
Title
CrowdAdaptor: A Crowd Sourcing Approach toward Adaptive
Energy-Efficient Configurations of Virtual Machines Hosting
Mobile Applications

Author(s) Kan, EYY; Chan, WK; Tse, TH

Citation

The IEEE 38th Annual Computer Software and Applications
Conference (COMPSAC), Vasteras, Sweden, 21-25 July 2014. In
IEEE Annual International Computer Software and Applications
Conference Proceedings, 2014, p. 493-502

Issued Date 2014

URL http://hdl.handle.net/10722/199305

Rights IEEE Annual International Computer Software and Applications
Conference Proceedings. Copyright © IEEE.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by HKU Scholars Hub

https://core.ac.uk/display/38048914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CrowdAdaptor: a CrowdSourcing Approach
Toward Adaptive Energy-Efficient Configurations of

Virtual Machines Hosting Mobile Applications

Edward Y.Y. Kan
Department of Computer Science

The University of Hong Kong
Pokfulam, Hong Kong

yyekan@cs.hku.hk

W.K. Chan
Department of Computer Science

City University of Hong Kong
Tat Chee Avenue, Hong Kong

wkchan@cityu.edu.hk

T.H. Tse
Department of Computer Science

The University of Hong Kong
Pokfulam, Hong Kong

thtse@cs.hku.hk

Abstract—Applications written by end-user programmers are
hardly energy-optimized by these programmers. The end users of
such applications thus suffer significant energy issues. In this
paper, we propose CrowdAdaptor, a novel approach toward loca-
ting energy-efficient configurations to execute the applications
hosted in virtual machines on handheld devices. CrowdAdaptor
innovatively makes use of the development artifacts (test cases)
and the very large installation base of the same application to
distribute the test executions and performance data collection of
the whole test suites against many different virtual machine con-
figurations among these installation bases. It synthesizes these
data, continuously discovers better energy-efficient configura-
tions, and makes them available to all the installations of the
same applications. We report a multi-subject case study on the
ability of the framework to discover energy-efficient configura-
tions in three power models. The results show that Crowd-
Adaptor can achieve up to 50% of energy savings based on a
conservative linear power model.

Keywords—Mobile energy consumption; Test harness; Post-
deployment validation; Energy optimization; Energy saving

I. INTRODUCTION

Energy efficiency is a design concern when developing
software applications. It is especially important for applica-
tions running on handheld devices such as smartphones [7]. A
primary reason is that using a more energy-efficient version of
an application helps a device last for a longer period without
the need to recharge the battery. However, applications are no
longer confined to be developed by device vendors and a
small list of their authorized software partners. For instance,
an ordinary person may follow the procedure presented in an
online video to write an original application and post the latter
to an online repository (such as the Apple App Store, various
Android markets, or the Windows Marketplace). End users
may then install instances of the application on their handheld
devices, virtual machines, personal computers, and so on. For
ease of presentation, we refer to such an ordinary person as an
end-user programmer.

End-user computing is emerging, especially in developing
macro-based spreadsheet applications [3]. However, end-user
programmers normally do not have the technical skills and
tools to optimize their applications with respect to energy effi-
ciency for a wide range of device models or even for a specific

model. Indeed, there are a huge number of device models,
some of which are only available after the applications have
been created, resulting in suboptimal energy optimizations (if
any). End-user programmers also do not have the resources to
adapt the application to fit the most energy-efficient option of
every available model. As a result, these applications are often
posted in confounding forms (that is, without a “best-fit”
target of energy optimization) before end users install and
execute them. Hence, the burden of making an application
instance operate energy-efficiently lies on individual end
users, who nonetheless also do not have the skills to optimize
these application instances even if they would like to do so. To
the best of our knowledge, there is no solution proposed in the
literature to address this challenge.

Applications written by end-user programmers may or
may not pose security threats to the devices. One way to
confine security threats is to execute each application instance
in a standalone virtual machine (VM) instance [1][5]. We
observe that this class of VM-based solution further allows
each application to personalize the virtual machine that hosts
the application instance.

In this paper, we exploit the above observation and the
availability of multiple devices, each of which is installed with
an instance of the same application to address the above
challenge. We propose CrowdAdaptor, a novel framework to
gradually and collectively adapt the energy-aware configura-
tions of mobile applications toward increasingly more energy-
efficient configurations for execution in standalone VM
instances on handheld devices.

Specifically, an application instance instrumented with the
CrowdAdaptor framework will be sampled by the framework
to execute certain test cases under specific VM configurations.
We exploit the presence of many devices that are installed
with the same application instrumented with the Crowd-
Adaptor framework, to keep the sampling rate of each appli-
cation instance to an extremely low level to reduce the impact
on the device to the minimal. CrowdAdaptor collects a record
of profiling data of a test case executed under a specific VM
configuration from each sample, and collects many such
records for many test cases associating with many VM config-
urations generated from many devices. Based on the dataset,
CrowdAdaptor computes an optimal configuration for each

2014 IEEE 38th Annual International Computers, Software and Applications Conference

0730-3157/14 $31.00 © 2014 IEEE

DOI 10.1109/COMPSAC.2014.72

493

kind of VM to host an instance of the application. Moreover,
when the application instance hosted in a VM on a device is
not used for providing profiling data, the instance may query
CrowdAdaptor to obtain an energy-efficient option dis-
covered up to that moment for the VM so that the application
instance can gradually save increasingly more energy when
executed in the native mode.

We have evaluated CrowdAdaptor in a two-subject case
study, in which the entire projects of two popular real-world
applications K-9 Mail [10] and MyTracks [15] (including their
test cases) are used as subjects. We propose and apply three
individual algorithms to select test cases and VM configura-
tions for individual application instances to execute. The case
study results show that the two subjects can successfully and
gradually adapt to use more energy efficient VM options with
an estimated energy saving of 0 to 50% in terms of processor
energy consumption after CrowdAdaptor has been enabled in
the first 100 test suite executions against each subject using
the conservative linear power model [26]. If more advanced
power models1 are used, our results show that the saving can
be even more significant: a saving of 27 to 69% (with one
exceptional case) when using the quadratic power model, and
a saving of 42 to 94% (with one exceptional case) on the cubic
power model. Our results also show that for 4 out of 6 subject
and power model combinations in the case study, the algo-
rithms can locate the configuration with the maximum energy
savings from all the available configurations.

This paper makes the following contributions: (i) To the
best of our knowledge, it presents the first technique that uses
development artifacts (namely, test cases) in crowdsourcing
scenarios to address the energy-efficient optimization problem
encountered by mobile applications. (ii) We report the first
case study to show the effect of different search strategies in
locating energy-efficient settings for two real-world mobile
applications.

