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Abstract. Reverse nearest neighbor (RNN) queries in spatial and spatio-temporal
databases have received significant attention in the database research community
over the last decade. A reverse nearest neighbor (RNN) query finds the objects
having a given query object as its nearest neighbor. RNN queries find applications
in data mining, marketing analysis, and decision making. Most previous research
on RNN queries over trajectory databases assume that the data are certain. In
realistic scenarios, however, trajectories are inherently uncertain due to measure-
ment errors or time-discretized sampling. In this paper, we study RNN queries in
databases of uncertain trajectories. We propose two types of RNN queries based
on a well established model for uncertain spatial temporal data based on stochas-
tic processes, namely the Markov model. To the best of our knowledge our work
is the first to consider RNN queries on uncertain trajectory databases in accor-
dance with the possible worlds semantics. We include an extensive experimental
evaluation on both real and synthetic data sets to verify our theoretical results.

1 Introduction

The widespread use of smartphones and other mobile or stationary devices equipped
with RFID, GPS and related sensing capabilities made the collection and analysis of
spatio-temporal data at a very large scale possible. A wide range of applications benefit
from analyzing such data, such as environmental monitoring, weather forecasting, res-
cue management, Geographic Information Systems, and traffic monitoring. In the past,
however, research focused mostly on certain trajectory data, assuming that the position
of a moving object is known precisely at each point in time without any uncertainty. In
reality, though, due to physical limitations of sensing devices, discretization errors, and
missing measurements, trajectory data have different degrees of uncertainty: GPS and
RFID measurements introduce uncertainty in the position of an uncertain object. Fur-
thermore, as RFID sensors are usually set up at a certain position, an RFID-based loca-
tion tracker will only be activated if an object passes near its sensor. Between two con-
secutive sensor measurements the position of the object remains unknown. This prob-
lem of incomplete observations in time is a general problem of trajectory databases, and
does not only appear in RFID applications, but also in geo-social networks where users



can share trajectories3, as decreasing the frequency of data collection can increase both
storage efficiency and the battery lifetime of GPS devices. The problem of missing mea-
surements also appears in well-known datasets published for research purposes such as
T-Drive [28] and GeoLife [29]. As a consequence, it is important to find solutions for
deducting the unknown and therefore uncertain positions of objects in-between discrete
observations. The most straightforward solution for deducting a position between con-
secutive measurements would be linear interpolation. However, linear interpolation can
cause impossible trajectories, such as a bike driving through a lake. Other solutions such
as computing the shortest path between consecutive locations produce valid results, but
do not provide probabilities for quantifying the quality of the result.

In this paper, we consider a historical databaseD of uncertain moving object trajec-
tories. Each of the stored uncertain trajectories consists of a set of observations given
at a some (but not all) timesteps in the past. An intuitive way to model such data is
by describing it as a time-dependent random variable, i.e., a stochastic process. In this
research, we model uncertain objects by a first-order Markov chain. It has been shown
recently that even a first-order Markov chain, if augmented with additional observa-
tions, can lead to quite accurate results [12]. We address the problem of performing
Reverse Nearest Neighbor (RNN) queries on such data. Given a query q, a reverse near-
est neighbor query returns the objects in the database having q as one of its nearest
neighbors. This query has been extensively studied on certain data [9, 15, 17]. Recent
research has focused on RNN queries in uncertain spatial [3, 10] data. Xu et al were
the first to address RNN queries on uncertain spatio-temporal data and showed how to
answer an “interval reverse nearest neighbor query” [24]. This kind of query has many
applications, for example in collaboration recommendation applications. However, as
we will see later, the solution presented in [24] does not consider possible worlds se-
mantics (PWS). In this work we fill this research gap by proposing algorithms to answer
reverse nearest neighbour queries according to PWS.

The contributions of this work can be summarized as follows:

– We introduce two query definitions for the reverse nearest neighbor problem on un-
certain trajectory data, namely theP∃RNNQ(q,D, T, τ) andP∀RNNQ(q,D, T, τ)
query. The queries are consistent with existing definitions of nearest neighbor and
window queries on this data.

