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Distributed CFOs Estimation and Compensation in
Multi-cell Cooperative Networks

Jian Du and Yik-Chung Wu
Department of EEE, The University of Hong Kong, Pokfulam Road, Hong Kong

Email:{dujian, ycwu}@eee.hku.hk

Abstract—In this paper, we propose a fully distributed algo-
rithm for frequency offsets estimation in multi-cell cooperative
networks. The idea is based on belief propagation, resulting
in that each base station or mobile user estimates its own
frequency offsets by local computations and limited exchange of
information with its direct neighbors in the cellular network.
Such algorithm does not require any centralized information
processing or knowledge of global network topology, thus is
scalable with network size. Simulation results demonstrate the
fast convergence of the algorithm and show that estimation mean-
squared-error at each node touches the centralized Cramér-Rao
bound within a few iterations of message exchange.

I. INTRODUCTION

In traditional cellular systems, geographical area is divided
into cells and a base station is dedicated to serve users within
each cell. Frequency reuse pattern that forbids adjacent cells
using the same frequency is adopted to avoid excessive in-
tercell interference. Unfortunately, frequency reuse also leads
to the fact that each cell is only using a small portion of the
whole system bandwidth. Recent breakthrough in multi-cell
cooperative networks allows fully frequency reuse among the
cells. Despite different users interfere with each other, multiple
base stations could coordinate their coding and decoding. It
was shown that such joint-processing significantly outperforms
a network with individual cell processing [1]–[3].

Since frequencies synthesized from independent oscillators
will be different from each other due to variation of oscillator
circuits, frequency offset exists at each antenna in the cellular
system, as shown in Fig. 1. Multi-cell cooperation requires
frequency synchronization over the whole cellular network,
otherwise there would be capacity degradation [4], offsetting
the benefits of cooperation. Despite the relative CFO between
each base station and its users can be optimally estimated
by existing methods [5]–[12], network-wide CFOs correction
is difficult since each base station needs to synchronize with
multiple users with different relative CFOs at the same time.
Making the problem more challenging is the fact that synchro-
nization should be accomplished by local operations without
knowing the global network structure since users move around
and join different parts of the network randomly.

Pioneering works for multi-cell CFOs correction have been
proposed in [4]. By gathering all the information in a central
processing unit, CFOs are estimated at the receiver and then
fedback to corresponding transmitters to adjust the offsets.
However, this method is centralized, and is not suitable for
large-scale network.











 

Fig. 1. Multi-cell cooperative networks.

In this paper, we propose a network-wide fully distribut-
ed CFOs estimation and compensation method which only
involves local processing and information exchange between
direct neighbors. The frequency offset of each oscillator is
estimated and corrected locally by the base station or mobile
user. After synchronization, the mean-square-error (MSE) for
each frequency offset approaches the corresponding Cramér-
Rao bound (CRB) asymptotically. Moreover, the proposed
algorithm is scalable with network size, and robust to topology
changes.

The following notations are used throughout this paper.
Boldface uppercase and lowercase letters will be used for
matrices and vectors, respectively. Superscripts H and T
denote Hermitian and transpose, respectively. The symbol IN
represents the N ×N identity matrix, while 1K is an all one
K dimensional vector. The symbol ⊗ denotes the Kroneck-
er product and ⊙ denotes the Hadamard product. Notation
N (x;µ,R) stands for the probability density function (pdf)
of a Gaussian random vector x with mean µ and covariance
matrix R. The symbol ∝ represents the linear scalar relation-
ship between two real valued functions. diag{[a1, . . . , aN ]}
corresponds to an N × N diagonal matrix with diagonal
components a1 through aN , while blkdiag{[A1, . . . ,AN ]}
corresponds to a block diagonal matrix with A1 through AN

as diagonal blocks.

II. SYSTEM MODEL

We consider a general network consisting of K nodes
(where each node could be a base station or a mobile user)
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Fig. 2. An example of a network topology with 14 nodes.

distributed in a field as shown in Fig. 2. The topology of the
network is described by a communication graph G = (V , E)
of order K, where V = {1, . . . ,K} is the set of graph
vertexes, and E ⊆ V × V is the set of graph edges. In
the example shown in Fig. 2, the vertices are depicted by
circles and the edges by lines connecting these circles. The
neighborhood of node i is the set of nodes I(i) ⊂ V defined
as I(i) � {j ∈ V|{i, j} ∈ E}, i.e., those nodes that are
connected via a direct communication link to node i. It is also
assumed that any two distinct nodes can communicate with
each other through finite hops, such graph is named strongly
connected graph.