The rest of the paper is organized as follows: In Section II,
we present the CrowdAdaptor framework. In Section III, we
present the research questions to be studied in the case study,
followed by the case study and its data analyses in Sections IV
and V, respectively. We review closely related work in
Section VI and conclude the paper in Section VII.

II. THE CROWDADAPTOR FRAMEWORK
An application running on a virtual machine can take

advantage of the CrowdAdaptor framework by operating in
one of the two modes. First, in the native mode of operation,
an application instance may request for the best configuration
discovered by CrowdAdaptor so far for that specific type of
virtual machine. Second, in the testing mode, the application
instance will execute a specific test case against a specific
configuration informed by CrowdAdaptor. The participating
application instance provides CrowdAdaptor with perfor-
mance data to support the discovery of the best configuration.

1 A real-world power model of a physical processor is in between the

quadratic and cubic power models.

A. Application and Application Instances
A device Dz executes a virtual machine instance of type

VMi, which hosts an instance of a mobile application P
developed by end-user programmers. VMi can be specified in
terms of one of the elements in a set of configuration values
denoted by � = {C1, C2, …, Cn}. A configuration value Ck is a
collection of settings needed to define VMi. For instance, Ck
may include (a) the processor frequency subinterval (which
can be set to any range of available clock frequencies, such as
a subinterval of (384, 486, 594) MHz within an interval of
(384, 486, 594, 702, 810) MHz), (b) the size of the memory
allocated to the VM instance, and (c) the type of WiFi connec-
tion and its power state used (such as 802.11ad using a low
power state). For the sake of brevity and better readability, we
will refer to a configuration value simply as a configuration.
We assume that one of the configurations in � is a default con-
figuration independent of the CrowdAdaptor framework.

The mobile application P is designed to accept an input x
from its input domain X. Under an instance of VMi configured
by Ck, the execution of x against an instance j of P generates a
performance vector, which is profiled and denoted by Pj(x,
VMi, Ck). There are natural variations in performance, such as
the execution time and the number of bytes sent or received
via VMi configured with Ck (e.g., a wireless network config-
uration of the VM). Hence, different executions of the same
mobile application P may produce different profiled vectors.

Without loss of generality, we define that a larger value in
an entry of a performance vector indicates a more inferior
performance for the entry. For instance, a value of two
seconds of execution time is worse than a value of one second.

B. Device Sampling and Test Case Sampling
We recall that a test case is an input of the application P,

and a set of test cases constitute a test suite T. Since the same
application P can be installed on multiple devices, we model
the crowdsourcing scenario that there is a set � of such
devices that are online at any moment, and each device in �
has been marked by end users to allow the executions of test
cases against the application P. The history H of Crowd-
Adaptor, initially empty, is a sequence of performance vectors
�Pj1(x1, VMi1, Ck1), Pj1(x2, VMi2, Ck2), ...�.

The workflow of CrowdAdaptor starts with selecting a
device to execute a test case t in T. CrowdAdaptor for the
application P accepts a sampling rate of r% when it initializes.
When a device Dz is made online, in the sense of a heartbeat
message [2][9], the device periodically registers itself to �,
where the registration is associated with a virtual machine
type VMi. Each registration triggers CrowdAdaptor to deter-
mine with a probability of r% that in the current heartbeat
period of device Dz, the device will be used by Crowd-
Adaptor for test execution. If the device is selected, Crowd-
Adaptor further determines the set �of configurations for VMi
and uses its optimization engine (to be presented in Section
II.D) to select one configuration Ck.

Algorithm 1 specifies the high-level interaction between
CrowdAdaptor and a selected device.

494

Algorithm 1 (Test case and configuration selection in CrowdAdaptor)
1: function�selectTestCaseConfig(mode,�VMi)��{�
2: ����if�mode�=�native��{�
3: ��������C_k���best�configuration�in���for�VMi�
4: ��������if�C_k�=�ø��{��C_k���default�configuration�in����}�
5: ��������return��C_k��
6: ����}��else�if�mode�=�testing��{�
7: ��������C_k���runOptEngine(��for�VMi)�
8: ��������t���randomly�selected�test�case�from�T’���T�
9: ��������return��C_k,�t���}}�

�

For devices using the native mode, CrowdAdaptor simply
returns the best configuration discovered so far for VMi at line
3. If no configuration has been discovered yet, the default
configuration is used (line 4). For devices using the testing
mode, CrowdAdaptor randomly selects one test case t in a
subset T' of T (line 8), such that none of the test cases in T' has
received any performance data regarding virtual machine type
VMi with configuration Ck since the last reset of T'.
Specifically, the subset T' for VMi with configuration Ck is
initialized as T, and whenever a selected test case t generates a
performance vector, the test case t is removed from T'. If T'
becomes empty after the removal, then T' is reset to T. Note
that CrowdAdaptor does not assume that the device must
eventually return a performance vector. Hence, the test suite T'
is reduced only after the performance vector is received.

After CrowdAdaptor has selected a test case t, it requests
device Dz to both (1) execute t against the instance j of P
hosted on the device’s virtual machine instance of type VMi
with configuration Ck (line 9 of Algorithm 1), and (2) return
the performance vector Pj(t, VMi, Ck). It updates the history H
by appending Pj(t, VMi, Ck) to H (that is, to construct H^�Pj(t,
VMi, Ck)�) whenever Pj(t, VMi, Ck) is received. If the returned
vector Pj(t, VMi, Ck) triggers a reset of the test suite T', the
vector is also annotated with a reset marker.

In the above design, any reset of the test suite T' with
respect to virtual machine type VMi with configuration Ck
indicates that every test case has been executed at least once
against a virtual machine instance of type VMi with configura-
tion Ck. Thus, during the reset operation, CrowdAdaptor also
extracts those performance vectors that belong to VMi config-
ured with Ck, right after the last reset and up to the current
reset, to construct a dataset PD of performance vectors. It uses
PD to conduct an energy consumption assessment, which will
be presented in the next subsection.

C. Energy Consumption Assessment
Some research work has been proposed to compute (or

estimate) the energy consumptions based on a performance
dataset [12][14][26]. Energy consumption may be computed
from performance statistics based on an energy model. In the
case of the processor, for instance, the relationship between
the operating voltage or frequency of the processor and its
energy consumption may range from linear [26], to quadratic
[4][24], to cubic [12][22]. It is also possible for a device
manufacturer to provide customized power profiles that
directly correlate power states to energy consumption [21].

CrowdAdaptor does not invent its own proposal in this
aspect. Rather, it builds on top of existing work. To preserve
generality, we model an energy consumption estimation tech-
nique as a couple �PV, g�, where PV is the vector of perform-
ance metrics needed by the existing technique g.