– We demonstrate solutions to answer the queries we defined efficiently and, most
importantly, according to possible worlds semantics.

– We provide an extensive experimental evaluation of the proposed methods both on
synthetic and real world datasets.

This paper is organized as follows: In Section 2 we review related work on RNN
queries and uncertain spatio-temporal data modeling. Section 3 provides a formal prob-
lem definition. Section 4 introduces algorithms for the queries proposed in Section 3.
An extensive experimental evaluation follows in Section 5. Section 6 concludes this
paper.

3 http://www.bikely.com/, http://www.everytrail.com/, http://www.gpsxchange.com,
http://www.gpsshare.com/



2 Related Work

Probabilistic Reverse-Nearest Neighbour Queries. Reverse (k)-Nearest Neighbor
queries, initially proposed by Korn et al. [9] on certain data have been studied exten-
sively in the past [15, 25, 17, 1, 19]. Many of the early solutions for RkNN queries rely
on costly precomputations [9, 25, 1] and augment index structures such as R-trees or
M-trees by additional information in order to speed up query evaluation. Follow-up
techniques, such as TPL [17], aim at avoiding costly preprocessing at the cost of a more
expensive query evaluation stage; moreover, they do not depend on specialized index
structures. Recently, probabilistic reverse nearest neighbor queries have gained signif-
icant attention [10, 3, 2]. The solution proposed by Chen et al. [10] aims at processing
PRNN queries on uncertain objects represented by continuous probability density func-
tions (PDFs). In contrast, Cheema et al. [3] provided solutions for the discrete case. In
the context of probabilistic reverse nearest neighbor queries, two challenges have to be
addressed in order to speed up query evaluation. On the one hand, the I/O-cost has to
be minimized; on the other hand, the solution has to be computationally efficient.

Uncertain Spatio-Temporal Data. Query processing in trajectory databases has
received significant interest over the last ten years. (see for example [18, 16, 26, 23, 8]).
Initially, trajectories have been assumed to be certain, by employing linear [18] or more
complex [16] types of interpolation to handle missing measurements. These interpola-
tion techniques, however can lead to impossible patterns of movement as, for example,
a car might be assumed to drive through a lake. Other solutions such as computing
the shortest path between consecutive locations can produce valid results, but do not
provide probabilities for quantifying the result quality. As a result, a variety of uncer-
tainty models and query evaluation techniques has been developed for moving object
trajectories (e.g.[11, 22, 21, 7]).

A possible way to approach uncertain data is by providing conservative bounds for
the positions of uncertain objects. These conservative bounds (such as cylinders [22,
21] or beads [20]) approximate trajectories and can answer queries such as “give me all
objects that could have (or definitely have) the query as a nearest neighbor”. However
they cannot provide probabilities conforming to possible worlds semantics.

Another class of algorithms employ independent probability density functions (pdf)
at each point of time. This way of modeling the uncertain positions of an object [4, 21,
11], can produce wrong results if a query considers more than a single point in time
as shown in [7, 12], as temporal dependencies between consecutive object positions
in time are ignored. A solution to this problem is modeling uncertain trajectories by
stochastic processes.

In [13, 7, 14, 24], trajectories are modeled by Markov chains. Although the Markov
chain model is still a model and can therefore only provide an approximate view of the
world, it allows to answer queries according to possible worlds semantics, significantly
increasing the quality of results. Recently, [12] addressed the problem of nearest neigh-
bor queries based on the Markov model. Our work builds upon the results from this
paper.

Regarding reverse nearest-neighbor processing using the Markov model, to the best
of our knowledge, there exists only one work so far which addresses interval reverse
nearest neighbor queries [24]. The approach basically computes for each point of time



in the query interval separately the probability for each object o ∈ D to be the RNN to
the query object. Then for each object o, the number of times where o has the highest
probability to be RNN is counted. The object with the highest count is returned. Upon
investigation, this approach has certain drawbacks. First, the proposed algorithm is not
in accordance with possible worlds semantics, since successive points of time are con-
sidered independently (a discussion on the outcome of this treatment can be found in
Section 3.2). Second, the paper does not show how to incorporate additional observa-
tions (besides the first appearance of an object).