In general, relative CFOs exist between any pair of neigh-
boring nodes, and can be estimated by traditional CFOs
estimation methods. Let nodes i and j equipped with Ni

and Nj antennas, respectively. Denote the frequency offsets1

(with respect to a reference frequency) of the qth antenna
on node i as ωi

q , while that of kth antenna of node j

as ωj
k. Then, the relative CFO between the qth and kth

antenna of nodes i and j is ϵi,jq,k � ωi
q − ωj

k. Here we
consider the general case where each antenna can be associated
with separate oscillator circuit. Therefore, for the Multiple
Input Multiple Output (MIMO) system between node i and
node j, there are NiNj relative CFOs denoted as ϵi,j �
[ϵi,j1,1, . . . , ϵ

i,j
Ni,1

, . . . , ϵi,j1,Nj
, . . . , ϵi,jNi,Nj

]T . Such relative CFOs
estimation in MIMO systems can be decomposed into Nj

parallel Multiple Input Single Output (MISO) CFOs estimation
problem [7]. For example, considering a flat-fading MISO
system, for the kth receive antenna of node j, the received
signal can be written as

yi,jk (t) =

Ni∑
q=1

hi,j
q,ke

ȷϵi,jq,ktziq(t) + ξjk(t), t = 1, . . . , N, (1)

where hi,j
q,k is the unknown channel gain between the qth

1The frequency offset in this paper is the normalized CFO, defined as
2π∆fTs, where ∆f is the CFO in Hz, while Ts is the sampling period.

antenna of node i and kth antenna of node j; ȷ �
√
−1;

{ziq(t)}Nt=1 is the training sequence transmitted from the qth

antennas of node i; and ξjk(t) is the observation noise at the
kth antenna of node j. By stacking (1) with t = 1, . . . , N in
vector form and omitting superscript i, j without confusion,
the received vector yk � [yk(1), . . . , yk(N)]T can be written
as

yk = Γ k(ϵk)⊙Zkhk + ξk k = 1, . . . , Nj , (2)

where Γ k(ϵk) is an N -by-Ni Vandermonde matrix with
its tth row given by [eȷtϵ1,k , eȷtϵ2,k , · · · , eȷtϵNi,k ]; Zk is
the N -by-Ni training sequence matrix with its tth row
[z1(t), z2(t), · · · , zNi(t)]; and ξk = [ξk(1), . . . , ξk(N)]T is the
observation noise. The parameters ϵk � [ϵ1,k, ϵ2,k, . . . , ϵNi,k]

T

and hk � [h1,k, . . . , hNi,k]
T are the parameters need to be

estimated.
If the noise is white and Gaussian, i.e., ξk ∼

CN (ξk;0, σ
2
kIN ), joint relative CFOs and channels estimation

have been extensively studied in the past two decades and
the optimal estimates ϵ̂k and ĥk have been proposed in [6]–
[10], with the MSEs approaching the corresponding CRBs in
medium and high signal-to-noise ratio (SNR) ranges. From
(2), the CRB of ϵk can be shown to be [7]

Bϵk(ϵk,hk) =
σ2
k

2

{
Re[Vk − TH

k (ΛH
k Λk)

−1Tk]
}−1

, (3)

where Vk � diag{hk}ΛH
k D2Λkdiag{hk}, Tk �

ΛH
k DΛkdiag{hk}, with Λk � Γ k(ϵk) ⊙ Zk and

D � diag{[1, 2, . . . , N ]}. Since there are Nj inde-
pendent MISO estimation problems as in (2), the CR-
B for frequency estimation in MIMO system between n-
odes i and j is given by B

{i,j}
ϵ ({ϵk}

Nj

k=1, {hk}
Nj

k=1) =
blkdiag{[Bϵ1(ϵ1,h1), . . . ,BϵNj

(ϵNj ,hNj )]}.
After joint estimation of relative CFOs and channels, the

relative CFOs between nodes i and j can be obtained as

ri,j = Ai,jωi +Aj,iωj + ni,j , (4)

where ri,j � [ϵ̂T1 , ϵ̂
T
2 , . . . , ϵ̂

T
Nj

]T are the NiNj relative CFOs
estimates; Ai,j � INi ⊗ 1Nj and Aj,i � −1Ni ⊗ INj ; and
ni,j is the estimation error. It is known that for the maximum
likelihood (ML) estimates, ri,j is asymptotically Gaussian
distributed with mean [ϵT1 , ϵ