We recall we have presented in Section II.A that Crowd-
Adaptor profiles performance vectors. Specifically, Crowd-
Adaptor accepts such a couple �PV, g� as input to compute
energy consumption with respect to PV.

We have presented in Section II.B that each reset of a test
suite triggers CrowdAdaptor to generate a dataset PD with
respect to a virtual machine type VMi with configuration Ck. If
there are multiple vectors in PD such that each is associated
with the same test case, CrowdAdaptor computes a corres-
ponding mean performance vector from the former vectors,
drop all the former vectors and add the newly computed vector
to PD. As such, each test case in T is associated with one
vector in PD.

CrowdAdaptor then applies g to each vector in PD to
compute the corresponding energy consumption values, and
accumulate these consumption values to give one total value
v1. Finally, CrowdAdaptor associates v1 with virtual machines
of type VMi with configuration Ck, represented by the triple
�VMi, Ck, v1�. To mask out natural variations in performance
metrics, CrowdAdaptor collects multiple instances of such
triples associated with virtual machines of type VMi with con-
figuration Ck. It then computes the mean of these consumption
values, and uses the mean value as an energy consumption
indicator Ek for this virtual machine type and configuration.

D. Optimization Engine
We have presented in the last subsection how Crowd-

Adaptor associates an energy consumption indicator Ek with
virtual machine type VMi having configuration Ck. In this sec-
tion, we present how CrowdAdaptor finds a configuration Ck
needed to configure a VM instance running on a device. In
general, a configuration specifies a range of feasible values for
each option, and such a range can be reduced into a constant.
We first use the policy governors for processor frequency
control in Android to illustrate the context of the problem.

For ease of reader understanding, in the sequel, we will use
frequency control to present our strategies. Nonetheless, we
note that these strategies are generally applicable beyond
frequency control.

1) ondemand CPU Frequency Policy Governor
Each policy governor implements its own algorithm to

determine which processor frequency should be used based on
historical processor utilization and other factors such as user
interface activity. An app with root access can configure the
behavior of a policy governor by passing parameters to the
governor.

The ondemand CPU frequency policy governor [18] is the
de facto policy governor used by many Android device manu-
facturers as the default governor. It considers a subinterval
Freq' on the sequence of discrete processor frequencies
(denoted by Freq) supported by the VM type. Initially, the

495

subinterval Freq' spans from the minimum to the maximum
frequency in Freq. ondemand increases the current processor
frequency f to the maximum frequency in Freq' if the proces-
sor utilization exceeds a predefined threshold kept by the
variable up_threshold. On the other hand, if the processor uti-
lization drops below a predefined threshold kept by the
variable down_threshold, it decreases f by 20%, rounded to
the nearest frequency in Freq'. By writing to the special
operating system files sampling_rate_min and sampling_rate_
max, respectively, one can control the subintervals of proces-
sor frequencies used by a VM instance.

2) Naïve Search-Based Optimization Strategy
Consider, for example, a virtual machine type such that all

the available processor frequencies fi are given by Freq = (f1,
f2, f3, f4), where f1 < f2 < f3 < f4. Fig. 1 shows a directed graph
of all the subintervals of Freq acceptable to ondemand. In
general, the number of nodes in the directed graph is exactly
|Freq| (|Freq| + 1) / 2, which means that the search space is in
the order of O(|Freq|2). For VM types supporting many
frequencies, an exhaustive search of this type of graph may
require too many executions of the same test suite even if
there are many devices available to run the test cases. Thus, a
naïve search-based optimization strategy is not quite a
solution. In the next three subsections, we formulate two
improved search-based strategies and a simple strategy to
address this problem.

�

Fig. 1. A virtual processor with possible frequencies Freq = (f1, f2, f3, f4).

3) Single-step Top-Down Search (STDS) Strategy
Algorithm 2 shows the Single-step Top-Down Search

(STDS) optimization engine (called by line 7 of Algorithm 1)
for a specific virtual machine type that supports the sequence
of frequencies Freq. The operations on Ck can be adapted for
other factors of optimization in addition to processor
frequency control.

At line 2, STDS retrieves the best configuration discovered
so far for VMi. Initially, in lines 3–4, it asks all the devices
registered to � to execute the test cases in T' using the default
configuration (which is the root node f1–f4 in Fig. 1 in our
example). The algorithm then considers the next set of config-
urations by updating the from/to frequency indices one step at
a time (lines 15 & 17). Referring to Fig. 1, the next set of
configurations are the two lower-level nodes.

During the search, devices registered to � will be asked to
supply performance vectors for different configurations (lines
6 and 8) in order to construct the performance dataset PD.
When sufficient performance data have been collected for the
entire test suite and a more energy-efficient configuration is
found, STDS updates the running best configuration (lines 11–
12) for other devices executing in native mode.

The search terminates when either the frequency indices
converge (line 4), or if a better configuration cannot be found
(line 9). The algorithm has been designed with a margin of
improvement to prevent the strategy from being trapped in
local minima. This margin threshold may vary according to
the VM type. (In our experiment, we find that 10% is a good
indicator as a tunable resource for processors.)

Once the algorithm ends, the search for the best
configuration (frequency subinterval in this case) is complete.
In this way, a set of configurations for the same test suite has
been profiled with energy consumption values, and the best
configuration for the specific VM type is determined. All
subsequent executions of the same application P on the
profiled VM type can use this best-found configuration.

Algorithm 2 (STDS strategy to search for a VM configuration).
1: function�runOptEngine(�)��{
2: ����C_k���best�configuration�in��
3: ����if�C_k�=�ø��{��C_k���{from���1,�to���|Freq|}��}
4: � if C_k.from = C_k.to or E_k�=�ø��{��return�C_k }
5: ����C_left���updateTo(C_k)
6: �if E_left = ø { �return C_left��}
7: ����C_right���updateFrom(C_k)
8: � if E_right =�ø { �return C_right��}
9: � if E_k is�smaller�than�E_left�and�E_right�by�some�margin {
10: �� � ��return C_k �}
11: ����if�E_left�<�E_right��{��best�configuration�in�����C_left��}
12: ����else��{��best�configuration�in�����C_right��}
13: return�best�configuration�in����}
14: function updateFrom(C_k)��{
15: � return {from� C_k.from�+�1,�to���C_k}��}
16: function updateTo(C_k) {
17: � return {from� C_k.from,�to���C_k.to�–1}��}

Algorithm 3�(BTDS strategy to search for�a�VM�configuration)
1–13: (same�as�STDS)
14: function updateFrom(C_k)��{
15: � return {from� (C_k.from�+�C_k.to)/2,�to�� C_k.to} �}
16: function updateTo(C_k)��{
17: � return {from� C_k.from,�to���(C_k.from +�C_k.to)/2} �}

4) Binary Top-Down Search (BTDS) Strategy
Algorithm 3 shows the algorithm for the Binary Top-Down

Search (BTDS) strategy, which is identical to STDS except for
how it searches for the next set of configurations (lines 14–
17). Instead of reducing the subinterval by one step, BTDS
shrinks it by half. The idea is to try the subintervals that are
further away from the current subinterval so that more diverse
subintervals are tried with fewer test executions.

