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Abstract—Applications written by end-user programmers are 
hardly energy-optimized by these programmers. The end users of 
such applications thus suffer significant energy issues. In this 
paper, we propose CrowdAdaptor, a novel approach toward loca-
ting energy-efficient configurations to execute the applications 
hosted in virtual machines on handheld devices. CrowdAdaptor 
innovatively makes use of the development artifacts (test cases) 
and the very large installation base of the same application to 
distribute the test executions and performance data collection of 
the whole test suites against many different virtual machine con-
figurations among these installation bases. It synthesizes these 
data, continuously discovers better energy-efficient configura-
tions, and makes them available to all the installations of the 
same applications. We report a multi-subject case study on the 
ability of the framework to discover energy-efficient configura-
tions in three power models. The results show that Crowd-
Adaptor can achieve up to 50% of energy savings based on a 
conservative linear power model. 

Keywords—Mobile energy consumption; Test harness; Post-
deployment validation; Energy optimization; Energy saving 

I. INTRODUCTION 

Energy efficiency is a design concern when developing 
software applications. It is especially important for applica-
tions running on handheld devices such as smartphones [7]. A 
primary reason is that using a more energy-efficient version of 
an application helps a device last for a longer period without 
the need to recharge the battery. However, applications are no 
longer confined to be developed by device vendors and a 
small list of their authorized software partners. For instance, 
an ordinary person may follow the procedure presented in an 
online video to write an original application and post the latter 
to an online repository (such as the Apple App Store, various 
Android markets, or the Windows Marketplace). End users 
may then install instances of the application on their handheld 
devices, virtual machines, personal computers, and so on. For 
ease of presentation, we refer to such an ordinary person as an 
end-user programmer. 

End-user computing is emerging, especially in developing 
macro-based spreadsheet applications [3]. However, end-user 
programmers normally do not have the technical skills and 
tools to optimize their applications with respect to energy effi-
ciency for a wide range of device models or even for a specific 

model. Indeed, there are a huge number of device models, 
some of which are only available after the applications have 
been created, resulting in suboptimal energy optimizations (if 
any). End-user programmers also do not have the resources to 
adapt the application to fit the most energy-efficient option of 
every available model. As a result, these applications are often 
posted in confounding forms (that is, without a “best-fit” 
target of energy optimization) before end users install and 
execute them. Hence, the burden of making an application 
instance operate energy-efficiently lies on individual end 
users, who nonetheless also do not have the skills to optimize 
these application instances even if they would like to do so. To 
the best of our knowledge, there is no solution proposed in the 
literature to address this challenge. 

Applications written by end-user programmers may or 
may not pose security threats to the devices. One way to 
confine security threats is to execute each application instance 
in a standalone virtual machine (VM) instance [1][5]. We 
observe that this class of VM-based solution further allows 
each application to personalize the virtual machine that hosts 
the application instance. 

In this paper, we exploit the above observation and the 
availability of multiple devices, each of which is installed with 
an instance of the same application to address the above 
challenge. We propose CrowdAdaptor, a novel framework to 
gradually and collectively adapt the energy-aware configura-
tions of mobile applications toward increasingly more energy-
efficient configurations for execution in standalone VM 
instances on handheld devices. 

Specifically, an application instance instrumented with the 
CrowdAdaptor framework will be sampled by the framework 
to execute certain test cases under specific VM configurations. 
We exploit the presence of many devices that are installed 
with the same application instrumented with the Crowd-
Adaptor framework, to keep the sampling rate of each appli-
cation instance to an extremely low level to reduce the impact 
on the device to the minimal. CrowdAdaptor collects a record 
of profiling data of a test case executed under a specific VM 
configuration from each sample, and collects many such 
records for many test cases associating with many VM config-
urations generated from many devices. Based on the dataset, 
CrowdAdaptor computes an optimal configuration for each 
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kind of VM to host an instance of the application. Moreover, 
when the application instance hosted in a VM on a device is 
not used for providing profiling data, the instance may query 
CrowdAdaptor to obtain an energy-efficient option dis-
covered up to that moment for the VM so that the application 
instance can gradually save increasingly more energy when 
executed in the native mode. 

We have evaluated CrowdAdaptor in a two-subject case 
study, in which the entire projects of two popular real-world 
applications K-9 Mail [10] and MyTracks [15] (including their 
test cases) are used as subjects. We propose and apply three 
individual algorithms to select test cases and VM configura-
tions for individual application instances to execute. The case 
study results show that the two subjects can successfully and 
gradually adapt to use more energy efficient VM options with 
an estimated energy saving of 0 to 50% in terms of processor 
energy consumption after CrowdAdaptor has been enabled in 
the first 100 test suite executions against each subject using 
the conservative linear power model [26]. If more advanced 
power models1 are used, our results show that the saving can 
be even more significant: a saving of 27 to 69% (with one 
exceptional case) when using the quadratic power model, and 
a saving of 42 to 94% (with one exceptional case) on the cubic 
power model. Our results also show that for 4 out of 6 subject 
and power model combinations in the case study, the algo-
rithms can locate the configuration with the maximum energy 
savings from all the available configurations. 

This paper makes the following contributions: (i) To the 
best of our knowledge, it presents the first technique that uses 
development artifacts (namely, test cases) in crowdsourcing 
scenarios to address the energy-efficient optimization problem 
encountered by mobile applications. (ii) We report the first 
case study to show the effect of different search strategies in 
locating energy-efficient settings for two real-world mobile 
applications. 