T
2 , . . . , ϵ

T
Nj

]T = Ai,jωi +Aj,iωj

and covariance matrix B
{i,j}
ϵ ({ϵk}

Nj

k=1, {hk}
Nj

k=1) [13]. That
is, ri,j ∼ N (ri,j ; ϵi,j ,B

{i,j}
ϵ ({ϵk}

Nj

k=1, {hk}
Nj

k=1)). Notice
that the CRB depends on the true value of {ϵk}

Nj

k=1 and
{hk}

Nj

k=1 , but since we have obtained the ML estimate {ϵ̂}Nj

k=1

and {ĥk}
Nj

k=1, B{i,j}
ϵ ({ϵk}

Nj

k=1, {hk}
Nj

k=1) can be closely ap-
proximated by Ri,j = B

{i,j}
ϵ ({ϵ̂k}

Nj

k=1, {ĥk}
Nj

k=1).
Notice that traditional CFO estimation for point-to-point

link only estimates NiNj relative CFOs given by ri,j in
(4). However, in order to compensate the offset of individual
oscillator, we need to estimate Ni +Nj absolute CFOs in ωi

and ωj . For simple MIMO systems, [4] provides a method to
resolve Ni + Nj absolute CFOs from NiNj relative CFOs.
In this paper, we take a significant step further to resolve all
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absolute CFOs in a distributed network. That is, to estimate
and compensate ωi in each node based on estimation results
of local relative CFOs ri,j .

III. DISTRIBUTED CFOS ESTIMATION

A. Distributed CFOs Estimation via Belief Propagation

The optimal CFO estimator at each node is the ML estima-
tor, which finds the maximum points of the global likelihood
function:

[(ω̂ML
2 )T , . . . , (ω̂ML

K )T ]T

=arg max
ω2,...,ωK

p
(
{ri,j}{i,j}∈E |ω1,ω2, . . . ,ωK

)
.

(5)

Here, without loss of generality, node 1 is assumed to be the
reference node, so ω1 is known. The global likelihood function
is given by

p
(
{ri,j}{i,j}∈E |ω1,ω2, . . . ,ωK

)

∝ δ(ω1)
∏

{i,j}∈E

p(ri,j |ωi,ωj), (6)

where p(ri,j |ωi,ωj) ∼ N (ri,j ;Ai,jωi + Aj,iωj ,Ri,j) is
the local likelihood function. Notice that since the likelihood
function in (6) depends on interactions among all unknown
variables, the computation of ω̂ML

i in (5) requires gathering
of all information in a central processing unit. However, such
centralized processing is not favorable in large-scale networks.

In order to compute the optimal estimate (5) in a distributed
way, one can exploit the conditional independence structure
of the joint distribution (6), which is conveniently revealed
by factor graph (FG). FG is an undirected bipartite graphical
representation of a joint distribution that unifies direct and
undirected graphical models. An example of FG in the context
of network-wide synchronization is shown in Fig. 3. In the
FG, there are two distinct kinds of nodes. One is variable
nodes representing local synchronization parameters ωi. If
there is a communication link between node i and node j, the
corresponding variable nodes ωi and ωj are linked by the other
kind of node, factor node fi,j = p(ri,j |ωi,ωj) representing
the local likelihood function2. On the other hand, the factor
node f1 = δ(ω1) denotes value of frequency offsets of node
1, and is connected only to the variable node ω1. Note that
the FG is bipartite which means neighbors of a factor node
must be variable nodes and vice versa.

From the FG, two kinds of messages are passed around:
One is the message from factor node f (likelihood function
fi,j or prior distribution f1) to its neighboring variable node
ωi, defined as the product of the function f with messages
received from all neighboring variable nodes except ωi, and
then marginalized for ωi [14]

m
(l)
f→i(ωi) =

∫
· · ·

∫
f×

∏
ωj∈B(f)\ωi

m
(l−1)
j→f (ωj)d{ωj}ωj∈B(f)\ωi

,

(7)
where B(f) denotes the set of variable nodes that are direct
neighbors of the factor nodes f on the FG and B(f) \ ωi

2Note that fi,j=fj,i.





 













 





 



 

 



  





 















Fig. 3. The factor graph representation of the network in Fig. 2.

denotes the same set but with ωi removed. In (7), m(l−1)
j→f (ωj)

is the other kind of message from variable node to factor node
which is simply the product of the incoming messages on other
links, i.e.,

m
(l)
j→f (ωj) =

∏

f̃∈B(ωj)\f

m
(l)

f̃→j
(ωi), (8)

where B(ωj) denotes the set of factor nodes that are direct
neighbors of the variable nodes ωj on the FG.