5) Incremental Random Search (IRS)
We further propose a randomizing strategy called Incre-

mental Random Search (IRS), as shown in Algorithm 4. It
keeps track of a randomly selected configuration Cirs, and asks
participating devices to execute test cases against this config-
uration until the energy consumption indicator is computed
(line 9). If the indicator shows improvement over the running
best configuration, the latter is updated (line 11), and Cirs is
reset to another configuration in �’ that has no PD (lines 3–6).
The algorithm also keeps track of the number of configura-
tions already tried (using the variable trials at line 7), and

f1 – f4

f1 – f3 f2 – f4

f1 – f2 f2 – f3 f3 – f4

f1 – f1 f2 – f2 f3 – f3 f4 – f4

496

accepts a parameter max that limits the number of configura-
tions to be tried across multiple calls to runOptEngine (line 5).
The variable trials is initialized to zero when at the beginning
of the process of finding maximum energy savings.

Algorithm 4 (IRS strategy to search for a VM configuration)
1: //�C_irs is�set�to�ø�and�trials is�set�to�0�at�the�beginning�of�the�

process�of�finding�maximum�energy�saving.
2: function�runOptEngine(�,�max)��{
3:� ���if�C_irs�=�ø��{
4: ���������'���{C_i�����|�E_i�=�ø}�
5:� ��������if��'�=�ø�or�trials���max��{��return�best�configuration�in����}�
6: ��������C_irs���randomly�selected�configuration�from��'
7:� ��������trials ��trials�+�1�
8:� ��������return�C_irs
� ����}�
9:� ����if�E_irs�=�ø��{��return�C_irs��}�
10: ����C_k���best�configuration�in��
11:� ����if�C_k�=�ø�or�E_irs�<�E_k��{��best�configuration�in�����C_irs��}
12:� ����C_irs���ø��
13:� ����return�best�configuration�in����}

III. RESEARCH QUESTIONS
Through the case study to be presented in the next section,

we would like to ask the following research questions in the
context of energy savings in processors.

RQ1: To what extent can the application adaptively save
energy through CrowdAdaptor with the most con-
servative (linear) power model, compared with the
default configuration of ondemand using the entire
frequency interval?

RQ2: What effect does the use of different processor power
models have on CrowdAdaptor?

The two research questions evaluate, with respect to the
default parameter setting, the three proposed strategies that
leverage crowd-based effort to search for a best configuration.

IV. A MULTI-SUBJECT CASE STUDY

A. Review of Processor Power Model
Dynamic Frequency and Voltage Scaling (DVFS) [24] is a

feature present in most modern mobile and desktop processors
that allow program control of their operating frequency. When
the operating frequency is lowered, the operating voltage may
also be lowered accordingly in order to achieve energy sav-
ings. Suppose Freq is a sequence of clock frequencies sup-
ported by a processor. Using a similar processor power model
as in Xu et al. [25] and Zhang et al. [26], the computation
energy consumed by a processor (in an active state) operating
at clock frequency f can be modeled as follows:

� � (�� � + �), � � Freq (1)

where t is the computation time, �f is a frequency-dependent
power coefficient, u is the processor utilization resulting from
the execution during time t, and �c represents the power
difference between the active and idle states of the processor.
The varying beliefs in the relationship between energy con-
sumption and f as stated in the previous section, namely,

linear, quadratic, and cubic, can be captured by the value of �f
with respect to f. Owing to page limit, for brevity, we refer the
readers about the three models to the work of Kan et al. [12].

B. Subject Apps
To ensure that our results bear real-world significance, we

have experimented with two real-life open-source Android
products K-9 Mail [10] and MyTracks [15]. A summary of the
subjects is shown in Table I.

K-9 Mail [10] is a popular email client with more than
70,000+ lines of code and 40 test cases in its test suite (version
4.508). As shown in Google Play Store, the application has at
least five million installs as at January 27, 2014.

MyTracks [15] is another popular app that tracks user acti-
vity using GPS sensors. It records movement statistics such as
path, speed, and distance. The version used in our experiment
(version 2.0.5) consists of 35,000+ lines of code and 347 test
cases. These projects have also been used in the experiment in
Li et al. [13] to evaluate energy-aware testing strategies. As
shown in Google Play Store, the application has at least ten
million installs as at January 30, 2014.

TABLE I. DESCRIPTIVE STATISTICS OF THE SUBJECTS

Subject Real-life
version SLOC # of test

cases # of installs

K-9 Mail [10] 4.508 >70,000 40 5 million
MyTracks [15] 2.0.5 > 35,000 347 10 million

C. Preparation
Both subject apps utilize the standard Android test API

which is based on JUnit. The test suites can be executed using
the activity manager (“am”) command via the Android Debug
Bridge (ADB). For the experiments conducted in this paper,
the subject apps have been preinstalled on the device under
test. Our prototype implementation of CrowdAdaptor is split
between an external Java app (external controller) and a pre-
installed power management app (controller app). The exter-
nal controller installs and controls the test suite executions,
whereas the controller app adjusts the processor frequency
range according to the external app, and records the energy
consumption attributed to the test execution OS process.

To ensure compatibility across heterogeneous Android
devices, the controller app has been adapted from two open-
source Android projects PowerTutor [26] and No-frills CPU
Control [16]. PowerTutor determines process-level energy
consumption by periodically polling the processor utilization
attributed to a process, and then translates it into energy values
based on predefined power models represented by (1). No-
frills CPU Control adjusts the frequency parameters passed to
the CPU frequency policy governor as previously explained.
The source code related to the required features has been
identified and adapted to build the controller app.

D. Experimental Environment and Procedure
The sample device that we use for experimentation is a

commercially available Sony Xperia SP smartphone equipped
with a 1.7 GHz Qualcomm® (Snapdragon™ S4) MSM8980T
Dual Core CPU running on Android 4.1.2. This family of
smartphones has also been used in other energy-related studies

497

[19]. We assume that a virtual machine of the same config-
uration is running on the device. The processor supports 14
operating frequencies from f1 = 384 MHz to f14 = 1728 MHz.
The firmware of the device has been updated to allow opera-
tions that require root access, namely, controlling the on-
demand policy governor. ondemand is initially configured to
use the entire interval of frequencies (that is, it can select any
processor frequency between f1 and f14, inclusive). To avoid
connectivity issues not directly related to the experimentation,
we have opted to issue testing commands using ADB over a
direct USB connection to a desktop computer. We note that
remote execution is also supported by ADB over TCP/IP.