3 Problem Definition

In this paper, following [7, 12], we define a spatio-temporal database D as a database
storing triples (oi, time, location), with oi being a unique object identifier, time ∈ T
a point in time and location ∈ S a position in space. Each of these triples describes
an observation of object oi at a given time at a given location location, e.g. a GPS
measurement. Based on this definition an object oi can be seen as a function oi(t) :
T → S that maps each point in time to a location in space; this function is called
trajectory.

Following the related literature we assume a discrete time domain T = {0, . . . , n}.
Furthermore, we assume a discrete state space of possible locations (states): S =
{s1, ..., s|S|} ⊂ Rd. Both of these assumptions are necessary to model uncertain trajec-
tories by Markov chains. An object stored in the database can only be located in one of
these states at each point in time. The semantics of such a state is application dependent;
e.g., in a road network, the state space contains road crossings.

3.1 Uncertain Trajectory Model

The uncertain trajectory model used in this paper has been recently investigated (e.g., by
[7, 12]) in the context of window queries and nearest neighbor queries. In the following,
we recap this model. Let D be a database containing the trajectories of |D| uncertain
moving objects {o1, ..., o|D|}. An object o ∈ D is represented by a set of observa-
tions Θo = {〈to1, θo1〉, 〈to2, θo2〉, . . . , 〈to|Θo|, θ

o
|Θo|〉} with toi ∈ T being the timestamp and

θoi ∈ S the state (i.e. location) of observation Θoi . Let to1 < to2 < . . . < to|Θo|. This
model assumes observations to be certain, however between two certain observations
the location of an object is unknown and therefore uncertain. To model this uncertainty
we can interpret the uncertain object o as a stochastic process [7]. With this interpreta-
tion, the location of an uncertain object o at time t becomes a realization the random
variable o(t). Considering a time interval [ts, te], results in a sequence of uncertain lo-
cations of an object, i.e. a stochastic process. With this definition we can compute the
probability of a given trajectory.

In this paper, following [7, 6, 24], we investigate query evaluation on a first-order
Markov model. The advantage of the first-order Markov model is its simplicity. By
employing a Markov model, the position o(t+1) of object o at time t+1 only depends
on the location of o at time t, i.e. o(t). Therefore, transitions between consecutive points
in time can be easily realized by matrix multiplication. However note that by modeling



uncertain objects by a Markov chain, the motion of these objects basically degenerates
to a random walk, clearly not a realistic motion pattern of objects in real life. The
motion of cars for example is better described by shortest paths than by a random walk.
Fortunately, as showed in [12], by incorporating a second source of information into the
model, namely observations of an object, the Markov chain can be used to accurately
describe the uncertainty area of an uncertain object.

Now, let the state space of the Markov chain be given as the spatial domain S,
i.e. points in Euclidean space. The transition probability Mo

ij(t) := P (o(t + 1) =
sj |o(t) = si) denotes the probability of object o moving from state si to sj at time t.
These transition probabilities can be stored in a matrix Mo(t), i.e. the transition matrix
of o at time t. The transition matrix of an object might change with time, and different
objects might have different transition matrices. The first property is useful to model
varying motion patterns of moving objects at different times of a day, a month or a
year: birds move to the south in autumn and to the north during springtime. Each of
these patterns could be described by a different transition matrix. The second property
is useful to model different classes of objects such as busses and taxis.

Let so(t) = (s1, . . . , s|S|)
T be the probability distribution vector of object o at time

t, with soi (t) = P (o(t) = si). An entry soi (t) of the vector describes the probability
of o entering si at time t. The state vector so(t + 1) can be computed from so(t) as
follows: so(t + 1) = Mo(t)T · so(t) Note that simple matrix multiplications can only
be employed in the absence of observations. In the presence of observations, transition
matrices must be adapted, see [12]. Finally note that we assume different objects to be
mutually independent.

3.2 Probabilistic Reverse Nearest Neighbor Queries

In the following we define two types of probabilistic time-parameterized RNN queries.
The queries conceptually follow the definitions of time-parameterized nearest neighbor
and window queries in [12, 7]. We assume that the RNN query takes as input a set
of timestamps T and either a single state or a (certain) query trajectory q. Still, our
definitions and solutions can be trivially extended to consider RNN queries where the
input states are uncertain.