The rest of the paper is organized as follows: In Section II, 
we present the CrowdAdaptor framework. In Section III, we 
present the research questions to be studied in the case study, 
followed by the case study and its data analyses in Sections IV 
and V, respectively. We review closely related work in 
Section VI and conclude the paper in Section VII. 

II. THE CROWDADAPTOR FRAMEWORK 
An application running on a virtual machine can take 

advantage of the CrowdAdaptor framework by operating in 
one of the two modes. First, in the native mode of operation, 
an application instance may request for the best configuration 
discovered by CrowdAdaptor so far for that specific type of 
virtual machine. Second, in the testing mode, the application 
instance will execute a specific test case against a specific 
configuration informed by CrowdAdaptor. The participating 
application instance provides CrowdAdaptor with perfor-
mance data to support the discovery of the best configuration. 

                                                           
1 A real-world power model of a physical processor is in between the 

quadratic and cubic power models. 

A. Application and Application Instances 
A device Dz executes a virtual machine instance of type 

VMi, which hosts an instance of a mobile application P 
developed by end-user programmers. VMi can be specified in 
terms of one of the elements in a set of configuration values 
denoted by � = {C1, C2, …, Cn}. A configuration value Ck is a 
collection of settings needed to define VMi. For instance, Ck 
may include (a) the processor frequency subinterval (which 
can be set to any range of available clock frequencies, such as 
a subinterval of (384, 486, 594) MHz within an interval of 
(384, 486, 594, 702, 810) MHz), (b) the size of the memory 
allocated to the VM instance, and (c) the type of WiFi connec-
tion and its power state used (such as 802.11ad using a low 
power state). For the sake of brevity and better readability, we 
will refer to a configuration value simply as a configuration. 
We assume that one of the configurations in � is a default con-
figuration independent of the CrowdAdaptor framework. 

The mobile application P is designed to accept an input x 
from its input domain X. Under an instance of VMi configured 
by Ck, the execution of x against an instance j of P generates a 
performance vector, which is profiled and denoted by Pj(x, 
VMi, Ck). There are natural variations in performance, such as 
the execution time and the number of bytes sent or received 
via VMi configured with Ck (e.g., a wireless network config-
uration of the VM). Hence, different executions of the same 
mobile application P may produce different profiled vectors. 

Without loss of generality, we define that a larger value in 
an entry of a performance vector indicates a more inferior 
performance for the entry. For instance, a value of two 
seconds of execution time is worse than a value of one second. 

B. Device Sampling and Test Case Sampling 
We recall that a test case is an input of the application P, 

and a set of test cases constitute a test suite T. Since the same 
application P can be installed on multiple devices, we model 
the crowdsourcing scenario that there is a set � of such 
devices that are online at any moment, and each device in � 
has been marked by end users to allow the executions of test 
cases against the application P. The history H of Crowd-
Adaptor, initially empty, is a sequence of performance vectors 
�Pj1(x1, VMi1, Ck1), Pj1(x2, VMi2, Ck2), ...�. 

The workflow of CrowdAdaptor starts with selecting a 
device to execute a test case t in T. CrowdAdaptor for the 
application P accepts a sampling rate of r% when it initializes. 
When a device Dz is made online, in the sense of a heartbeat 
message [2][9], the device periodically registers itself to �, 
where the registration is associated with a virtual machine 
type VMi. Each registration triggers CrowdAdaptor to deter-
mine with a probability of r% that in the current heartbeat 
period of device Dz, the device will be used by Crowd-
Adaptor for test execution. If the device is selected, Crowd-
Adaptor further determines the set �of configurations for VMi 
and uses its optimization engine (to be presented in Section 
II.D) to select one configuration Ck. 

Algorithm 1 specifies the high-level interaction between 
CrowdAdaptor and a selected device. 
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Algorithm 1 (Test case and configuration selection in CrowdAdaptor) 
1: function�selectTestCaseConfig(mode,�VMi)��{�
2: ����if�mode�=�native��{�
3: ��������C_k���best�configuration�in���for�VMi�
4: ��������if�C_k�=�ø��{��C_k���default�configuration�in����}�
5: ��������return��C_k��
6: ����}��else�if�mode�=�testing��{�
7: ��������C_k���runOptEngine(��for�VMi)�
8: ��������t���randomly�selected�test�case�from�T’���T�
9: ��������return��C_k,�t���}}�

�
 

For devices using the native mode, CrowdAdaptor simply 
returns the best configuration discovered so far for VMi at line 
3. If no configuration has been discovered yet, the default 
configuration is used (line 4). For devices using the testing 
mode, CrowdAdaptor randomly selects one test case t in a 
subset T' of T (line 8), such that none of the test cases in T' has 
received any performance data regarding virtual machine type 
VMi with configuration Ck since the last reset of T'. 
Specifically, the subset T' for VMi with configuration Ck is 
initialized as T, and whenever a selected test case t generates a 
performance vector, the test case t is removed from T'. If T' 
becomes empty after the removal, then T' is reset to T. Note 
that CrowdAdaptor does not assume that the device must 
eventually return a performance vector. Hence, the test suite T' 
is reduced only after the performance vector is received.  

After CrowdAdaptor has selected a test case t, it requests 
device Dz to both (1) execute t against the instance j of P 
hosted on the device’s virtual machine instance of type VMi 
with configuration Ck (line 9 of Algorithm 1), and (2) return 
the performance vector Pj(t, VMi, Ck). It updates the history H 
by appending Pj(t, VMi, Ck) to H (that is, to construct H^�Pj(t, 
VMi, Ck)�) whenever Pj(t, VMi, Ck) is received. If the returned 
vector Pj(t, VMi, Ck) triggers a reset of the test suite T', the 
vector is also annotated with a reset marker. 