In order to evaluate the effects of different power models
represented by (1), we have configured three separate executa-
bles of the controller app that compute linear, quadratic, and
cubic relations of �� with respect to f. Specifically, we have
set �� = (f / f1)m, where m = {1, 2, 3}, and set that �c = 0 to
focus our attention on the energy effects related to frequency
selections as opposed to the power difference when a
processor goes into a sleep state [26]. We note that these
values may not represent the actual power model of a physical
device. As a result, we will only report on relative energy con-
sumptions rather than absolute values. As we have stated
earlier in this paper, the actual values are likely to be some-
where among the three curves. For research purpose, since our
target is to examine critically the energy saving potential of
our proposed framework, we mainly look at the conservative
side, which is the linear power model.

For each subject app, we have programmed the external
controller to execute the test suite under the configuration for
each power model and all the valid frequency subintervals.
This allows us to compare the consumption values of any
frequency range in the search space, and to simulate the STDS,
BTDS, and IRS strategies.

In the case of K-9 Mail, each test suite execution com-
pletes within one second with negligible power dissipation. In
order to reduce measurement errors and to obtain more accu-
rate results, we have the external controller to construct a
performance dataset PD for each frequency subinterval (line
13 of Algorithm 1) with 25 executions of the test suite (that is,
T' has been reset 25 times in each configuration). In short, we
have executed 387 (which is the sum of 40 and 347 for the
two apps) test cases for each of 105 possible frequency
subintervals, resulting in 141,435 sets of performance data.

After completing all the executions for a frequency
interval, such statistics including execution duration, operating
processor frequency, CPU utilization, and energy consumption
estimations are written in log files stored locally on the device.
The ADB interface is used to manually download the files for
analysis. We have also built a data analysis tool to simulate
STDS, BTDS, and IRS using the consumption values collected
in the experiments. Specifically, we let each device complete
the execution of a test case before a new test case is simulated.
In summary, the globally minimal energy consumptions
achieved in our experiments with K-9 Mail are 50.5%, 32.1%,
and 17.4% of the energy consumed by the default
configuration for linear, quadratic, and cubic power models,

respectively. In the case of MyTracks, the global minima are
55.3%, 31.2%, and 6.2% of the energy consumed by the
default configuration for each of the respective models. The
results of each algorithm with respect to these global minima
are evaluated in the next section.

E. Threats to Validity
Due to limited resources and the combinatorial effect of

power models, frequency configurations, and subject apps, we
are unable to expand the scale of the experiment, for instance,
to support remote execution of more apps on multiple mobile
devices with diverse VM types. On the other hand, we try to
compensate by (a) ensuring that the prototype can be extended
to support remote execution, (b) experimenting with Android,
an open-source mobile platform that commands the market
share of smartphones, and the same set of real-life subject
apps used in a similar study [13], and (c) simulating heteroge-
neity in energy consumption by various power models pre-
viously used by other researchers. We have also spent our best
effort to avoid program faults in our prototype implementa-
tion. Where possible, publicly tested third-party source code is
adapted to implement the required features in the controller.
The subjects used in the case study may not be completely
developed by end-user programmers. A study of more relevant
subjects should be conducted to generalize the result further.
Our framework allows concurrent executions of test cases on
different devices, and individual devices may query the
configurations for their native execution. In the case study, we
have not evaluated these aspects. We only measure the savings
from the processor aspect while keeping other factors fixed or
not monitoring them. Savings on non-virtualized components
require further experimentation. We used PowerTutor and No-
frills CPU Control to measure the energy and performance
data. However, both of them only provide approximate data.
Hence, our analysis results are affected by the accuracy
offered by these two tools.

V. DATA ANALYSES
Fig. 2 shows the energy consumptions of the three strat-

egies expressed as a percentage of the default DVFS setting
(that is, f1–f14 for our case study). Since the algorithms have
different terminating conditions, for fair and effective compa-
rison, we plot the performance of the algorithms against the
number of configurations compared. In the case of IRS, each
data point reported in Fig. 2 corresponds to the average con-
sumption after repeating the experiment 1000 times to average
out the random factor at line 6 of Algorithm 4. The values on
the x-axis (scaled to emphasize the trend of the first 20 config-
urations) correspond to the value of the parameter max. In
Table II, we show the performance of the algorithms and the
minimum number of configurations compared to achieve the
maximum savings. For instance, the cell for the STDS row of
K-9 Mail shows that the maximum energy savings achieved
by STDS is 3% after comparing 5 configurations. This corres-
ponds to the point (5, 97) on the line of STDS in Fig. 2(a). The
mean performance of each strategy (and each power model) is
shown in the last sub-column of each major column (and in
the last row, respectively).

498

Since both STDS and BTDS start the search from the
default frequency subinterval (that is, all the available fre-
quencies), it is clear that their results will not exceed 100%.

We find from Table II that in four out of 18 cases (the cells
that are not shaded in gray), the strategies do not discover
significantly more energy-efficient configurations than the
default ondemand policy governor. In particular, three of them
belong to the STDS strategy. From subfigures (a), (c), and (e)
of Fig. 2, we observe that in each of the four cases, the curves
are quite straight and short. The poor performance of these
cases may be explained by the application behavior that only a
limited number of frequency usages can result in significant
energy savings. However, these two algorithms require an
improvement in energy savings for every other configuration
tested. If the margins of comparisons are set too large, the
algorithms may terminate early even though there are better
configurations. This result indicates that when exploring the
energy-efficient configuration space, an algorithm using a
search-based strategy should consider its level of sensitivity.

We now focus our discussion on the conservative power
model (that is, the linear model) to assess the impacts of
CrowdAdaptor on energy savings.

As shown in Table II, when max = 105 for IRS, Crowd-
Adaptor achieves a saving of 0–50% on K-9 Mail and 36–
45% on MyTracks. The average saving is 29.7%, which is
significant.

From subfigures (a) and (d) of Fig. 2, we also find that the
numbers of configurations considered by STDS and BTDS
before they terminate only differ by a small margin. In con-
trast, IRS can be instructed to search more configurations, but
its effectiveness is realizable only if the participating devices
can enumerate these configurations within reasonable time.

Next, we discuss the similarities and differences in terms
of energy savings among the three power models on the three
algorithms. We find from Table II that the savings on linear,
quadratic, and cubic power models are 29.7, 50.2, and 60.5%,
respectively, which are significant.