Definition 1 (P∃RNN Query). A probabilistic ∃ reverse nearest neighbor query re-
trieves all objects o ∈ D having a sufficiently high probability to be the reverse nearest
neighbor of q for at least one point of time t ∈ T , formally:

P∃RNNQ(q,D, T, τ) = {o ∈ D : P∃RNN(o, q,D, T ) ≥ τ}
where P∃RNN(o, q,D, T ) = P (∃t ∈ T : ∀o′ ∈ D \ o : d(o(t), q(t)) ≤ d(o(t), o′(t)))

and d(x, y) is a distance function defined on spatial points, typically the Euclidean
distance.

This query returns all objects from the database having a probability greater τ to have
q as their probabilistic ∃ nearest neighbor [12]. In addition to this ∃ query, we consider
RNN queries with the ∀ quantifier:



q)

s6

s7 object trajectory P(tr)

o1 tr1 1 = s4 s2 s1 0.4

s

s4

di
st
(q s5

1 1,1 4,  2, 1

o1 tr1,2 = s4, s7, s7 0.6

o2 tr2,1 = s3, s3, s5 0.2

s1

s2

s3 o2 tr2,2 = s3, s5, s3 0.8

q
1

t1 2 3

Fig. 1. Example database of uncertatin trajectories

Definition 2 (P∀RNN Query). A probabilistic ∀ reverse nearest neighbor query re-
trieves all objects o ∈ D having a sufficiently high probability (P∀RNN ) to be the
reverse nearest neighbor of q for the entire set of timestamps T , formally:

P∀RNNQ(q,D, T, τ) = {o ∈ D : P∀RNN(o, q,D, T ) ≥ τ}
where P∀RNN(o, q,D, T ) = P (∀t ∈ T : ∀o′ ∈ D \ o : d(o(t), q(t)) ≤ d(o(t), o′(t)))

The above definition returns all objects from the database which have a probability
greater τ to have q as their probabilistic ∀ nearest neighbor [12].

Example 1. To illustrate the differences between the proposed queries consider the ex-
ample in Figure 1. Here for simplicity the query is not moving at all over time and the
two objects o1 and o2 each have 2 possible trajectories. o1 follows the lower trajectory
(tr1,1) with a probability of 0.4 and the upper trajectory (tr1,2) with a probability of
0.6. o2 follows trajectory tr2,1 with a probability of 0.2 and trajectory tr2,2 with a prob-
ability of 0.8. For query object q and the query interval T = [2, 3], we can compute
the probability for each object to be probabilistic reverse nearest neighbor of q. Specif-
ically for o1 the probability P∃RNN(o1, q,D, T ) = 0.4 since whenever o1 follows
tr1,1 then at least at t = 3, o1 is RNN of q. The probability for P∀RNN(o1, q,D, T )
in contrast is 0.32 since it has to hold that o1 follows tr1,1 (this event has a probabil-
ity of 0.4) and o2 has to follow tr2,2 (this event has a probability of 0.8). Since both
events are mutually independent we can just multiply the probabilities to obtain the fi-
nal result probability. Regarding object o2 we can find no possible world (combination
of possible trajectories of the two objects) where o2 is always (T = [2, 3]) RNN, thus
P∀RNN(o2, q,D, T ) = 0. However P∃RNN(o2, q,D, T ) = 0.6 since whenever o1
follows tr1,2 then o2 is RNN either at t = 2 or at t = 3.

An important observation is that it is not possible to compute these probabilities by
just considering the snapshot RNN probabilities for each query time stamp individually.
For example the probability for o2 to be RNN at time t = 2 is 0.12 (the possible world
where objects follow tr1,2 and tr2,1) and the probability at t = 3 is 0.48 (the possible
world where objects follow tr1,2 and tr2,2). However these events are not mutually
independent and thus we cannot just multiply the probabilities to obtain the probability
that object o2 is RNN at both points of time (note that the true probability of this event
is P∀RNN(o2, q,D, T ) = 0).



