor networks [6], [7], etc.

However, Gaussian BP only works under the prerequisite
that the belief mean and variance calculated from the updating
messages do converge. So far, several sufficient convergence
conditions have been proposed, which can guarantee the mean

and variance converge simultaneously [2], [8], [9]. However,
in general, the belief mean and variance do not necessarily
converge under the same condition. It is reported in [8] that if
the variance converges, the convergence of mean can always
be observed when suitable damping is imposed. Thus, it is
important to ensure the variance of Gaussian BP to converge
in the first place. In the pioneering work [8], based on
the concept of computation tree [2], a general convergence
condition of variance is derived. However, this convergence
condition requires the evaluation of the spectral radius of an
infinite dimensional matrix, which is almost impossible to be
calculated in practice.

In this paper, we first describe the message passing of
Gaussian BP as a set of updating functions, and analyze
the properties of updating functions. Then, based on the
relation between BP messages and variance, the necessary and
sufficient convergence condition of variance are developed,
with the converged variance is proved to be independent
of the initialization as long as it is greater or equal to
zero. Furthermore, it is proved that the convergence condition
derived in this paper can be efficiently verified by solving a
semi-definite programming (SDP) problem.

II. GAUSSIAN BELIEF PROPAGATION

A Gaussian PDF can be written as f(x) ∝
exp

{
−1

2x
TPx+ hTx

}
, where x = [x1, x2, · · · , xN ]T ;

P ≻ 0 is the precision matrix with pij being its (i, j)-
th element; and h = [h1, h2, · · · , hN ]T . We expand

f(x) as f(x) ∝
N∏
i=1

fi(xi)
N∏
j=1

N∏
k=j+1

fjk(xj , xk), where

fi(xi) = exp
{
−pii

2 x2
i + hixi

}
and fjk(xj , xk) =

exp {−pjkxjxk}. Based on this expansion, a factor graph
G(V, E) can be constructed by connecting factors fi(xi)
and fjk(xj , xk) with their associated variables, where
V = {1, 2, · · · , N} is the set of indices of variable nodes;
and E = {(i, j)|pij ̸= 0, for i, j ∈ V} is the set of index
pairs of any two connected nodes.

In Gaussian BP, the departing and arriving messages of any
two neighboring variable nodes i and j are updated as

md
i→j (xi, t) ∝

∏
k∈N (i)\j

ma
k→i (xi, t)fi(xi), (1)

ma
i→j(xj , t+ 1) ∝

∫
md

i→j (xi, t) fij (xi, xj) dxi, (2)

2014 IEEE International Symposium on Information Theory

978-1-4799-5186-4/14/$31.00 ©2014 IEEE 2614



2

where t is the time index; N (i) is the set of indices of
neighboring variable nodes of node i, and N (i)\j is the set
N (i) but excluding the node j. After obtaining the messages
ma

k→i(xi, t), the belief at variable node i is equal to

bi (xi, t) ∝
∏

k∈N (i)

ma
k→i (xi, t)fi(xi). (3)

Assume the arriving message is in Gaussian form
of ma

i→j(xj , t) ∝ exp{−va
i→j(t)

2 x2
j + βa

i→j(t)xj}, where
vai→j(t) and βa

i→j(t) are the arriving precision and arriving
linear coefficient, respectively. Inserting it into (1), we obtain
md

i→j(xi, t) ∝ exp{− vd
i→j(t)

2 x2
i + βd

i→j(t)xi}, where

vdi→j(t) = pii +
∑

k∈N (i)\j

vak→i(t), (4)

βd
i→j(t) = hi +

∑
k∈N (i)\j

βa
k→i(t) (5)

are the departing precision and linear coefficient, respectively.
Furthermore, substituting the departing message md

i→j(xi, t)
into (2), we obtain

ma
i→j(xj , t+ 1)

∝ exp

{
p2ij

2vdi→j(t)
x2
j −

pijβ
d
i→j(t)

vdi→j(t)
xj

}

×
∫

exp

−
vdi→j(t)

2

(
xi −

βd
i→j(t)− pijxj

vdi→j(t)

)2
 dxi. (6)

If vdi→j(t) > 0, the integration equals to a constant, and

thus ma
i→j(xj , t + 1) ∝ exp

{
p2
ij

2vd
i→j(t)

x2
j −

pijβ
d
i→j(t)

vd
i→j(t)

xj

}
.

