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VARIABLE SELECTION IN ROBUST JOINT MEAN AND
COVARIANCE MODEL FOR LONGITUDINAL
DATA ANALYSIS

Xueying Zheng!', Wing Kam Fung? and Zhongyi Zhu'
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Abstract: In longitudinal data analysis, a correct specification of the within-subject
covariance matrix cultivates an efficient estimation for mean regression coefficients.
In this article, we consider robust variable selection method in a joint mean and
covariance model. We propose a set of penalized robust generalized estimating
equations to simultaneously estimate the mean regression coefficients, the general-
ized autoregressive coefficients, and innovation variances introduced by the modified
Cholesky decomposition. The set of estimating equations select important covari-
ate variables in both mean and covariance models together with the estimating
procedure. Under some regularity conditions, we develop the oracle property of
the proposed robust variable selection method. Finally, a simulation study and a
detailed data analysis are carried out to assess and illustrate the small sample per-
formance; they show that the proposed method performs favorably by combining
the robustifying and penalized estimating techniques together in the joint mean
and covariance model.

Key words and phrases: Covariance matrix, penalized generalized estimating equa-
tion, longitudinal data, modified cholesky decomposition, robustness, variable se-
lection.

1. Introduction

Longitudinal data arise more and more frequently in a variety of scientific
domains that seek insightful and comprehensive research in a branch of statisti-
cal modeling. Different from other types of data, we often assume independence
among distinct subjects but dependence within each subject; within-subject cor-
relation raises a fundamental challenge for the analysis of longitudinal data.
Liang and Zegel (M98G), a milestone in the development of methodology for
longitudinal data analysis, proposed generalized estimating equations (GEE) for
estimation of generalized linear regression coefficients. The main advantage of
their method is that even when the within-subject correlation is treated as a
nuisance parameter with an assumed parsimonious structure, GEE still brings
about a consistent estimator for the mean regression model. Subsequential, Qu!
Lindsay, and Li (2000) used the quadratic inference function (QIF) to enhance


http://dx.doi.org/10.5705/ss.2011.251

516 XUEYING ZHENG, WING KAM FUNG AND ZHONGYI ZHU

the efficiency by considering the structure of the covariance matrix. Taking ro-
bustification into account, He, Fung, and Zhu (2005) proposed the robust GEE
method to prevent the unexpected influence from outliers in a longitudinal data
set.

Ignoring the within-subject correlation can result in an inefficient estimator
of a regression model. In practice, the within-subject covariance structure itself
may be of scientific interest. Relevant topics here include component analysis
and factor analysis in multivariate statistical problems. Recent research on the
estimation of the covariance matrix includes, but is not limited to, Rothman]
Levina, and Zhu (2009), EI'Karoni (2008) and Bickel and Levina (200R).

Similar to the mean regression, covariances may be dependent on various
explanatory variables. [Pourahmadi (1999, 2000) proposed a joint mean and
covariance regression model by decomposing the covariance matrix employing
generalized autoregressive coefficients and innovation variances. Ye and Panl
(2006) extended the joint model under the framework of generalized estimating
equations which required no assumptions on the distribution of the data. By
introducing generalized autoregressive coefficients and innovation variances, their
joint model eliminated the positive definiteness constraint in estimation of the
covariance matrix. Instead, three generalized estimating equations were proposed
to estimate the covariance matrix and the mean simultaneously.

A number of developments have been followed, see [Fan, Huang, and Li
(2007), Fan"and Wi (200R)
Paxnl (2010) generalized Ye and Pan’s model to a semiparametric joint mean and
covariance model. Mao, Fung, and Zhu (2011) extended Leng, Zhang, and Pan

)

and Xu and Mackenzié (2012). Leng, Zhang, and

(2010)’s work further to a generalized partially linear varying coefficient model.
Zheng, Fung, and Zhu (2013) extended the robust estimating equation in Hel
Fung, and Zhy (P005) to the joint mean and covariance model by creating three
robust estimating equations to mitigate the effect of outliers in both mean and
covariance estimation.