4 PRNN Query Processing

To process the two RNN query types defined in Section 3, we proceed as follows. First,
we perform a temporal and spatial filtering to quickly find candidates in the database
and exclude as many objects as possible from further processing. In the second step we
perform a verification of the remaining candidates to obtain the final result. Although
different solutions to this problem are possible, we decided to describe an algorithm
that splits the query involving several timesteps into a series of queries involving only
a single point in time during the pruning phase. The interesting point in this algorithm
is that it shows that spatial pruning does not introduce errors when disregarding tem-
poral correlations. However, disregarding temporal correlation during the probability
computation phase does introduce errors.

ai
n

ac
e 
do

m
a

sp

q

time domain

(a) Uncertatin trajectories in 1D space

q(t)

(b) space (2D) at one point of time t

Fig. 2. Spatio-temporal filtering (only leaf nodes are shown)

4.1 Temporal and Spatial Filtering

In the following we assume that the uncertain trajectory database D is indexed by an
appropriate data structure, like the UST tree [6].4 For the UST tree, the set of possible
(location,time)-tuples between two observations of the same object is conservatively
approximated by a minimum bounding rectangle (MBR) (cf Figure 2(a)). All these
rectangles are then used as an input for an R*-Tree. For simplicity we only rely on
these MBRs and do not consider the more complicated probabilistic approximations of
each object.

The pseudo code of the spatio-temporal filter is illustrated in Algorithm 1. The main
idea is to (i) perform candidates search for each timestamp t in the query interval T
separately (cf. Figure 2(a)) and (ii) for each candidate find the set of objects which are
needed for the verification step (influence objects Scndifl ). For each t we consider the R-
Tree ItDB which results by intersecting the time-slice t with the R-Tree IDB (cf Figure
2(b)). This can be done efficiently during query processing, by just ignoring pages of

4 Note that the techniques for pruning objects do not rely on this index and thus can also be
applied in scenarios where there is no index present.



Algorithm 1 Spatio-Temporal Filter for the P∀RNN query
Require: q,T , IDB

1: ∀t ∈ T : St
cnd = ∅

2: ∀t ∈ T : Scnd,t
ifl = ∅

3: for each t ∈ T do
4: init min-heap H ordered by minimum distance to q
5: insert root entry of ItDB into H
6: Sprn = ∅
7: while H is not empty do
8: de-heap an entry e from H
9: if ∃e2 ∈ H ∪ Sprn ∪ St

cnd : Dom(e2, q, e) then
10: Sprn = Sprn ∪ {e}
11: else if e is directory entry then
12: for each child ch in e do
13: insert ch in H
14: end for
15: else if e is leaf entry then
16: St

cnd = St
cnd ∪ {e}

17: end if
18: end while
19: for each cnd ∈ St

cnd do
20: if ∃le : Dom(le, q, e) then
21: break;
22: end if
23: Scnd,t

ifl = {le : ¬Dom(le, q, e)} ∧ ¬Dom(q, le, e)}
24: end for
25: end for
26: Sref =

⋂
t∈T

St
cnd

27: for each cnd ∈ Sref do
28: Scnd

ifl =
⋃
t∈T

Scnd,t
ifl

29: end for
30: return ∀cnd ∈ Sref : (cnd, Scnd

ifl )

the index, that do not intersect with the value of t in the temporal domain. For each time
t a reverse nearest neighbor candidate search [2] is performed.

Therefore, a heapH is initialized, which organizes its entries by their minimum dis-
tance to the query object q.H initially only contains the root node of ItDB . Additionally
we initialize two empty sets. Scnd contains all RNN candidates which are found during
query processing and Sprn contains objects (leaf entries) or entries which have been
verified not to contain candidates. Then, as long as there are entries in H , a best-first
traversal of ItDB is performed. For each entry e, which is de-heaped from H , the algo-
rithm checks whether e can be pruned (i.e., it cannot contain potential candidates) by
another object or entry e2 which has already been seen during processing. This is the
case if e2 dominates q w.r.t. e, i.e. e2 is definitely closer to e than q which implies that
e cannot be RNN of q. To verify spatial domination we adapt the technique proposed in
[5], as shown in the following lemma.