In the above design, any reset of the test suite T' with 
respect to virtual machine type VMi with configuration Ck 
indicates that every test case has been executed at least once 
against a virtual machine instance of type VMi with configura-
tion Ck. Thus, during the reset operation, CrowdAdaptor also 
extracts those performance vectors that belong to VMi config-
ured with Ck, right after the last reset and up to the current 
reset, to construct a dataset PD of performance vectors. It uses 
PD to conduct an energy consumption assessment, which will 
be presented in the next subsection. 

C. Energy Consumption Assessment 
Some research work has been proposed to compute (or 

estimate) the energy consumptions based on a performance 
dataset [12][14][26]. Energy consumption may be computed 
from performance statistics based on an energy model. In the 
case of the processor, for instance, the relationship between 
the operating voltage or frequency of the processor and its 
energy consumption may range from linear [26], to quadratic 
[4][24], to cubic [12][22]. It is also possible for a device 
manufacturer to provide customized power profiles that 
directly correlate power states to energy consumption [21]. 

CrowdAdaptor does not invent its own proposal in this 
aspect. Rather, it builds on top of existing work. To preserve 
generality, we model an energy consumption estimation tech-
nique as a couple �PV, g�, where PV is the vector of perform-
ance metrics needed by the existing technique g. 

We recall we have presented in Section II.A that Crowd-
Adaptor profiles performance vectors. Specifically, Crowd-
Adaptor accepts such a couple �PV, g� as input to compute 
energy consumption with respect to PV. 

We have presented in Section II.B that each reset of a test 
suite triggers CrowdAdaptor to generate a dataset PD with 
respect to a virtual machine type VMi with configuration Ck. If 
there are multiple vectors in PD such that each is associated 
with the same test case, CrowdAdaptor computes a corres-
ponding mean performance vector from the former vectors, 
drop all the former vectors and add the newly computed vector 
to PD. As such, each test case in T is associated with one 
vector in PD. 

CrowdAdaptor then applies g to each vector in PD to 
compute the corresponding energy consumption values, and 
accumulate these consumption values to give one total value 
v1. Finally, CrowdAdaptor associates v1 with virtual machines 
of type VMi with configuration Ck, represented by the triple 
�VMi, Ck, v1�. To mask out natural variations in performance 
metrics, CrowdAdaptor collects multiple instances of such 
triples associated with virtual machines of type VMi with con-
figuration Ck. It then computes the mean of these consumption 
values, and uses the mean value as an energy consumption 
indicator Ek for this virtual machine type and configuration. 

D. Optimization Engine 
We have presented in the last subsection how Crowd-

Adaptor associates an energy consumption indicator Ek with 
virtual machine type VMi having configuration Ck. In this sec-
tion, we present how CrowdAdaptor finds a configuration Ck 
needed to configure a VM instance running on a device. In 
general, a configuration specifies a range of feasible values for 
each option, and such a range can be reduced into a constant. 
We first use the policy governors for processor frequency 
control in Android to illustrate the context of the problem. 

For ease of reader understanding, in the sequel, we will use 
frequency control to present our strategies. Nonetheless, we 
note that these strategies are generally applicable beyond 
frequency control. 

1) ondemand CPU Frequency Policy Governor 
Each policy governor implements its own algorithm to 

determine which processor frequency should be used based on 
historical processor utilization and other factors such as user 
interface activity. An app with root access can configure the 
behavior of a policy governor by passing parameters to the 
governor. 

The ondemand CPU frequency policy governor [18] is the 
de facto policy governor used by many Android device manu-
facturers as the default governor. It considers a subinterval 
Freq' on the sequence of discrete processor frequencies 
(denoted by Freq) supported by the VM type. Initially, the 
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subinterval Freq' spans from the minimum to the maximum 
frequency in Freq. ondemand increases the current processor 
frequency f to the maximum frequency in Freq' if the proces-
sor utilization exceeds a predefined threshold kept by the 
variable up_threshold. On the other hand, if the processor uti-
lization drops below a predefined threshold kept by the 
variable down_threshold, it decreases f by 20%, rounded to 
the nearest frequency in Freq'. By writing to the special 
operating system files sampling_rate_min and sampling_rate_ 
max, respectively, one can control the subintervals of proces-
sor frequencies used by a VM instance. 

2) Naïve Search-Based Optimization Strategy 
Consider, for example, a virtual machine type such that all 

the available processor frequencies fi are given by Freq = (f1, 
f2, f3, f4), where f1 < f2 < f3 < f4. Fig. 1 shows a directed graph 
of all the subintervals of Freq acceptable to ondemand. In 
general, the number of nodes in the directed graph is exactly 
|Freq| (|Freq| + 1) / 2, which means that the search space is in 
the order of O(|Freq|2). For VM types supporting many 
frequencies, an exhaustive search of this type of graph may 
require too many executions of the same test suite even if 
there are many devices available to run the test cases. Thus, a 
naïve search-based optimization strategy is not quite a 
solution. In the next three subsections, we formulate two 
improved search-based strategies and a simple strategy to 
address this problem. 

�

Fig. 1. A virtual processor with possible frequencies Freq = (f1, f2, f3, f4). 

3) Single-step Top-Down Search (STDS) Strategy 
Algorithm 2 shows the Single-step Top-Down Search 

(STDS) optimization engine (called by line 7 of Algorithm 1) 
for a specific virtual machine type that supports the sequence 
of frequencies Freq. The operations on Ck can be adapted for 
other factors of optimization in addition to processor 
frequency control. 