Across the rows, we find that BTDS achieves more savings
than STDS. The minimum number of configuration trials
needed to achieve the corresponding maximum savings also

(a) K-9 Mail with linear power model (b) K-9 Mail with quadratic power model (c) K-9 Mail with cubic power model

(d) MyTracks with linear power model (e) MyTracks with quadratic model (f) MyTracks with cubic power model

Fig. 2. Energy consumption and number of configurations compared.

45%

55%

65%

75%

85%

95%

105%

115%

1 5 9 13 17 30 70 90

%
�o
f�D

ef
au

lt�
En

er
gy
�C
on

su
m
pt
io
n

#�of�Comparisons�Considered

IRS

STDS

BTDS

25%

35%

45%

55%

65%

75%

85%

95%

105%

1 4 7 10 13 16 19 40 70 100

%
�o
f�D

ef
au

lt�
En

er
gy
�C
on

su
m
pt
io
n

#�of�Comparisons�Considered

IRS

STDS

BTDS

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

1 4 7 10 13 16 19 40 70 100

%
�o
f�D

ef
au

lt�
En

er
gy
�C
on

su
m
pt
io
n

#�of�Comparisons�Considered

IRS

STDS

BTDS

50%

60%

70%

80%

90%

100%

1 4 7 10 13 16 19 40 70 100

%
�o
f�D

ef
au

lt�
En

er
gy
�C
on

su
m
pt
io
n

#�of�Comparisons�Considered

IRS

STDS

BTDS

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

1 4 7 10 13 16 19 40 70 100

%
�o
f�D

ef
au

lt�
En

er
gy
�C
on

su
m
pt
io
n

#�of�Comparisons�Considered

IRS

STDS

BTDS

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 4 7 10 13 16 19 40 70 100

%
�o
f�D

ef
au

lt�
En

er
gy
�C
on

su
m
pt
io
n

#�of�Comparisons�Considered

IRS

STDS

BTDS

TABLE II. THE MAXIMAL PERFORMANCE OF THE THREE STRATEGIES OF CrowdAdaptor IN THE CASE STUDY

�
Max.�saving�achieved�in�% Min.�#�of�configurations�compared

Linear Quadratic Cubic Mean Linear Quadratic Cubic Mean

K-9 Mail
STDS 3 27 1 10.3 5 9 5 6.3
BTDS 0 68 42 36.7 3 11 7 7.0
IRS 50 68 83 67.0 87 105 105 99.0

MyTracks
STDS 45 0 48 31.0 11 5 9 8.3
BTDS 36 69 94 66.3 11 11 10 10.7
IRS 45 69 94 69.0 105 105 105 105.0

� Mean 29.7 50.2 60.3 46.7 37.0 41.0 40.2 39.4

499

follows this relative order. For all the subfigures in Fig. 2
except subfigure (d), BTDS is the steepest, followed by STDS
and then IRS. Therefore, BTDS is superior to STDS if fast
convergence is required. In contrast, IRS needs to search an
arbitrary number of configurations (or even enumerating all
the available configurations) with slower convergence.

As a whole, the results show that each strategy and each
power model exhibit significant impact on energy savings.
However, we also observe that they exhibit significant differ-
ences in effectiveness. We thus further analyze the data to
look into the variations in the dataset.

Fig. 3 shows the energy consumption for all 105 possible
frequency subintervals on each subject using each power
model. The horizontal bars span their represented frequency
subinterval. Configurations that attribute to a fixed frequency
(such as f1–f1) are represented by “�” markers and denoted by
“Singleton” in the figure. The figure also shows the results of
STDS and BTDS using “�” and “O” markers, respectively.

As seen in the figure, energy consumptions can vary
greatly across frequency ranges. Even for singleton subinter-
vals, the energy consumption may not have a definite correla-
tion with the frequency, which means that the search for a
good frequency subinterval, even with a limited subinterval
length, is a nontrivial task. The minimum and maximum
consumptions exhibit the smallest difference in subfigure (d),
which range from 55 to 102% of the default configuration.
STDS and BTDS perform better than half of the frequency sub-
intervals, and achieve the global minima presented in Section

IV.D in 4 out of 6 cases. For the purpose of baseline
comparison, the global minima are identified by enumerating
the energy consumptions of all the configurations.

In response to RQ1, the case study shows that even in the
conservative (linear) power model, CrowdAdaptor is able to
provide significant savings in processor energy consumption
by an average of 29.7%.

In response to RQ2, the case study reveals that a higher
order power model can result in more energy savings. The
number of test executions does not seem to be significantly
different. We do not observe significant differences in the
trend of energy savings as more executions are used to locate
better configurations, particularly between the curves for the
quadratic and cubic power models.

VI. RELATED WORK
The framework proposed in this paper and its application

covers a number of research areas that are purely software
(such as testing) or involve software/hardware integration. In
this section, we review the results of some of the research
work from each area.

A. Virtualization on Mobile Devices
Traditionally, the use of virtualization focus mainly on

high end servers and data centers. Recent advancements in
mobile computing resources have made system virtualization
possible on tablets and smartphones [1][5]. Barr et al. [1]
discuss the design and implementation of VMware’s Mobile

(a) K-9 Mail with linear power model (b) K-9 Mail with quadratic power model (c) K-9 Mail with cubic power model

(d) MyTracks with linear power model (e) MyTracks with quadratic model (f) MyTracks with cubic power model
Fig. 3 Energy consumption and number of executions compared.�

40%

60%

80%

100%

120%

140%

160%

180%

37
8

48
6

59
4

70
2

81
0

91
8

10
26

11
34

12
42

13
50

14
58

15
66

16
74

17
82

%
�o
f�D

ef
au

lt�
En

er
gy
�C
on

su
m
pt
io
n

CPU�Frequency�(MHz)

X STDS
o����BTDS
� Singleton

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

37
8

48
6

59
4

70
2

81
0

91
8

10
26

11
34

12
42

13
50

14
58

15
66

16
74

17
82

%
�o
f�D

ef
au

lt�
En

er
gy
�C
on

su
m
pt
io
n

CPU�Frequency�Range�(MHz)

10%

30%

50%

70%

90%

110%

130%

150%

170%

190%

210%

230%

37
8

48
6

59
4

70
2

81
0

91
8

10
26

11
34

12
42

13
50

14
58

15
66

16
74

17
82

%
�o
f�D

ef
au

lt�
En

er
gy
�C
on

su
m
pt
io
n

CPU�Frequency�Range�(MHz)

50%

60%

70%

80%

90%

100%

110%

37
8

48
6

59
4

70
2

81
0

91
8

10
26

11
34

12
42

13
50

14
58

15
66

16
74

17
82

%
�o
f�D

ef
au

lt�
En

er
gy
�C
on

su
m
pt
io
n

CPU�Frequency�Range�(MHz)