Lemma 1 (Spatial Domination [5]). Let A,B,R be rectangular approximations then
the relation

Dom(A,B,R) = ∀a ∈ A, b ∈ B, r ∈ R : dist(a, r) < dist(b, r)

can efficiently be checked by the following term

Dom(A,B,R) =

d∑
i=1

max
bi∈{Bmin

i ,Bmax
i }

(MaxDist(Ai, bi)2 −MinDist(Qi, bi)2) < 0

whereXi (X ∈ {A,B,Q}) denotes the projection interval of the rectangular region
of X on the ith dimension, Xmin

i (Xmax
i ) denotes the lower (upper) bound of the

intervalXi, and MaxDist(I, p) (MinDist(I, p)) denotes the maximal (minimal) distance
between a one-dimensional interval I and a one-dimensional point p.

An entry which is pruned by this technique is moved to the Sprn set. If an entry
cannot be pruned it is either moved to the candidate set if it is a leaf entry or put into
the heap H for further processing.

After the index traversal, for each candidate it can be checked if the candidate is
pruned by another object. If the other object it is definitely closer to the candidate than
the query, the candidate object can be discarded (see line 21). To find the set of objects
that could possibly prune a candidate, we can again use the domination relation (see
line 23). An object (leaf entry le) is necessary for the verification step if it might be
closer to the candidate than the query, which is reflected by the statement in this line. A
more detailed description of this step can be found in [2].

After performing this process for each timestamp t we have to merge the results for
each point of time to obtain the final result. In the case of a P∀RNN we intersect the
candidate sets for each point in time. The only difference for the P∃RNN query is that
we have to unify the results in this step.

These influencing objects of each candidate have to be unified for each time t ∈ T
to obtain the final set of influencing objects. The algorithm ultimately returns a list of
candidate objects together with their sets of influencing objects.

4.2 Verification

The objective of the verification step is to compute, for each candidate c, the proba-
bility P∃RNN(c, q,D, T ) (P∀RNN(c, q,D, T )) and compare this probability with
the probability threshold τ . An interesting observation is, that we were able to prune
objects based on the consideration of each point t ∈ T separately, however as shown
in Section 3.2 it is not possible to obtain the final probability value by just considering
the single time probabilities. Thus our approach relies on sampling of possible trajec-
tories for each candidate and the corresponding influence objects. For this step, we can
utilize the techniques from [12]. On each sample (which then consists of certain trajec-
tories) we then are able to efficiently evaluate the query predicate. Repeating this step
often enough we are able to approximate the true probability of P∃RNN(c, q,D, T )



(P∀RNN(c, q,D, T )) by the percentage of samples where the query predicate was sat-
isfied. The algorithm for the verification of the P∀RNN query is given in Algorithm 2.
Note, that it is possible to early terminate sampling of influence objects, when we find
a time t where the candidate is not closer to q than to the object trajectory just sampled.
For the P∃RNN query we can also implement this early termination whenever we can
verify the above for each point of time.

Algorithm 2 Verification for the P∀RNN query
Require: q,T , cnd, Scnd

ifl , num samples
1: num satisfied = 0
2: for 0 ≤ i ≤ num samples do
3: num satisfied = num satisfied + 1
4: cnds = sampleTrajectory(cnd)
5: for all o ∈ Scnd

ifl do
6: os = sampleTrajectory(o)
7: if ∃t ∈ T : dist(cnds(t), os(t)) < dist(cnds(t), q(t)) then
8: num satisfied = num satisfied - 1
9: break

10: end if
11: end for
12: end for
13: return num satisfied/num samples

5 Experiments

In our experimental evaluation, we focus on testing the efficiency of our algorithm for
P∀RNNQ and P∃RNNQ, by measuring (i) the number of candidates and pruners re-
maining after pruning irrelevant objects based on their spatio-temporal MBRs, and (ii)
the runtime of the refinement procedure, i.e. sampling. Similar to [12], we split the sam-
pling procedure into adapting the transition matrices (building the trajecory sampler) of
the candidate objects and the actual sampling process, as the adaption of transition ma-
trices can be done as a preprocessing step. All experiments have been conducted in the
UST framework that has also been used in [12]. The experimental evaluation has been
conducted on a desktop computer with Intel i7-870 CPU at 2.93 GHz and 8GB of RAM.