At line 2, STDS retrieves the best configuration discovered 
so far for VMi. Initially, in lines 3–4, it asks all the devices 
registered to � to execute the test cases in T' using the default 
configuration (which is the root node f1–f4 in Fig. 1 in our 
example). The algorithm then considers the next set of config-
urations by updating the from/to frequency indices one step at 
a time (lines 15 & 17). Referring to Fig. 1, the next set of 
configurations are the two lower-level nodes. 

During the search, devices registered to � will be asked to 
supply performance vectors for different configurations (lines 
6 and 8) in order to construct the performance dataset PD. 
When sufficient performance data have been collected for the 
entire test suite and a more energy-efficient configuration is 
found, STDS updates the running best configuration (lines 11–
12) for other devices executing in native mode. 

The search terminates when either the frequency indices 
converge (line 4), or if a better configuration cannot be found 
(line 9). The algorithm has been designed with a margin of 
improvement to prevent the strategy from being trapped in 
local minima. This margin threshold may vary according to 
the VM type. (In our experiment, we find that 10% is a good 
indicator as a tunable resource for processors.) 

Once the algorithm ends, the search for the best 
configuration (frequency subinterval in this case) is complete. 
In this way, a set of configurations for the same test suite has 
been profiled with energy consumption values, and the best 
configuration for the specific VM type is determined. All 
subsequent executions of the same application P on the 
profiled VM type can use this best-found configuration. 

Algorithm 2 (STDS strategy to search for a VM configuration). 
1: function�runOptEngine(�)��{ 
2: ����C_k���best�configuration�in�� 
3: ����if�C_k�=�ø��{��C_k���{from���1,�to���|Freq|}��} 
4: � if C_k.from = C_k.to or E_k�=�ø��{��return�C_k } 
5: ����C_left���updateTo(C_k) 
6: �if E_left = ø { �return C_left��} 
7: ����C_right���updateFrom(C_k) 
8: � if E_right =�ø { �return C_right��} 
9: � if E_k is�smaller�than�E_left�and�E_right�by�some�margin { 
10: �� � ��return C_k �} 
11: ����if�E_left�<�E_right��{��best�configuration�in�����C_left��} 
12: ����else��{��best�configuration�in�����C_right��} 
13:     return�best�configuration�in����} 
14: function updateFrom(C_k)��{ 
15: � return {from� C_k.from�+�1,�to���C_k}��} 
16: function updateTo(C_k) { 
17: � return {from� C_k.from,�to���C_k.to�–1}��} 

Algorithm 3�(BTDS strategy to search for�a�VM�configuration) 
1–13: (same�as�STDS) 
14: function updateFrom(C_k)��{ 
15: � return {from� (C_k.from�+�C_k.to)/2,�to�� C_k.to} �} 
16: function updateTo(C_k)��{ 
17: � return {from� C_k.from,�to���(C_k.from +�C_k.to)/2} �} 

4) Binary Top-Down Search (BTDS) Strategy 
Algorithm 3 shows the algorithm for the Binary Top-Down 

Search (BTDS) strategy, which is identical to STDS except for 
how it searches for the next set of configurations (lines 14–
17). Instead of reducing the subinterval by one step, BTDS 
shrinks it by half. The idea is to try the subintervals that are 
further away from the current subinterval so that more diverse 
subintervals are tried with fewer test executions. 

5) Incremental Random Search (IRS) 
We further propose a randomizing strategy called Incre-

mental Random Search (IRS), as shown in Algorithm 4. It 
keeps track of a randomly selected configuration Cirs, and asks 
participating devices to execute test cases against this config-
uration until the energy consumption indicator is computed 
(line 9). If the indicator shows improvement over the running 
best configuration, the latter is updated (line 11), and Cirs is 
reset to another configuration in �’ that has no PD (lines 3–6). 
The algorithm also keeps track of the number of configura-
tions already tried (using the variable trials at line 7), and 

f1 – f4 

f1 – f3 f2 – f4 

f1 – f2 f2 – f3 f3 – f4 

f1 – f1 f2 – f2 f3 – f3 f4 – f4 
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accepts a parameter max that limits the number of configura-
tions to be tried across multiple calls to runOptEngine (line 5). 
The variable trials is initialized to zero when at the beginning 
of the process of finding maximum energy savings. 

Algorithm 4 (IRS strategy to search for a VM configuration) 
1: //�C_irs is�set�to�ø�and�trials is�set�to�0�at�the�beginning�of�the�

process�of�finding�maximum�energy�saving. 
2: function�runOptEngine(�,�max)��{ 
3:� ���if�C_irs�=�ø��{ 
4: ���������'���{C_i�����|�E_i�=�ø}�
5:� ��������if��'�=�ø�or�trials���max��{��return�best�configuration�in����}�
6: ��������C_irs���randomly�selected�configuration�from��' 
7:� ��������trials ��trials�+�1�
8:� ��������return�C_irs 
� ����}�
9:� ����if�E_irs�=�ø��{��return�C_irs��}�
10: ����C_k���best�configuration�in�� 
11:� ����if�C_k�=�ø�or�E_irs�<�E_k��{��best�configuration�in�����C_irs��} 
12:� ����C_irs���ø��
13:� ����return�best�configuration�in����} 

 

III. RESEARCH QUESTIONS 
Through the case study to be presented in the next section, 

we would like to ask the following research questions in the 
context of energy savings in processors. 

RQ1: To what extent can the application adaptively save 
energy through CrowdAdaptor with the most con-
servative (linear) power model, compared with the 
default configuration of ondemand using the entire 
frequency interval? 