X STDS
o����BTDS
� Singleton

25%

45%

65%

85%

105%

125%

145%

37
8

48
6

59
4

70
2

81
0

91
8

10
26

11
34

12
42

13
50

14
58

15
66

16
74

17
82

%
�o
f�D

ef
au

lt�
En

er
gy
�C
on

su
m
pt
io
n

CPU�Frequency�Range�(MHz)

X STDS
o����BTDS
� Singleton

25%

45%

65%

85%

105%

125%

145%

37
8

48
6

59
4

70
2

81
0

91
8

10
26

11
34

12
42

13
50

14
58

15
66

16
74

17
82

%
�o
f�D

ef
au

lt�
En

er
gy
�C
on

su
m
pt
io
n

CPU�Frequency�Range�(MHz)

X STDS
o����BTDS
� Singleton

500

Virtualization Platform, and a use case to facilitate the Bring
Your Own Device (BYOD) business policy [23]. The hosted
(Type 2) mobile hypervisor is built on top ARMv7 processors
for the virtualization of the Android OS. To cater for the secu-
rity aspect of the business use case, an enterprise VM environ-
ment (maintained by corporate IT) is created on the mobile
device with VPN tunnels formed in an isolated network name-
space. Passwords and encryption are used to control access to
the VM and local file storage. We believe that there will be
increasing need for energy optimization of executions in VM
as the technology for mobile virtualization matures.

B. Collection of Field Data from Deployed Software
Modern software systems are expected to deploy and

operate in highly heterogeneous environments. Therefore, it
can be very difficult to assess the quality and behavior in an
in-house development environment. Orso [17] discusses the
collection and analysis of field data from deployed software to
tackle the problem. They propose a framework to augment in-
house development tasks with field data. Using a remote agent
and repository that reside in the deployment site, runtime field
data are collected and transferred back to the developers for
software maintenance and evolution. One of the usage scenar-
ios is to leverage the large number of similar installations so
that the burden of collecting field data can be shared by many
groups of users, each responsible for monitoring a certain
subsystem. The data collected can be used in software mainte-
nance tasks and runtime improvements such as debugging,
regression testing, performance tuning, and online failure
recovery. The technique proposed in our paper shares a very
similar vision as the one described in Orso [17]. In our paper,
the field performance data collected from crowdsourcing are
used by the CrowdAdaptor framework to gradually and
automatically improve energy efficiency of all end users.

C. Energy Optimization in Testing
While optimization in energy consumption has been a

popular topic of research, particularly in the field of mobile
and pervasive computing, little effort has been spent to save
energy in the context of software testing. One of the first
efforts in this direction has recently been proposed by Li et al.
[13]. In their work that addresses the problem of energy con-
sumption in post-deployment testing, they propose a technique
to eliminate test cases in the test suite such that the test
coverage of the reduced test suite remains the same while
energy consumption is minimized. Their work assumes that
the number of test cases in the test suite can be reduced (and
reduction is desirable) without compromising its effectiveness.
Their approach is based on formulating test suite minimization
as an integer linear programming (ILP) problem with the
constraint that the coverage must not be reduced after the
minimization. After collecting the coverage and energy con-
sumption values, the problem is encoded and solved using an
ILP solver. Their experimental results show that the technique
can realize energy savings of up to 90%. Our paper tries to
achieve a similar goal as Li et al., but our approach does not
alter the test suite. On the other hand, our framework attempts

to extract energy savings by switching power states, and does
not make changes to the native computations.

Kan et al. [11] also address energy efficiency in testing
and regression testing. The work investigates general and app-
specific processor frequency assignment algorithms and their
effectiveness in testing and regression testing. Two non-
intrusive algorithms (that is, without changing the execution)
are proposed for test suite execution. Since test suites are often
executed many times in the process of software development,
by setting different processor frequencies for the executions,
an energy-efficient frequency can be determined per test case
or per test suite. A software simulator-based experiment has
been carried out to compare the effectiveness of using this
frequency versus DVFS techniques proposed by other re-
searchers. The paper reports that the single-frequency solution
outperforms other techniques in energy savings, and is also
efficient if carried forward to execute future versions of the
same software in a regression testing scenario. The current
paper is a generalization of this work and builds on top of the
default ondemand Android CPU frequency policy governor. It
considers not only single frequencies, but all the valid fre-
quency ranges supported by the governor. Another improve-
ment is that the empirical results are based on experimentation
on a real mobile device rather than using a simulator.

D. Mobile Energy Optimization
Most of current research related to software energy con-

sumption is in the area of mobile computing. Recent work by
Hao et al. [8] focuses on estimating the energy consumption of
mobile apps using program analysis. They propose a software-
driven approach that measures energy usage of mobile apps at
method, path, and source line granularities. The proposed
technique assumes that there is an input workload to a mobile
app for which an estimation of the energy consumption is
required. The workload is then executed against an instrumen-
ted version of the app, which records path information and
execution statistics, and computes the energy costs based on
an instruction-level energy profile. Estimates are annotated in
the source code for future visualization by the developer. It is
reported from their experimentation results that the energy
estimates are within 10% of the hardware-measured ground
truth. Unlike this paper, the proposed methodology does not
directly optimize the app or its executions. However, it can
serve as a valuable tool allowing energy-aware developers to
gain insights into the power consumption behavior, and make
necessary energy optimizations prior to deployment.

Pathak et al. [20] presents another piece of work on energy
profiling for mobile devices at process, thread, subroutine, and
system call granularities. Similar to Hao et al. [8], the
proposed technique requires instrumentation in addition to
native routing and system-call tracing. The work proposes an
accounting scheme for the energy consumed by wakelock-
based components and concurrent access. In a case study, they
found that 65–75% of energy consumed by free apps is
accountable to third-party advertisements. Using the proposed
profiler, they were able to identify several wakelock bugs and
I/O energy bundles (I/O intensive periods), which add up to a
significant amount of energy consumed. By visualizing the

501

consumption in the context of bundles, the authors were able
to rearrange and consolidate the energy consuming source
code, and achieved 20–65% energy savings. The in-depth case
study conducted in this work shows that energy optimization
is of critical importance to mobile computing and requires
substantial research effort.