5.1 Setup

Our experiments are based on both artificial and real data sets. In the artificial dataset
states are drawn from a uniform distribution. The real data set uses an OpenStreetMap
graph of the city of Beijing to derive the underlying state space. Both of the datasets
have also been used in [12], however here we recap their generation for the sake of
completeness.

Artificial Data. Artificial data was generated in four steps. First a state space was
generated by randomly drawing N points from the [0, 1]2 space. These points represent



(a) State Space (Synthetic Data) (b) State Space (Real Data)

Fig. 3. Examples of the models used for synthetic and real data. Black lines denote transition
probabilities. Thicker lines denote higher probabilities, thinner lines lower probabilities. The syn-
thetic model consists of 10k states.

the states of the underlying Markov chain. Second we built a graph from these neigh-
boring states by connecting neighboring points. Given a reference point p, we selected

all points within in a radius of r =
√

b
N∗π from p, connecting each of the resulting

points with p. Here b denotes the average branching factor of the resulting graph struc-
ture. Third we weighted each of the graph’s edges based on the distance between the
corresponding states: The transition probability between two states was set indirectly
proportional to the states’ distance relative to all outgoing distances to other states. The
resulting transition matrix is independent of a specific object and therefore provides
a general model for all objects in the database. An example of such a model can be
found in 3(a). Finally and fourth we had to generate uncertain trajectories from this
data for each object o in the database. Each of these uncertain trajectories has a length
of 100 timesteps. To generate the uncertain object, we first sampled a random sequence
of states from the state space and connected two consecutive states by their shortest
path. The resulting paths contain straight segments (shortest paths), modelling the di-
rected motion of objects, and random changes in direction that can appear e.g. when
objects move from one destination (e.g. home, work, or disco for humans) to another
destination. The resulting trajectories serve as a certain baseline and are made uncertain
by considering only a subset of the trajectory points: every lth node of the trajectory,
l = i ∗ v, v ∈ [0, 1] is used as an observation of the corresponding uncertain object.
Here, i models the time difference between observations and v is a lag factor, making
the object slower. With, for example, v = 0.8, the object moves only with 80% of its
maximum speed. We randomly distributed the resulting uncertain object over the time
horizon of the database (defaulting 1000 timesteps). The objects can then be indexed by
a UST tree [6]. For our experiments we determined candidates based on MBR filtering,
i.e. the MBR over all states that can be reached by an object between two consecutive
observations. For our experiments we concentrate on the case of the query q beeing
given as a query state.
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Fig. 4. Synthetic Data, Varying |D|.

Real Data. As a real dataset we used taxi trajectories in the city of Beijing [27],
equvivalent to [12]. After an initial cleaning phase, the taxi trajectories were map-
matched to a street graph taken from OpenStreetMap. Then, from the resulting map-
matched trajectories, a general model, i.e. the Markov transition matrix and the under-
lying state space was generated with a time interval of 10s between two consecutive
tics. The resulting model is visualized in Figure 3(b). In the model, transition probabil-
ities denote turning probabilities of taxis at street crossings and states model the street
crossings. Due to the sparsity of taxi trajectories only a subset of the real street cross-
ings was hit by a taxi. Therefore the resulting network consisting of only 68902 states
is smaller than the actual street network. The uncertain object trajectories were taken
directly from the trajectory data. Again, uncertain objects have a lifetime of 100 tics,
and uncertain trajectories were generated by taking each 8-th measurement as an ob-
servation. For a more detailed description of the dataset we refer to [27], for a detailed
description of the model generation from the real dataset we refer to [12].

5.2 Evaluation: P∀RNNQ and P∃RNNQ

The default setting for our performance analysis is as follows: We set the number of
states to N = |S| = 100k, the database size (number of objects) to |D| = 10k, the
average branching factor (synthetic data) to b = 8, probability threshold τ = 0. The
length of the query interval was set to |T | = 10.