Variable selection is a technique for selecting a subset of relevant covari-
ates in constructing reliable statistical models. Many variable selection methods
are based on the penalized likelihood or penalized estimating equations. Com-
monly used penalties include LASSO, ALASSO (adaptive lasso in Zoul (2006))
SCAD, and Hard penalties. In longitudinal data analysis, Fu (2003) proposed
the penalized generalized estimating equation with LASSO penalty. Other vari-
able selection criteria include AIC and C), extended by Pan (2001) and Cantoni|
Flemming, and Ronchetti (P005), respectively, to the case of longitudinal data
under the framework of GEE.

In contrast, little work has been done on covariance variable selection or
identification. Ueng and Dayd (2011) noticed that to curve the sparsity in the
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covariance matrix can improve the efficiency on mean estimation, especially in
high dimensional problems, though their main objective was still the mean esti-
mation. Within the framework of the joint mean and covariance model, [Huang
ef_all (2006) proposed covariance selection and estimation via penalized nor-
mal likelihood. Kou"and Pan (2011) proposed a penalized maximum likelihood
method for the joint model that employed variable selection in both models si-
multaneously, the covariance matrix being treated as of equal importance as the
mean.

In this paper, we develop a penalized robust estimating equations based
method to select important explanatory variables. Simulation studies have shown
that both the classical GEE and the joint mean and covariance model are sensi-
tive to outliers, see details in He, Fung. and Zhu (2005) and Zheng, Fung, and
Zhu (2013). Nevertheless, the discussion on robust variable selection methods
has been limited. We consider the SCAD and ALASSO penalties, and show
the oracle property of the proposed robust variable selection method. In data
analysis, the robust variable selection procedure can provide standard errors for
mean coefficients estimation, due to sensible covariance matrix modeling and the
accommodation of outliers in both subject and observation levels.

The remainder of this article is organized as follows. Section 2 describes
the main model and its asymptotic properties. Simulation results are given in
Section 3. In Section 4, we apply the proposed method to a hormone data set.

2. Robust Variable Selection in Joint Mean and Covariance Model
2.1. Joint mean and covariance model

Suppose that we have a sample of m subjects. Let y; = (yi1,- - - ,y,-m)T be
the n; repeated observations at time point t; = (¢;1, .. . ,tmi)T of the ith subject.
Let E(y;) = pi = (i1, - - -, ptin,)* and Cov(y;) = ¥; be the n; x 1 mean vector
and n; X n; covariance matrix of y;, respectively.

To eliminate the constraint of positive definiteness in estimation of the covari-
ance matrix ¥;, we implement a modified Cholesky decomposition by introducing
a unique lower triangular matrix ®; with 1’s as diagonal entries and a unique
diagonal matrix D; with positive diagonals such that

;%07 = D;.

Here the lower-diagonal entries of ®; are the negatives of the autoregressive
coefficients ¢; ;1 defined in
j—1
Jij = pij + Y _ gk (i — Hir),
k=1
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the linear least squares predictor of y;; based on its predecessors y;(j_1), - -, Yi1-
The diagonal entries J?j of D; are the innovation variances O'in = var(g;j), where
€ij = Yij — Yij-

We adopt linear models for the mean, generalized autoregressive parameters,
and innovation variances as in Ye_and Pan (2006 ):

pij = T8, gk = giy, log of; = 25, (2.1)

where x;;, gijr, and z;; are p X 1, ¢ x 1 and d x 1 vectors of covariates, and
B, v and X are associated parameters. The covariates g;j; and z;; may contain
baseline covariates, time and associated interactions. The log-linear model of the
innovation variance follows Cook and Weisbergs (I'983) model for the variance.
Cook and Weisberg developed a log-linear model that allows for dependence of
the variance on an arbitrary set of variables. In practice, the whole set of the
covariates is difficult to define. An orthogonal form for a polynomial of time was
recommended as the covariate for the autoregressive component by Ye and Pan
(2006):
gigk = (1, (tij — tir), (tig —tin)?, -, (i —tar) )T

The linear assumption in (2Z1) can be replaced by quadratic assumptions,
or the use of nonparametric or semiparametric models after the decomposition,
see Mao, Fung. and Zhu (2011) and Leng, Zhang, and Pan (2010). To simplify
matters we start from the linear assumption.