Therefore, vai→j(t+ 1) and βa
i→j(t+ 1) are updated as

vai→j(t+ 1) = −
p2ij

vdi→j(t)
, (7)

βa
i→j(t+ 1) = −

pijβ
d
i→j(t)

vdi→j(t)
. (8)

After obtaining vak→i(t), the variance of belief at each iteration
is computed as

σ2
i (t) =

1

pii +
∑

k∈N (i) v
a
k→i(t)

. (9)

However, from (6), it should be noticed that if vdi→j(t) ≤
0, the integration in (6) as well as the resulting message
ma

i→j(t+1) become infinite. Therefore, under the assumption
of Gaussian initialization, we have the following lemma.

Lemma 1 The messages of Gaussian BP is always in Gaus-
sian form if and only if vdi→j(t) > 0 for all t ≥ 0.

III. ANALYSIS OF THE MESSAGE-PASSING PROCESS

Substituting (4) into (7) gives

vai→j(t+ 1) = −
p2ij

pii +
∑

k∈N (i)\jv
a
k→i(t)

. (10)

By writing (10) into a vector form, we obtain

va(t+ 1) = g(va(t)), (11)

where g(·) is a vector-valued function containing components
gij(·) with (i, j) ∈ E arranged in ascending order first on j
and then on i, and gij(·) is defined as

gij (w)
∆
= −

p2ij
pii +

∑
k∈N (i)\j wki

; (12)

va(t) and w are vectors containing elements vai→j(t) and wij ,
respectively, both with (i, j) ∈ E arranged in ascending order
first on j and then on i. Moreover, define the set

W ∆
=

{
w
∣∣pii +∑

k∈N (i)\j
wki > 0, ∀ (i, j) ∈ E

}
. (13)

Now, we have the following proposition about g(·) and W .

Proposition 1 The following claims hold:
P1) w1 ∈ W and w2 ≥ w1 implies w2 ∈ W;
P2) w1 ∈ W and w2 ≥ w1 implies g(w2) ≥ g(w1).

Proof: Consider two vectors w̄ and ŵ, which contain ele-
ments w̄ki and ŵki with (k, i) ∈ E arranged in ascending order
first on j and then on i. For any w̄ ∈ W , according to the def-
inition of W in (13), we have pii+

∑
k∈N (i)\j w̄ki > 0. Then,

if w̄ ≤ ŵ, it can be easily seen that pii +
∑

k∈N (i)\j ŵki > 0
as well. Thus, we have ŵ ∈ W .

The first-order derivative of gij(w) with respect to wki for
k ∈ N (i)\j is computed to be

∂gij
∂wki

=
p2ij

(pii +
∑

k∈N (i)\j wki)
2 > 0. (14)

Thus, gij(w) is a continuous and strictly increasing function
with respect to the components wki for k ∈ N (i)\j with
w ∈ W . Hence, we have if w1 ≤ w2, then g(w1) ≤ g(w2).

IV. NECESSARY AND SUFFICIENT CONVERGENCE
CONDITION OF VARIANCE σ2

i (t)

A. Convergence Condition

To derive the convergence condition of variance σ2
i (t), we

first define the following set

S1
∆
= {w |w ≤ g(w) and w ∈ W} . (15)

With notations g(t)(w)
∆
= g

(
g(t−1)(w)

)
and g(0)(w)

∆
= w,

the following proposition can be established.

Proposition 2 The set S1 has the following properties:
P3) If s ∈ S1, then s < 0;
P4) If s ∈ S1, then g(t)(s) ∈ S1 and g(t)(s) ≤ g(t+1)(s) for

all t ≥ 0.
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Proof: If s ∈ S1, we have s ≤ g(s) and s ∈ W . Accord-
ing to the definition of W in (13), pii +

∑
k∈N (i)\j ski > 0.