RQ2: What effect does the use of different processor power 
models have on CrowdAdaptor? 

The two research questions evaluate, with respect to the 
default parameter setting, the three proposed strategies that 
leverage crowd-based effort to search for a best configuration. 

IV. A MULTI-SUBJECT CASE STUDY 

A. Review of Processor Power Model 
Dynamic Frequency and Voltage Scaling (DVFS) [24] is a 

feature present in most modern mobile and desktop processors 
that allow program control of their operating frequency. When 
the operating frequency is lowered, the operating voltage may 
also be lowered accordingly in order to achieve energy sav-
ings. Suppose Freq is a sequence of clock frequencies sup-
ported by a processor. Using a similar processor power model 
as in Xu et al. [25] and Zhang et al. [26], the computation 
energy consumed by a processor (in an active state) operating 
at clock frequency f can be modeled as follows: 

� � (�� � + �	), � � Freq  (1) 

where t is the computation time, �f is a frequency-dependent 
power coefficient, u is the processor utilization resulting from 
the execution during time t, and �c represents the power 
difference between the active and idle states of the processor. 
The varying beliefs in the relationship between energy con-
sumption and f as stated in the previous section, namely, 

linear, quadratic, and cubic, can be captured by the value of �f 
with respect to f. Owing to page limit, for brevity, we refer the 
readers about the three models to the work of Kan et al. [12]. 

B. Subject Apps 
To ensure that our results bear real-world significance, we 

have experimented with two real-life open-source Android 
products K-9 Mail [10] and MyTracks [15]. A summary of the 
subjects is shown in Table I. 

K-9 Mail [10] is a popular email client with more than 
70,000+ lines of code and 40 test cases in its test suite (version 
4.508). As shown in Google Play Store, the application has at 
least five million installs as at January 27, 2014. 

MyTracks [15] is another popular app that tracks user acti-
vity using GPS sensors. It records movement statistics such as 
path, speed, and distance. The version used in our experiment 
(version 2.0.5) consists of 35,000+ lines of code and 347 test 
cases. These projects have also been used in the experiment in 
Li et al. [13] to evaluate energy-aware testing strategies. As 
shown in Google Play Store, the application has at least ten 
million installs as at January 30, 2014. 

TABLE I. DESCRIPTIVE STATISTICS OF THE SUBJECTS 

Subject Real-life 
version SLOC # of test 

cases # of installs 

K-9 Mail [10] 4.508 >70,000 40 5 million 
MyTracks [15] 2.0.5 > 35,000 347 10 million 

C. Preparation 
Both subject apps utilize the standard Android test API 

which is based on JUnit. The test suites can be executed using 
the activity manager (“am”) command via the Android Debug 
Bridge (ADB). For the experiments conducted in this paper, 
the subject apps have been preinstalled on the device under 
test. Our prototype implementation of CrowdAdaptor is split 
between an external Java app (external controller) and a pre-
installed power management app (controller app). The exter-
nal controller installs and controls the test suite executions, 
whereas the controller app adjusts the processor frequency 
range according to the external app, and records the energy 
consumption attributed to the test execution OS process. 

To ensure compatibility across heterogeneous Android 
devices, the controller app has been adapted from two open-
source Android projects PowerTutor [26] and No-frills CPU 
Control [16]. PowerTutor determines process-level energy 
consumption by periodically polling the processor utilization 
attributed to a process, and then translates it into energy values 
based on predefined power models represented by (1). No-
frills CPU Control adjusts the frequency parameters passed to 
the CPU frequency policy governor as previously explained. 
The source code related to the required features has been 
identified and adapted to build the controller app. 

D. Experimental Environment and Procedure 
The sample device that we use for experimentation is a 

commercially available Sony Xperia SP smartphone equipped 
with a 1.7 GHz Qualcomm® (Snapdragon™ S4) MSM8980T 
Dual Core CPU running on Android 4.1.2. This family of 
smartphones has also been used in other energy-related studies 
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[19]. We assume that a virtual machine of the same config-
uration is running on the device. The processor supports 14 
operating frequencies from f1 = 384 MHz to f14 = 1728 MHz. 
The firmware of the device has been updated to allow opera-
tions that require root access, namely, controlling the on-
demand policy governor. ondemand is initially configured to 
use the entire interval of frequencies (that is, it can select any 
processor frequency between f1 and f14, inclusive). To avoid 
connectivity issues not directly related to the experimentation, 
we have opted to issue testing commands using ADB over a 
direct USB connection to a desktop computer. We note that 
remote execution is also supported by ADB over TCP/IP. 

In order to evaluate the effects of different power models 
represented by (1), we have configured three separate executa-
bles of the controller app that compute linear, quadratic, and 
cubic relations of �� with respect to f. Specifically, we have 
set �� = (f / f1)m, where m = {1, 2, 3}, and set that �c = 0 to 
focus our attention on the energy effects related to frequency 
selections as opposed to the power difference when a 
processor goes into a sleep state [26]. We note that these 
values may not represent the actual power model of a physical 
device. As a result, we will only report on relative energy con-
sumptions rather than absolute values. As we have stated 
earlier in this paper, the actual values are likely to be some-
where among the three curves. For research purpose, since our 
target is to examine critically the energy saving potential of 
our proposed framework, we mainly look at the conservative 
side, which is the linear power model. 

For each subject app, we have programmed the external 
controller to execute the test suite under the configuration for 
each power model and all the valid frequency subintervals. 
This allows us to compare the consumption values of any 
frequency range in the search space, and to simulate the STDS, 
BTDS, and IRS strategies. 