These two kinds of messages are iteratively updated at
variable nodes and factor nodes, respectively. In any round
of message exchange, a belief of ωi can be computed at
variable node i as the product of all the incoming messages
from neighboring factor nodes, which is given by

b(l)(ωi) =
∏

f∈B(ωi)

m
(l)
f→i(ωi). (9)

Thereupon, the estimate of ωi in the lth iteration is simply

ω̂
(l)
i =

∫
ωib

(l)(ωi)dωi. (10)

B. Message Computation

In the BP framework, messages are passed and updated
iteratively. In order to start the recursion, in the first round of
message passing, it is reasonable to set the initial messages
from factor nodes to variable nodes m

(0)
fi,j→i(ωi) as non-

informative message N (ωi;v
(0)
fi,j→i,C

(0)
fi,j→i), where v

(0)
fi,j→i

can be arbitrarily chosen and [C
(0)
fi,j→i)]

−1 = 0. On the other
hand, the message from f1 to ω1 is always δ(ω1), which
can be viewed as a Gaussian distribution with mean ω1 and
covariance 0. Thereupon, based on the fact that the likelihood
function fi,j is also Gaussian, according to (7), m(1)

fi,j→i(ωi)

is a Gaussian function. In addition, m
(1)
j→fi,j

(ωj) being the
product of Gaussian functions in (8) is also a Gaussian
function. Thus during each round of message exchange, all the
messages are Gaussian functions and only the mean vectors
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and covariance matrices need to be exchanged between factor
nodes and variable nodes.

At this point, we can compute the messages at any iteration.
In general, for the lth (l = 2, 3, · · · ) round of message
exchange, factor node fi,j receive messages m(l−1)

j→fi,j
(ωj) from

its neighboring variable nodes and then compute messages
using (7). After some derivations, it can be obtained that

m
(l)
fi,j→i(ωi) =

∫
p(Ai,j ,Aj,i|ωi,ωj)m

(l−1)
j→fi,j

(ωj)dωj

∝ N (ωi;v
(l)
fi,j→i,C

(l)
fi,j→i), (11)

where the inverse of covariance matrix is

[
C

(l)
fi,j→i

]−1
= AT

i,j

[
Ri,j +Aj,iC

(l−1)
j→fi,j

AT
j,i

]−1

Ai,j , (12)

and the mean vector is

v
(l)
fi,j→i =C

(l)
fi,j→iA

T
i,j

[
Ri,j +Aj,iC

(l−1)
j→fi,j

AT
j,i

]−1

× (ri,j −Aj,iv
(l−1)
j→fi,j

).

(13)

On the other hand, using (8), the messages passed from
variable nodes to factor nodes can be computed as

m
(l)
i→fi,j

(ωi) =
∏

f∈B(ωi)\fi,j

m
(l)
f→i(ωi)

∝ N (ωi;v
(l)
i→fi,j

,C
(l)
i→fi,j

), (14)

where [
C

(l)
i→fi,j

]−1 =
∑

f∈B(ωi)\fi,j

[
C

(l)
f→i

]−1
, (15)

and

v
(l)
i→fi,j

= C
(l)
i→fi,j

∑
f∈B(ωi)\fi,j

[
C

(l)
f→i

]−1
v
(l)
f→i. (16)

Furthermore, during each round of message passing, each
node can compute the belief for ωi using (9), which can be
easily shown to be b

(l)
i (ωi) ∼ N (ωi;µ

(l)
i ,P

(l)
i ), with the

inverse of covariance matrix
[
P

(l)
i

]−1
=

∑
j∈I(i)

[
C

(l)
fi,j→i

]−1
, (17)

and mean vector

µ
(l)
i = P

(l)
i

∑
j∈I(i)

[
C

(l)
fi,j→i

]−1
v
(l)
fi,j→i. (18)

When the algorithm converges or the maximum number of
message exchange is reached, each node computes the CFOs
according to (10) as

ω̂
(l)
i =

∫
ωib

(l)(ωi)dωi = µ
(l)
i . (19)

The iterative algorithm based on BP is summarized as
follows. The algorithm is started by setting the message from
factor node to variable node as m

(0)
f1→1(ω1) = δ(ω1) and

m
(0)
fi,j→i(ωi) = N (ωi;v

(0)
fi,j→i,C

(0)
fi,j→i) with v

(0)
fi,j→i = 0

and [C
(0)
fi,j→i)]

−1 = 0. At each round of message exchange,
every variable node computes the output messages to factor
nodes according to (15) and (16). After receiving the mes-
sages from its neighboring variable nodes, each factor node
computes its output messages according to (12) and (13).
Such iteration is terminated when (18) converges (e.g., when
∥µ(l)

i −µ
(l−1)
i ∥ < η, where η is a threshold) or the maximum

number of iteration is reached. Then the estimate of CFOs of
each node is obtained as in (19).