Putting this fact into the definition of gij(·) in (12), it is
obvious that g(s) < 0. Therefore, we have the relation that
s ≤ g(s) < 0 for all s ∈ S1.

Next, if s ∈ S1, we have s ≤ g(s) and s ∈ W . Hence,
g(s) ∈ W according to the P1). Applying g(·) on both
sides of s ≤ g(s) and using P2), we obtain g(s) ≤ g(2)(s).
Furthermore, since g(s) ∈ W and g(s) ≤ g(2)(s), we also
have g(s) ∈ S1. By induction, we can prove in general that
g(t)(s) ∈ S1 and g(t)(s) ≤ g(t+1)(s) for all t ≥ 0.

Now, we have the following lemma.

Lemma 2 If S1 ̸= ∅, va(t) converges to the same point
lim
t→∞

va(t) for all va(0) ≥ 0.

Proof: First, we prove that va(t) converges for any
va(0) ≥ 0 given S1 ̸= ∅. Due to S1 ̸= ∅, for any w ∈ S1,
it can be obtained from P3) that w < 0. Thus, for any
va(0) ≥ 0, the relation w ≤ va(0) always holds. Notice
that w ∈ W due to w ∈ S1 and S1 ⊆ W . Applying P2)
to w ≤ va(0), we obtain g(w) ≤ va(1). Combining it with
w ≤ g(w) from P4) gives w ≤ va(1). On the other hand,
substituting va(0) ≥ 0 into (12) gives

va(1) < 0. (16)

Due to va(0) ≥ 0, thus va(1) ≤ va(0). Combining it with
w ≤ va(1) gives w ≤ va(1) ≤ va(0). Applying g(·) to
w ≤ va(1) < va(0), it can be inferred from P2) that g(w) ≤
va(2) < va(1). Together with w ≤ g(w) as claimed by P4),
we obtain w ≤ va(2) < va(1). By induction, we can infer
that

w ≤ va(t+ 1) ≤ va(t). (17)

It can be seen from (17) that va(t) is a monotonically
decreasing but lower bounded sequence, thus it converges.

Next, we prove that va(t) converges to the same point
for all va(0) ≥ 0. For any va(0) ≥ 0, according to
P2), applying g(·) on both sides of 0 ≤ va(0) gives
g(0) ≤ g(va(0)) = va(1). Combining this relation with
(16) leads to g(0) ≤ va(1) ≤ 0. Applying g(·) on this
inequality for t more times, it can be obtained from P2) that
g(t+1)(0) ≤ va(t + 1) ≤ g(t)(0) for all t ≥ 0. By denoting
lim
t→∞

g(t)(0) = va∗, it is obvious that va(t) also converges to
the va∗.

Now, we present the following theorem.

Theorem 1 For any va(0) ≥ 0, σ2
i (t) converges to the same

value if and only if S1 ̸= ∅ and pii+ lim
t→∞

∑
k∈N (i) v

a
k→i(t) ̸=

0.

Proof:
Sufficient Condition:

If S1 ̸= ∅, the limit pii + lim
t→∞

∑
k∈N (i) v

a
k→i(t) always

exists and is equal to pii +
∑

k∈N (i) v
a∗
k→i. From σ2

i (t) =
1

pii+
∑

k∈N(i) v
a
k→i(t)

in (9) as well as pii +
∑

k∈N (i) v
a∗
k→i ̸=

0, it can be inferred that σ2
i (t) converges to the same

1
pii+

∑
k∈N(i) v

a∗
k→i

.
Necessary Condition:

We will prove the necessary part by contradiction. Under
the condition that σ2

i (t) converges for any va(0) ≥ 0, to
prove the theorem, we only need to prove the following
two cases can never happen: 1) S1 = ∅; 2) S1 ̸= ∅ and
pii + lim

t→∞

∑
k∈N (i) v

a
k→i(t) = 0.

First, suppose S1 = ∅. Since σ2
i (t) converges, then the

messages should be maintained at Gaussian form for all
t ≥ 0. According to Lemma 1, it can be inferred that
v̄di→j(t) = pii +

∑
k→N (i)\j v̄

a
k→i(t) > 0 for all (i, j) ∈ E .