In the case of K-9 Mail, each test suite execution com-
pletes within one second with negligible power dissipation. In 
order to reduce measurement errors and to obtain more accu-
rate results, we have the external controller to construct a 
performance dataset PD for each frequency subinterval (line 
13 of Algorithm 1) with 25 executions of the test suite (that is, 
T' has been reset 25 times in each configuration). In short, we 
have executed 387 (which is the sum of 40 and 347 for the 
two apps) test cases for each of 105 possible frequency 
subintervals, resulting in 141,435 sets of performance data. 

After completing all the executions for a frequency 
interval, such statistics including execution duration, operating 
processor frequency, CPU utilization, and energy consumption 
estimations are written in log files stored locally on the device. 
The ADB interface is used to manually download the files for 
analysis. We have also built a data analysis tool to simulate 
STDS, BTDS, and IRS using the consumption values collected 
in the experiments. Specifically, we let each device complete 
the execution of a test case before a new test case is simulated. 
In summary, the globally minimal energy consumptions 
achieved in our experiments with K-9 Mail are 50.5%, 32.1%, 
and 17.4% of the energy consumed by the default 
configuration for linear, quadratic, and cubic power models, 

respectively. In the case of MyTracks, the global minima are 
55.3%, 31.2%, and 6.2% of the energy consumed by the 
default configuration for each of the respective models. The 
results of each algorithm with respect to these global minima 
are evaluated in the next section. 

E. Threats to Validity 
Due to limited resources and the combinatorial effect of 

power models, frequency configurations, and subject apps, we 
are unable to expand the scale of the experiment, for instance, 
to support remote execution of more apps on multiple mobile 
devices with diverse VM types. On the other hand, we try to 
compensate by (a) ensuring that the prototype can be extended 
to support remote execution, (b) experimenting with Android, 
an open-source mobile platform that commands the market 
share of smartphones, and the same set of real-life subject 
apps used in a similar study [13], and (c) simulating heteroge-
neity in energy consumption by various power models pre-
viously used by other researchers. We have also spent our best 
effort to avoid program faults in our prototype implementa-
tion. Where possible, publicly tested third-party source code is 
adapted to implement the required features in the controller. 
The subjects used in the case study may not be completely 
developed by end-user programmers. A study of more relevant 
subjects should be conducted to generalize the result further. 
Our framework allows concurrent executions of test cases on 
different devices, and individual devices may query the 
configurations for their native execution. In the case study, we 
have not evaluated these aspects. We only measure the savings 
from the processor aspect while keeping other factors fixed or 
not monitoring them. Savings on non-virtualized components 
require further experimentation. We used PowerTutor and No-
frills CPU Control to measure the energy and performance 
data. However, both of them only provide approximate data. 
Hence, our analysis results are affected by the accuracy 
offered by these two tools. 

V. DATA ANALYSES 
Fig. 2 shows the energy consumptions of the three strat-

egies expressed as a percentage of the default DVFS setting 
(that is, f1–f14 for our case study). Since the algorithms have 
different terminating conditions, for fair and effective compa-
rison, we plot the performance of the algorithms against the 
number of configurations compared. In the case of IRS, each 
data point reported in Fig. 2 corresponds to the average con-
sumption after repeating the experiment 1000 times to average 
out the random factor at line 6 of Algorithm 4. The values on 
the x-axis (scaled to emphasize the trend of the first 20 config-
urations) correspond to the value of the parameter max. In 
Table II, we show the performance of the algorithms and the 
minimum number of configurations compared to achieve the 
maximum savings. For instance, the cell for the STDS row of 
K-9 Mail shows that the maximum energy savings achieved 
by STDS is 3% after comparing 5 configurations. This corres-
ponds to the point (5, 97) on the line of STDS in Fig. 2(a). The 
mean performance of each strategy (and each power model) is 
shown in the last sub-column of each major column (and in 
the last row, respectively). 
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Since both STDS and BTDS start the search from the 
default frequency subinterval (that is, all the available fre-
quencies), it is clear that their results will not exceed 100%. 

We find from Table II that in four out of 18 cases (the cells 
that are not shaded in gray), the strategies do not discover 
significantly more energy-efficient configurations than the 
default ondemand policy governor. In particular, three of them 
belong to the STDS strategy. From subfigures (a), (c), and (e) 
of Fig. 2, we observe that in each of the four cases, the curves 
are quite straight and short. The poor performance of these 
cases may be explained by the application behavior that only a 
limited number of frequency usages can result in significant 
energy savings. However, these two algorithms require an 
improvement in energy savings for every other configuration 
tested. If the margins of comparisons are set too large, the 
algorithms may terminate early even though there are better 
configurations. This result indicates that when exploring the 
energy-efficient configuration space, an algorithm using a 
search-based strategy should consider its level of sensitivity. 

We now focus our discussion on the conservative power 
model (that is, the linear model) to assess the impacts of 
CrowdAdaptor on energy savings. 

As shown in Table II, when max = 105 for IRS, Crowd-
Adaptor achieves a saving of 0–50% on K-9 Mail and 36–
45% on MyTracks. The average saving is 29.7%, which is 
significant. 

From subfigures (a) and (d) of Fig. 2, we also find that the 
numbers of configurations considered by STDS and BTDS 
before they terminate only differ by a small margin. In con-
trast, IRS can be instructed to search more configurations, but 
its effectiveness is realizable only if the participating devices 
can enumerate these configurations within reasonable time. 

Next, we discuss the similarities and differences in terms 
of energy savings among the three power models on the three 
algorithms. We find from Table II that the savings on linear, 
quadratic, and cubic power models are 29.7, 50.2, and 60.5%, 
respectively, which are significant. 