Notice that after convergence, the belief b(l)(ωi) at each
variable node corresponds to the marginal distribution of that
variable exactly when the underlying FG is loop free [14].
However, for the FG with loops, it is generally difficult to
know if BP will converge [15]. Despite the lack of general re-
sults on BP, the convergence and optimality of BP for network-
wide CFO estimation algorithm are analytically proved in [16].

Remark 1: In practical networks, there is neither fac-
tor nodes nor variable nodes. The two kinds of messages
m

(l)
i→fi,j

(ωi) and m
(l)
fi,j→j(ωj) are computed locally at node

i, and only mean vector v
(l)
fi,j→j(ωj) and covariance matrix

C
(l)
fi,j→j(ωj) are passed from node i to node j during each

round of message exchange of BP. It can be seen the algorithm
is fully distributed and each node only needs to exchange
limited information with neighboring nodes.

IV. SIMULATION RESULTS

This section presents numerical results to assess the perfor-
mance of the proposed algorithm. In each trial, the normalized
CFO of each antenna on each node (except node 1 where CFO
is zero) is generated independently and is uniformly distributed
in the range 2π[−0.2, 0.2]. Besides, the channel between each
pair of nodes is Rayleigh flat-fading. The relative CFOs and
channels are first estimated based on the algorithm in [8],
with training length N . Then the BP algorithm is executed
for network-wide CFOs estimation and compensation. 5000
simulation runs were performed to obtain the average perfor-
mance for each point in the figures.

In order to provide a performance benchmark for the pro-
posed distributed algorithm, the centralized CRB is computed.
The CRB can be easily derived by stacking all the pair-wise
information denoted by (4) as

r = Aω + n, (20)

where r is a vector containing ri,j with ascending indexes first
on i and then on j; and n containing ni,j with the indexes i,
j ordered in the same way as in r. Since n ∼ N (n;0,R),
where R is a block diagonal matrix with Ri,j as block
diagonal and with the same order as ri,j in r, and (20)
is a standard linear model, the CRB for ω is given by
CRB(ω) =

(
ATR−1A

)−1 [13].
First consider the fixed network shown in Fig. 2 and each

node equipped with two antennas. We employ training with
length N = 16 for relative CFOs estimation. The SNR during
training stage and BP message passing are the same. Fig. 4
shows the sum MSE over the two antennas of ωi for nodes
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Fig. 4. Convergence performance of the proposed algorithm at Node 2 and
6.

      









































Fig. 5. MSE of CFOs {ωi}i∈V averaged over the whole network with
respect to SNRs.

i = {6, 2} as a function of BP iteration number l. These two
nodes are chosen to represent nodes close to (node 2) and far
away (node 6) from the reference node. It can be seen that for
both SNR= 10dB and 30dB, the MSEs decrease quickly and
touch the corresponding CRBs in only a few iterations.

Fig. 5 shows the average sum MSE of {ωi}i∈V versus
SNRs for different training length N . The network is randomly
generated within the [0, 100]× [0, 100] area in each trial, with
the communication range for each node equals 38 and each
node is equipped with 2 antennas. As shown in the figure,
the MSEs of the proposed distributed algorithm achieve the
best performance as the MSEs touch the corresponding CRBs.
Furthermore, with increasing N , the approximation of Ri,j to
B

{i,j}
ϵ ({ϵk}

Nj

k=1, {hk}
Nj

k=1) becomes better at lower SNR, and
thus the estimation MSEs of ωi achieves the corresponding
CRBs earlier.

V. CONCLUSIONS

In this paper, a fully distributed CFOs estimation algorithm
for multi-cell cooperative networks was proposed. The algo-
rithm is based on BP and is easy to be implemented by ex-
changing limited amount of information between neighboring
nodes, thus is scalable with network size. Simulation results
showed that the MSE of the proposed method touches the CRB
within only a few iterations. Finally, it is worth to point out
that while the focus of this paper is on multi-cell cooperative
networks, the proposed algorithm is a general one, and can be
applied to other distributed networks such as relay networks,
heterogenous networks and massive MIMO networks.
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