From W in (13), we obtain

v̄a(t) ∈ W, (18)

where v̄a(t)
∆
= g(t)(v̄a(0)); v̄ak→i(t) are the elements of v̄a(t)

with (k, i) ∈ E arranged in the same order as va(t).
Now, choose another initialization va(0) satisfying both

v̄a(0) ≤ va(0) and va(0) ≥ 0. Due to v̄a(0) ∈ W and
v̄a(0) ≤ va(0), by using the P2), we have g (v̄a(0)) ≤
g (va(0)), that is, v̄a(1) ≤ va(1). Furthermore, substituting
va(0) ≥ 0 into (12) gives va(1) ≤ 0, and thereby va(1) ≤
va(0). Combining v̄a(1) ≤ va(1) and va(1) ≤ va(0) leads to
v̄a(1) ≤ va(1) ≤ va(0). Due to the assumption v̄a(1) ∈ W ,
by applying P2) to v̄a(1) ≤ va(1) ≤ va(0), we obtain
v̄a(2) ≤ va(2) ≤ va(1). Combining with the fact va(1) ≤ 0
as proved above, we have v̄a(2) ≤ va(2) ≤ va(1) ≤ 0. By
induction, it can be derived that

v̄a(t+ 1) ≤ va(t+ 1) ≤ va(t) ≤ 0 (19)

for all t ≥ 1.
Then, from the definition of W in (13) and v̄a(t) ∈ W in

(18), we have pii +
∑

k∈N (i)\j v̄
a
k→i(t) > 0 for all (i, j) ∈ E .

By rearranging the terms in pii +
∑

k∈N (i)\j v̄
a
k→i(t) > 0,

we obtain v̄aγ→i(t) > −pii −
∑

k∈N (i)\j,γ v̄
a
k→i(t). Applying

v̄a(t) ≤ 0 shown in (19) into this inequality, it can be inferred
that v̄aγ→i(t) > −pii −

∑
k∈N (i)\j,γ v̄

a
k→i(t) ≥ −pii, that is,

v̄aγ→i(t) > −pii for all (γ, i) ∈ E . Combining with va(t) ≥
v̄a(t) shown in (19), for all (i, j) ∈ E , we have

vai→j(t) > −pjj . (20)

It can be seen from (19) and (20) that va(t) is a monotonically
decreasing and lower bounded sequence. Thus, va(t) must
converge to a vector va∗, that is, va∗ = g(va∗).

On the other hand, substituting (10) into (20) gives
− p2

ij

pii+
∑

k∈N(i)\jv
a
k→i(t)

> −pjj . Due to v̄a(t) ∈ W in (18),
it can be inferred from P1) and (19) that va(t) ∈ W , or
equivalently pii +

∑
k∈N (i)\jv

a
k→i(t) > 0. Together with the

fact pjj > 0, we obtain pii +
∑

k∈N (i)\jv
a
k→i(t) >

p2
ij

pjj
.

Since va(t) converges to va∗, taking the limit on both sides
of the inequality gives pii +

∑
k∈N (i)\j v

a∗
k→i ≥

p2
ij

pjj
. Hence,

pii +
∑

k∈N (i)\j v
a∗
k→i > 0. From the definition of W in (13),

we have va∗ ∈ W . Combining with va∗ = g(va∗), according
to the definition of S1 in (15), it is clear that va∗ ∈ S1.
This contradicts with the prerequisite S1 = ∅. Thus, we have
S1 ̸= ∅.

Finally, consider the second scenario. Suppose S1 ̸= ∅ and
pii + lim

t→∞

∑
k∈N (i) v

a
k→i(t) = 0. Due to S1 ̸= ∅, it is known

from Lemma 2 that the limit pii + lim
t→∞

∑
k∈N (i) v

a
k→i(t)
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always exists and is equal to pii + lim
t→∞

∑
k∈N (i) v

a∗
k→i.

Due to σ2
i (t) = 1

pii+
∑

k∈N(i) v
a
k→i(t)

, in order to en-

sure σ2
i (t) converge, we must have S1 ̸= ∅ and pii +

lim
t→∞

∑
k∈N (i) v

a
k→i(t) ̸= 0.

