

The HKU Scholars Hub

The University of Hong Kong 香港大学学術庫 場 明 物 通

Title	Comparison of acid and alkaline hydrogen-bromine fuel cell systems
Author(s)	Nguyen, TV; Yarlagadda, V; Lin, G; Weng, G; Li, VCY; Chan, KY
Citation	The 224th ECS Meeting, San Francisco, CA., 27 October-1 Movember 2013.
Issued Date	2013
URL	http://hdl.handle.net/10722/199359
Rights	Creative Commons: Attribution 3.0 Hong Kong License

Comparison of Acid and Alkaline Hydrogen-Bromine Fuel Cell Systems

Trung Van Nguyen^{a*}, Venkata Yarlagadda^a, Guangyu Lin^b, Guoming Weng^c, Vanessa Li^c, and Kwong-Yu Chan^c

^aDepartment of Chemical & Petroleum Engineering The University of Kansas Lawrence, KS, USA

> ^bTVN Systems, Inc. Lawrence, KS, USA

^cDepartment of Chemistry The University of Hong Kong Hong Kong SAR, China

*Corresponding Author: <u>cptvn@ku.edu</u>

Abstract

The hydrogen bromine (H_2-Br_2) fuel cell system is an attractive system for electrical energy storage because of its high round-trip conversion efficiency, high power density capability, and anticipated low costs.

The hydrogen-bromine fuel cell system can be operated in the acid or alkaline modes. The charge and discharge electrode reactions in an acid H_2 -Br₂ fuel cell system are as follows:

Bromine Electrode:

$$\operatorname{Br}_{2 \text{ (aq)}} + 2e - \stackrel{Discharge}{\leftarrow} 2\operatorname{Br}_{(aq)}, E^{o} = +1.09 \text{ V}$$

Charge

Hydrogen Electrode:

$$H_{2 (g)} \xrightarrow{\text{Discharge}} 2H^+_{(aq)} + 2e^{-}, E^{o} = +0.0 V$$

Charge

The H^+ ions migrate from the hydrogen side across a proton conducting membrane to the bromine side during discharge to combine with the Br⁻ ions to form hydrobromic acid.

Overall Reaction:

$$H_{2 (g)} + Br_{2 (aq)} \stackrel{C}{\leftarrow} \rightarrow \\ Charge 2HBr_{(aq)}, E^{o} = +1.09 V$$

The charge and discharge electrode reactions in an alkaline H_2 -Br₂ fuel cell system are as follows:

Bromine Electrode:

$$Br_{2 (aq)} + 2e- \underbrace{\longleftrightarrow}_{Charge} 2Br_{(aq)}, E^{o} = +1.09 V$$

Hydrogen Electrode:

$$H_{2(g)} + 2OH^{-}_{(aq)} \xrightarrow{\text{Charge}} 2H_2O + 2e^{-}, E^{o} = +0.83 V$$

The cations (e.g., K^+), associated with the OH⁻ ions, migrate from the hydrogen electrode across a cation (K^+) conducting membrane to the bromine side and combine with the Br⁻ ions to form KBr as shown in the overall reaction.

Overall Reaction:

$$\begin{array}{c} Discharge\\ \mathrm{H_{2\,(g)}}+\mathrm{Br_{2\,(aq)}}+2\mathrm{KOH_{(aq)}} & \longleftrightarrow\\ Charge\\ E^o=\pm 1.92\ \mathrm{V} \end{array} 2\mathrm{H_2O}+2\mathrm{KBr_{(aq)}}, \end{array}$$

Based on the reactions shown above the alkaline system offers a higher cell voltage, which is an advantage because of potentially higher power output. However, the hydrogen reactions in this system are two-phase reactions involving gaseous hydrogen and liquid-phase hydroxide ion reactants and will require more complex electrode structure and fuel cell design. The other advantages of this system include the fact that non-noble catalysts can be used for the hydrogen reactions and lower corrosiveness.

This presentation will discuss the advantages and disadvantages of the alkaline and acid H_2 - Br_2 fuel cell systems and compare the discharge and charge performance of both systems.

Acknowledgements

This work was funded in part by the National Science Foundation through grant number EFRI-1038234 and the Research Grants Council of Hong Kong through a General Research Fund (GRF HKU 700210P). A Visiting Professorship to Trung Nguyen was provided by the Initiative on Clean Energy and Environment (ICEE), University of Hong Kong.