Across the rows, we find that BTDS achieves more savings 
than STDS. The minimum number of configuration trials 
needed to achieve the corresponding maximum savings also 

 
(a) K-9 Mail with linear power model (b) K-9 Mail with quadratic power model (c) K-9 Mail with cubic power model 

  
(d) MyTracks with linear power model (e) MyTracks with quadratic model (f) MyTracks with cubic power model 

Fig. 2.  Energy consumption and number of configurations compared. 
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TABLE II. THE MAXIMAL PERFORMANCE OF THE THREE STRATEGIES OF CrowdAdaptor IN THE CASE STUDY 

�
Max.�saving�achieved�in�% Min.�#�of�configurations�compared 

Linear Quadratic Cubic Mean Linear Quadratic Cubic Mean 

K-9 Mail 
STDS 3 27 1 10.3 5 9 5 6.3 
BTDS 0 68 42 36.7 3 11 7 7.0 
IRS 50 68 83 67.0 87 105 105 99.0 

MyTracks 
STDS 45 0 48 31.0 11 5 9 8.3 
BTDS 36 69 94 66.3 11 11 10 10.7 
IRS 45 69 94 69.0 105 105 105 105.0 

� Mean 29.7 50.2 60.3 46.7 37.0 41.0 40.2 39.4 
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follows this relative order. For all the subfigures in Fig. 2 
except subfigure (d), BTDS is the steepest, followed by STDS 
and then IRS. Therefore, BTDS is superior to STDS if fast 
convergence is required. In contrast, IRS needs to search an 
arbitrary number of configurations (or even enumerating all 
the available configurations) with slower convergence. 

As a whole, the results show that each strategy and each 
power model exhibit significant impact on energy savings. 
However, we also observe that they exhibit significant differ-
ences in effectiveness. We thus further analyze the data to 
look into the variations in the dataset. 

Fig. 3 shows the energy consumption for all 105 possible 
frequency subintervals on each subject using each power 
model. The horizontal bars span their represented frequency 
subinterval. Configurations that attribute to a fixed frequency 
(such as f1–f1) are represented by “�” markers and denoted by 
“Singleton” in the figure. The figure also shows the results of 
STDS and BTDS using “�” and “O” markers, respectively. 

As seen in the figure, energy consumptions can vary 
greatly across frequency ranges. Even for singleton subinter-
vals, the energy consumption may not have a definite correla-
tion with the frequency, which means that the search for a 
good frequency subinterval, even with a limited subinterval 
length, is a nontrivial task. The minimum and maximum 
consumptions exhibit the smallest difference in subfigure (d), 
which range from 55 to 102% of the default configuration. 
STDS and BTDS perform better than half of the frequency sub-
intervals, and achieve the global minima presented in Section 

IV.D in 4 out of 6 cases. For the purpose of baseline 
comparison, the global minima are identified by enumerating 
the energy consumptions of all the configurations. 

In response to RQ1, the case study shows that even in the 
conservative (linear) power model, CrowdAdaptor is able to 
provide significant savings in processor energy consumption 
by an average of 29.7%. 

In response to RQ2, the case study reveals that a higher 
order power model can result in more energy savings. The 
number of test executions does not seem to be significantly 
different. We do not observe significant differences in the 
trend of energy savings as more executions are used to locate 
better configurations, particularly between the curves for the 
quadratic and cubic power models. 

VI. RELATED WORK 
The framework proposed in this paper and its application 

covers a number of research areas that are purely software 
(such as testing) or involve software/hardware integration. In 
this section, we review the results of some of the research 
work from each area. 

A. Virtualization on Mobile Devices 
Traditionally, the use of virtualization focus mainly on 

high end servers and data centers. Recent advancements in 
mobile computing resources have made system virtualization 
possible on tablets and smartphones [1][5]. Barr et al. [1] 
discuss the design and implementation of VMware’s Mobile 

(a) K-9 Mail with linear power model (b) K-9 Mail with quadratic power model (c) K-9 Mail with cubic power model 

(d) MyTracks with linear power model (e) MyTracks with quadratic model (f) MyTracks with cubic power model 
Fig. 3 Energy consumption and number of executions compared.�
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Virtualization Platform, and a use case to facilitate the Bring 
Your Own Device (BYOD) business policy [23]. The hosted 
(Type 2) mobile hypervisor is built on top ARMv7 processors 
for the virtualization of the Android OS. To cater for the secu-
rity aspect of the business use case, an enterprise VM environ-
ment (maintained by corporate IT) is created on the mobile 
device with VPN tunnels formed in an isolated network name-
space. Passwords and encryption are used to control access to 
the VM and local file storage. We believe that there will be 
increasing need for energy optimization of executions in VM 
as the technology for mobile virtualization matures. 

B. Collection of Field Data from Deployed Software 
Modern software systems are expected to deploy and 

operate in highly heterogeneous environments. Therefore, it 
can be very difficult to assess the quality and behavior in an 
in-house development environment. Orso [17] discusses the 
collection and analysis of field data from deployed software to 
tackle the problem. They propose a framework to augment in-
house development tasks with field data. Using a remote agent 
and repository that reside in the deployment site, runtime field 
data are collected and transferred back to the developers for 
software maintenance and evolution. One of the usage scenar-
ios is to leverage the large number of similar installations so 
that the burden of collecting field data can be shared by many 
groups of users, each responsible for monitoring a certain 
subsystem. The data collected can be used in software mainte-
nance tasks and runtime improvements such as debugging, 
regression testing, performance tuning, and online failure 
recovery. The technique proposed in our paper shares a very 
similar vision as the one described in Orso [17]. In our paper, 
the field performance data collected from crowdsourcing are 
used by the CrowdAdaptor framework to gradually and 
automatically improve energy efficiency of all end users. 