VII. CONCLUSION AND FUTURE WORK
In this paper, we have proposed the CrowdAdaptor frame-

work. It is based on the provision of a number of factors: a
large application installation base, the success of crowd-
sourcing systems and their contributors [6], and the availa-
bility of test cases during application development. It models a
collection of energy efficiency settings as a configuration of a
virtual machine that hosts an instance of the application. By
leveraging the sheer size of the installation base, it spreads out
the execution of the test cases to different configurations
among all the devices willing to contribute. The paper also
presents three strategies to explore the configuration space to
locate configurations that are more energy efficient. The paper
has presented a multi-subject case study to evaluate Crowd-
Adaptor. The results show that CrowdAdaptor is able to
create additional power savings over the default CPU gover-
nor setting. To gain more insights into the effectiveness of
CrowdAdaptor, we would like to expand the scale of the
experimentation to include more complex apps and mobile
devices with more diversified hardware specifications. In view
of the recent trend of cloud-based mobile testing as a service,
it will be interesting to apply the proposed framework to a
cloud-based environment in order to study its feasibility and
energy savings in a commercial environment. Another direc-
tion is to extend the usage scenario to other hardware compo-
nents, and compare the effectiveness in energy savings with
the existing power management techniques.

ACKNOWLEDGMENT
This research is supported in part by the Early Career

Scheme and the General Research Fund of the Research
Grants Council of Hong Kong (project nos. 111410, 123512,
717811, and 716612).

REFERENCES
[1] K. Barr, P. Bungale, S. Deasy, V. Gyuris, P. Hung, C. Newell, H. Tuch,

and B. Zoppis, “The VMware mobile virtualization platform: is that a
hypervisor in your pocket?,” ACM SIGOPS Operating Systems Review,
vol. 44, no. 4, 2010, pp. 124–135.

[2] L. Bass, P. Clements, and R. Kazman, Software Architecture in Prac-
tice, Addison-Wesley, 2013.

[3] M. Burnett, C. Cook, and G. Rothermel, “End-user software engineer-
ing,” Communications of the ACM, vol. 47, no. 9, 2004, pp. 53–58.

[4] G. Dhiman and T.S. Rosing, “Dynamic voltage frequency scaling for
multi-tasking systems using online learning,” Proceedings of the 2007
International Symposium on Low Power Electronics and Design
(ISLPED ’07), ACM, 2007, pp. 207–212.

[5] J.-H. Ding, C.-J. Lin, P.-H. Chang, C.-H. Tsang, W.-C. Hsu, and Y.-C.
Chung, “ARMvisor: system virtualization for ARM,” Proceedings of the
Linux Symposium, 2012, pp. 93–107.

[6] A. Doan, R. Ramakrishnan, and A.Y. Halevy, “Crowdsourcing systems
on the world-wide web,” Communications of the ACM, vol. 54, no. 4,
2011, pp. 86–96.

[7] D. Ferreira, A.K. Dey, and V. Kostakos, “Understanding human-
smartphone concerns: a study of battery life,” Proceedings of the 9th
International Conference on Pervasive Computing (Pervasive ’11),
Springer, 2011, pp. 19–33.

[8] S. Hao, D. Li, W.G.J. Halfond, and R. Govindan, “Estimating mobile
application energy consumption using program analysis,” Proceedings
of the 2013 International Conference on Software Engineering (ICSE
’13), IEEE, 2013, pp. 92–101.

[9] H. Hoffmann, J. Eastep, M.D. Santambrogio, J.E. Miller, and A.
Agarwal, “Application heartbeats for software performance and health,”
Proceedings of the 15th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP ’10), ACM, 2010, pp. 347–
348.

[10] K-9 Mail, GitHub Inc, 2014, https://github.com/k9mail/k-9/wiki/.
[11] E.Y.Y. Kan, “Energy efficiency in testing and regression testing: a

comparison of DVFS techniques,” The Symposium on Engineering Test
Harness (TSETH ’13), Proceedings of the 13th International Confer-
ence on Quality Software (QSIC ’13), IEEE Computer Society, 2013,
pp. 280–283.

[12] E.Y.Y. Kan, W.K. Chan, and T.H. Tse, “EClass: an execution
classification approach to improving the energy-efficiency of software
via machine learning,” Journal of Systems and Software, vol. 85, no. 4,
2012, pp. 960–973.

[13] D. Li, C. Sahin, J. Clause, and W.G.J. Halfond, “Energy-directed test
suite optimization,” Proceedings of the 2nd International Workshop on
Green and Sustainable Software (GREENS ’13)), IEEE Computer
Society, 2013, pp. 62–69.

[14] X. Liu, P. Shenoy, and M.D. Corner, “Chameleon: application-level
power management,” IEEE Transactions on Mobile Computing, vol. 7,
no. 8, 2008, pp. 995–1010.

[15] MyTracks for Android, http://code.google.com/p/mytracks/.
[16] No-Frills CPU Control, Google, 2013, https://play.google.com/store/

apps/details?id=it.sineo.android.noFrillsCPU.
[17] A. Orso, “Monitoring, analysis, and testing of deployed software,”

Proceedings of the FSE/SDP Workshop on Future of Software
Engineering Research (FoSER ’10), ACM, 2010, pp. 263–268.

[18] V. Pallipadi and A. Starikovskiy, “The ondemand governor: past,
present, and future,” Proceedings of the Linux Symposium, vol. 2, 2006,
pp. 223–238.

[19] A. Paramanathan, M.V. Pedersen, D.E. Lucani, F.H.P. Fitzek, and M.
Katz, “Lean and mean: network coding for commercial devices,” IEEE
Wireless Communications, vol. 20, no. 5, 2013, pp. 54–61.

[20] A. Pathak, Y.C. Hu, and M. Zhang, “Where is the energy spent inside
my app?: fine grained energy accounting on smartphones with Eprof,”
Proceedings of the 7th ACM European Conference on Computer Sys-
tems (EuroSys ’12), ACM, 2012, pp. 29–42.

[21] Power Profiles for Android, Android Developers, https://source.android.
com/devices/tech/power.html.

[22] N.B. Rizvandi, J. Taheri, and A.Y. Zomaya, “Some observations on
optimal frequency selection in DVFS-based energy consumption mini-
mization,” Journal of Parallel and Distributed Computing, vol. 71, no.
8, 2011, pp. 1154–1164.

[23] B. Tokuyoshi, “The security implications of BYOD,” Network Security,
vol. 2013, no. 4, 2013, pp. 12–13.

[24] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
reduced CPU energy,” Proceedings of the 1st USENIX conference on
Operating Systems Design and Implementation (OSDI ’94), USENIX
Association, 1994, article no. 2.

[25] F. Xu, Y. Liu, Q. Li, and Y. Zhang, “V-edge: fast self-constructive
power modeling of smartphones based on battery voltage dynamics,”
Proceedings of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’13), USENIX Association, 2013,
pp. 43–55.

[26] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R.P. Dick, Z.M. Mao, and L.
Yang, “Accurate online power estimation and automatic battery behav-
ior based power model generation for smartphones,” Proceedings of the
8th IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis (CODES/ISSS ’10), ACM, 2010, pp.
105–114.

502