B. Verification by Semi-definite Programming

In this section, we will establish the connections between
the proposed convergence condition and the SDP optimization
problem [10], which can be solved efficiently by existing
softwares, such as CVX. First, define the following SDP
problem

min
w, η

η (21)

s.t.

[
pii +

∑
k∈N (i)\j

wki pij

pij η − wij

]
≽ 0, ∀ (i, j) ∈ E .

Now, we have the following theorem.

Theorem 2 S1 ̸= ∅ if and only if the optimal solution of (21)
η∗ ≤ 0.

Proof: First, notice that the SDP problem in (21) is
equivalent to the following optimization problem

min
w, η

η (22)

s.t. wij − gij (w) ≤ η, ∀ (i, j) ∈ E ;

− pii −
∑

k∈N (i)\j

wki ≤ 0, ∀ (i, j) ∈ E .

If S1 ̸= ∅, according to definition of S1 in (15), there
must exist a w such that wij − gij(w) ≤ 0 and −pii −∑

k∈N (i)\j wki < 0 for all (i, j) ∈ E . Thus, (w, 0) satisfies the
constraints of convex optimization problem (22). Since η = 0
is a feasible solution and (22) is a minimization problem,
the optimal solution of (22) cannot be greater than 0, that
is, η∗ ≤ 0.

Next, if (w∗, η∗) is the optimal solution of (22), we have

w∗
ij − gij(w

∗) ≤ η∗ and − pii −
∑

k∈N (i)\j
w∗

ki ≤ 0. (23)

Due to η∗ ≤ 0, we have w∗
ij − gij(w

∗) ≤ 0 for all (i, j) ∈ E .
This is exactly the first constraint in S1. For the second
constraint in (23), because gij (w) = − p2

ij

pii+
∑

k∈N(i)\j wki

is undefined when −pii −
∑

k∈N (i)\j w
∗
ki = 0, the scenarios

−pii −
∑

k∈N (i)\j w
∗
ki = 0 will never happen. Thus, the sec-

ond constraint in (23) is equivalent to the second constraint of
S1. Hence, we have w∗ ∈ S1 and S1 ̸= ∅.

If pii + lim
t→∞

∑
k∈N (i) v

a
k→i(t) ̸= 0 is known to hold,

according Theorems 1 and 2, η∗ ≤ 0 can serve as the
necessary and sufficient convergence condition of variance
σ2
i (t). Although pii + lim

t→∞

∑
k∈N (i) v

a
k→i(t) ̸= 0 happens

almost surely, the condition can be guaranteed theoretically

by using the following modified SDP problem:

min
w, α

α (24)

s.t.

[
pii +

∑
k∈N (i)\j

wki pij

pij −wij

]
≽ 0, ∀ (i, j) ∈ E ;

α+ pii +
∑

k∈N (i)

wki ≥ 0, ∀ i ∈ V.

Now, the following theorem can be presented.

Theorem 3 If the optimal solution of (24) α∗ < 0, then S1 ̸=
∅ and pii + lim

t→∞

∑
k∈N (i) v

a
k→i(t) ̸= 0 for all i ∈ V .

Proof: First, notice that the SDP problem in (24) is
equivalent to the following optimization problem

min
w, α

α (25)

s.t. wij − gij (w) ≤ 0, ∀ (i, j) ∈ E ;

− pii −
∑

k∈N (i)\j

wki ≤ 0, ∀ (i, j) ∈ E ;

− pii −
∑

k∈N (i)

wki ≤ α, ∀ i ∈ V.