C. Energy Optimization in Testing 
While optimization in energy consumption has been a 

popular topic of research, particularly in the field of mobile 
and pervasive computing, little effort has been spent to save 
energy in the context of software testing. One of the first 
efforts in this direction has recently been proposed by Li et al. 
[13]. In their work that addresses the problem of energy con-
sumption in post-deployment testing, they propose a technique 
to eliminate test cases in the test suite such that the test 
coverage of the reduced test suite remains the same while 
energy consumption is minimized. Their work assumes that 
the number of test cases in the test suite can be reduced (and 
reduction is desirable) without compromising its effectiveness. 
Their approach is based on formulating test suite minimization 
as an integer linear programming (ILP) problem with the 
constraint that the coverage must not be reduced after the 
minimization. After collecting the coverage and energy con-
sumption values, the problem is encoded and solved using an 
ILP solver. Their experimental results show that the technique 
can realize energy savings of up to 90%. Our paper tries to 
achieve a similar goal as Li et al., but our approach does not 
alter the test suite. On the other hand, our framework attempts 

to extract energy savings by switching power states, and does 
not make changes to the native computations. 

Kan et al. [11] also address energy efficiency in testing 
and regression testing. The work investigates general and app-
specific processor frequency assignment algorithms and their 
effectiveness in testing and regression testing. Two non-
intrusive algorithms (that is, without changing the execution) 
are proposed for test suite execution. Since test suites are often 
executed many times in the process of software development, 
by setting different processor frequencies for the executions, 
an energy-efficient frequency can be determined per test case 
or per test suite. A software simulator-based experiment has 
been carried out to compare the effectiveness of using this 
frequency versus DVFS techniques proposed by other re-
searchers. The paper reports that the single-frequency solution 
outperforms other techniques in energy savings, and is also 
efficient if carried forward to execute future versions of the 
same software in a regression testing scenario. The current 
paper is a generalization of this work and builds on top of the 
default ondemand Android CPU frequency policy governor. It 
considers not only single frequencies, but all the valid fre-
quency ranges supported by the governor. Another improve-
ment is that the empirical results are based on experimentation 
on a real mobile device rather than using a simulator. 

D. Mobile Energy Optimization 
Most of current research related to software energy con-

sumption is in the area of mobile computing. Recent work by 
Hao et al. [8] focuses on estimating the energy consumption of 
mobile apps using program analysis. They propose a software-
driven approach that measures energy usage of mobile apps at 
method, path, and source line granularities. The proposed 
technique assumes that there is an input workload to a mobile 
app for which an estimation of the energy consumption is 
required. The workload is then executed against an instrumen-
ted version of the app, which records path information and 
execution statistics, and computes the energy costs based on 
an instruction-level energy profile. Estimates are annotated in 
the source code for future visualization by the developer. It is 
reported from their experimentation results that the energy 
estimates are within 10% of the hardware-measured ground 
truth. Unlike this paper, the proposed methodology does not 
directly optimize the app or its executions. However, it can 
serve as a valuable tool allowing energy-aware developers to 
gain insights into the power consumption behavior, and make 
necessary energy optimizations prior to deployment. 

Pathak et al. [20] presents another piece of work on energy 
profiling for mobile devices at process, thread, subroutine, and 
system call granularities. Similar to Hao et al. [8], the 
proposed technique requires instrumentation in addition to 
native routing and system-call tracing. The work proposes an 
accounting scheme for the energy consumed by wakelock-
based components and concurrent access. In a case study, they 
found that 65–75% of energy consumed by free apps is 
accountable to third-party advertisements. Using the proposed 
profiler, they were able to identify several wakelock bugs and 
I/O energy bundles (I/O intensive periods), which add up to a 
significant amount of energy consumed. By visualizing the 
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consumption in the context of bundles, the authors were able 
to rearrange and consolidate the energy consuming source 
code, and achieved 20–65% energy savings. The in-depth case 
study conducted in this work shows that energy optimization 
is of critical importance to mobile computing and requires 
substantial research effort. 

VII. CONCLUSION AND FUTURE WORK 
In this paper, we have proposed the CrowdAdaptor frame-

work. It is based on the provision of a number of factors: a 
large application installation base, the success of crowd-
sourcing systems and their contributors [6], and the availa-
bility of test cases during application development. It models a 
collection of energy efficiency settings as a configuration of a 
virtual machine that hosts an instance of the application. By 
leveraging the sheer size of the installation base, it spreads out 
the execution of the test cases to different configurations 
among all the devices willing to contribute. The paper also 
presents three strategies to explore the configuration space to 
locate configurations that are more energy efficient. The paper 
has presented a multi-subject case study to evaluate Crowd-
Adaptor. The results show that CrowdAdaptor is able to 
create additional power savings over the default CPU gover-
nor setting. To gain more insights into the effectiveness of 
CrowdAdaptor, we would like to expand the scale of the 
experimentation to include more complex apps and mobile 
devices with more diversified hardware specifications. In view 
of the recent trend of cloud-based mobile testing as a service, 
it will be interesting to apply the proposed framework to a 
cloud-based environment in order to study its feasibility and 
energy savings in a commercial environment. Another direc-
tion is to extend the usage scenario to other hardware compo-
nents, and compare the effectiveness in energy savings with 
the existing power management techniques. 
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