In each experiment, the left plot shows a stacked histogram, visualizing the cost
for building the trajectory sampler (TS) and the actual cost for sampling (EX for the
P∃RNN query, FA for the P∀RNN query). The right plot first visualizes the number
of candidates (Cx(q)) for the P∃RNN (x = E) and P∀RNN (x = A) query, i.e.
the number of objects for which the nearest neighbor has to be computed. Second it
visualizes the number of pruners or influence objects (Ix(q)), i.e. the number of objects
that can prune candidates. Clearly the number of candidates and pruners is different
for P∀RNN and P∃RNN queries: for the P∃RNN query objects not totally over-
lapping the query interval can be candidates, increasing the number of candidates. For
the P∀RNN query, candidates can be definitely pruned if at least at one point of time
another object prunes the candidate object.

Varying |D|. Let us first analyze the impact of the database size (see Figure 4),
i.e. the number of uncertain objects on the runtime of a probabilistic reverse nearest
neighbor query. First of all note that the number of candidates and influence objects
increases if the database gets large. This is the case because with more objects, the
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Fig. 6. Synthetic Data, Varying |S|.

density of objects increases and therefore more objects become possible results of the
RNN query. Also, clearly, the number of influence objects increases due to the higher
degree of intersection of MBRs. Second the the probability computation of candidate
objects during refinement is mostly determined by the computation of the adapted tran-
sition matrices, i.e. building the trajectory sampler. This is actually good news, as this
step can also be performed offline and the resulting transition matrices can be stored on
disk. Last note that evaluating the P∃RNN query during the actual sampling process
(EX and FA for P∃RNN and P∀RNN respectively) is also more expensive than the
P∀RNN query, as more samples have to be drawn for each candidate object: possi-
ble worlds of P∀RNN -candidates can be pruned if a single object at a single point in
time prunes the candidate. For the P∃RNN query, all points in time have to be pruned
which is much less probable. Additionally, more candidates than for the P∀RNN have
to be evaluated, also increasing the complexity of the P∃RNN query.

Varying b. The effect of varying the branching factor b (see Figure 5) is similar
but not as severe as varying the number of objects. Increasing the branching factor
increases the number of states that can be reached during a single transition. In our
setting, this also increases the uncertainty area of an uncertain object, making pruning
less effective, and therefore increasing the number of objects that have to be considered
during refinement. As a result, the computational complexity of the refinement phase
increases with increasing branching factor.

Varying |S|. Increasing the number of states in the network (see Figure 6)while
keeping the branching factor b constant shows an opposite effect on the number of can-
didates: as the number of states increases, objects become more sparsely distributed
such that pruning becomes more effective. Note that for small networks especially the
sampling process of the P∃RNN query becomes very expensive. This effect dimin-
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Fig. 7. Real Data, Varying |D|.

ishes with increasing size of the network. Although less objects are involved, building
the adapted transition matrices becomes more expensive, as for example matrix opera-
tions become more expensive with larger state spaces.

Real Dataset. Last but not least we show results of the P∀RNN and P∃RNN
queries on the real dataset (see Figure 7). We decided to vary the number of objects
as the number of states and the branching factor is inherently given by the underlying
model. The results are similar to the synthetic data, however more than twice as many
objects have to be considered during refinement. We explain this exemplarily by the
non-uniform distribution of taxis in the network. A part of this performance difference
can also be partially explained by the slightly smaller network consisting of about 70k
states instead of 100k states in the default setting.

6 Conclusion

In this paper we addressed the problem of probabilistic RNN queries on uncertain
spatio-temporal data following the possible worlds semantics. We defined two queries,
the P∃RNNQ(q,D, T, τ) and the P∀RNNQ(q,D, T, τ) query and proposed pruning
techniques to exclude irrelevant objects from costly propability computations. We then
used sampling to compute the actualP∃RNNQ(q,D, T, τ) andP∀RNNQ(q,D, T, τ)
probabilities for the remaining candidate objects. During an extensive performance
analysis on both synthetic and real data we empirically evaluated our theoretic results.
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