If (w∗, α∗) is the optimal solution of (25) with α∗ < 0,
(w∗, α∗) must satisfy the constraints in (25), thus the fol-
lowing three conditions hold: 1) w∗

ij − gij (w
∗) ≤ 0; 2)

−pii−
∑

k∈N (i)\j w
∗
ki ≤ 0; 3) −pii−

∑
k∈N (i) w

∗
ki ≤ α∗. For

the second constraint, if −pii−
∑

k∈N (i)\j w
∗
ki = 0, the func-

tion gij (w
∗) = − p2

ij

pii+
∑

k∈N(i)\j w∗
ki

becomes undefined, thus
−pii −

∑
k∈N (i)\j w

∗
ki = 0 will never happen. Hence, we al-

ways have −pii−
∑

k∈N (i)\j w
∗
ki < 0. For the third constraint,

due to α∗ < 0, it can be inferred that −pii−
∑

k∈N (i) w
∗
ki < 0,

or equivalently

pii +
∑

k∈N (i)
w∗

ki > 0. (26)

Next, from the first two conditions w∗
ij − gij (w

∗) ≤ 0
and −pii −

∑
k∈N (i)\j w

∗
ki < 0, it can be obtained from the

definition of S1 in (15) that w∗ ∈ S1. Due to w∗ ∈ S1, it can
be inferred from (17) that va∗ ≥ w∗. Combining with (26),
it can be inferred that pii +

∑
k∈N (i) v

a∗
k→i > 0, and thereby

pii +
∑

k∈N (i) v
a∗
k→i ̸= 0.

Using the alternating direction method of multipliers (AD-
MM) technique [11], [12], the SDP problem in (24) can
be further reformulated into a problem consisting of N
low-dimensional sub-problems, and thus solved distributely.
Not only this avoids the gathering of information at a cen-
tral processing unit, the complexity is also reduced from

O

((∑N
i=1 |N (i)|

)4)
in SDP to O

(∑N
i=1 |N (i)|4

)
in AD-

MM. Since the derivation of ADMM is well-documented in
[11], [12], we do not give the details here.

V. NUMERICAL EXAMPLES

In this section, numerical experiments are presented to
illustrate the theories in this paper. The example is based on
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Fig. 1: The value of α∗ under different correlation strength ζ.

the 20× 20 precision matrices P constructed as

pij =

{
1, if i = j
ζ · θmod(i+j,10)+1, if i ̸= j

, (27)

where ζ is a coefficient indicating the correlation strength
among variables; and θk is the k-th element of the vector θ =
[0.13, 0.10, 0.71,−0.05, 0, 0.12, 0.07, 0.11,−0.02,−0.03]T .
The varying of correlation strength ζ induces a series of
matrices, and the positive definite constraint P ≻ 0 required
by a valid PDF is guaranteed when ζ < 0.5978.

Fig. 1 illustrates how the optimal solution α∗ of (24) varies
with the correlation strength ζ. It can be seen that the optimal
solution α∗ always exists and the condition α∗ < 0 holds for
all ζ ≤ 0.5859, while no feasible solution exists in the problem
(24) when ζ > 0.5859. According to Theorem 3, this means
that if ζ ≤ 0.5859, the variance σ2

i (t) with i ∈ V converges
to the same point for all initializations va(0) ≥ 0.

To verify the convergence of variance under ζ ≤ 0.5859,
Fig. 2a shows how the variance σ2

1(t) of the 1-th variable
evolves as a function of t when ζ = 0.5858, which is slightly
smaller than 0.5859. The convergence of variance σ2

1(t) can
be observed under the initialization of va(0) being a vector
with all elements equal to 10. On the other hand, Fig. 2b
illustrates how the variance σ2

1(t) varies as iterations proceed
when ζ = 0.5860, which is slightly larger than 0.5859. It
can be seen that σ2

1(t) fluctuates as iterations proceed, and
does not show sign of convergence. Although Theorem 3
cannot tell what happens when α∗ < 0 is not satisfied, the
numerical results demonstrate a very strong evidence that
the convergence condition may also be necessary. Due to
the limitation of space, the complete proof containing both
sufficiency and necessity for the condition α∗ < 0 will be
presented in a future paper.

VI. CONCLUSIONS

In this paper, the necessary and sufficient convergence
condition for the variance of Gaussian BP was developed.
And the converged variance is proved to be independent of the
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Fig. 2: Illustration for the convergence and divergence of
variance σ2

1(t).

initialization as long as it is greater or equal to zero. Then,
it is proved that the convergence condition can be verified
efficiently by solving a SDP problem. Numerical examples
are presented to corroborate the proposed theories.
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