In the models at (21), estimation for generalized autoregressive coefficients
and innovation variances are treated as important as the estimation for the mean.
Let 0 = (01,...,0)T = (B1y- -, Bpi Y15+ -y Vg3 My - -, Aa) T, where s = p+ ¢ + d.
To select important subsets of the covariates, we assume that all interesting
explanatory variables, together with their interactions, are involved. By using
the same A, the proposed method is applicable for correlated data as long as
the correlated (or longitudinal) measurements have similar correlation structure
between clusters.

2.2. Penalized robust generalized estimating equations

We propose a penalized robustified generalized estimating equations

U@ = (i), [0, [Us(D)T,

for the mean, generalized autoregressive parameters, and innovation variances,

respectively:
m

U1(8) = Y XT (V) 0 (ui(8)) — ma, o (18])sgn(B) = 0, (2.2)

=1
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Ua(v) = > T (V) h] (7i(7)) — mg.e (7])sen(y) = 0, (2.3)
=1

Us(A) =) 2] Di(V) ™ (07 (N)) — ma. (|A])sgn(X) = 0, (2.4)
1=1

where 1 (1i(8)) = WP (1i(B)) — CL(ui(B))], hi(7i(7)) = W[V (7i(v)) —
C7(7(v))] and h}(02(N)) = WA (02 (N) — Cl’\(a?( )] act as the core of the
T

estimating equations with X; = («},...,#L ), Z; = (2L,..., Z{L) , ij =

) zn2
(9517 e ,gg(j_l ) and T; = (g4, . .. ,gg;”) .

Equations &2:3) and (E4) are in agreement with (22), in which r; in Ua(7)
and &2 in Us()\) play roles similar to that of y; in Ui(53), and can be viewed as
working responses. Here covariance estimation is treated the same mean esti-
mation in the proposed model, in the spirit of the joint model in Ye and Panl
(2006).

We specify items in (22)—(24). In Ux(y), 7 and #; are n; x 1 vectors with
Jjth components 7;; = y;; — pij and 75 = E(rij|ri, ..., ri-1)) = Zi;ll GijkTiks
where 22:1 is zero when 7 = 1. In U3( ), 6” = yi; — 9i; and €2 and o?
are n; X 1 vectors with jth components 5 . and 02], respectively, where in fact
E(e?) = o?. Moreover, T = 07l /9y is the q X m; matrix with the jth column
Oy /0y = Zk:l TikGijk and D; = diag{c3,. .. ,afni .

Again at (222)—(232), Vf = A;l/QZi, A; is the diagonal elements of ¥;,
Vﬂ = Dil / 2, Vl)‘ = ﬁ; 1 2§~3i, and Zl is the diagonal elements of f]l The sandwich
working covariance structure S = BZ-1 / 2R (5) 21 /? can be used to model the true
¥ = Cov( 2) with B; = 2diag{c}, ..., m } and R;(d) mimics the correlation
between 5 7 and 2 2 by introducing a new parameter . This idea was proposed
by Ye_and Parl (2006).

The parameter d has little effect on the estimation in practice. Consider-
ing the AR(1) structure, we can estimate ¢ by the slope from the regression of
log(&? € €2) on log(|t; — tx|). Details can be found in Example 4 in Liang and
Zeger (T986). In our simulations and data analyses, the estimate of ¢ always
falls in the interval [0, 0.3]. Moreover, results in Table 3 for simulation Study 2
also imply that we can ignore the difference between the independent and AR(1)
structure for R;(9).

Penalized robust generalized estimating equations are distinguished from
conventional generalized estimating equations in two aspects. First, the un-
desirable influence of outliers is controlled. In the core of the estimating equa-
tions, 2 (us) = w(A; Py — ), WI(7:) = w(D; P (ry — 7)), and YA (o?) =
w(g;lp(e% — 0?)). The function 9(-) is chosen to limit the influence of out-
liers in the response variable, and a common choice is Huber’s score function
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Ye(x) = min{c,max{—c,z}} for some constant ¢, ¢ = 2 in our implementa-
tion. To ensure Fisher consistency, we use Cf(,ui) = E[1/1(A;1/2(yi — i)l
C7(7i) = Bl(D; (i = #1))] and C}(o?) = B(A; (e} = o?))]. When yy's

(3 7
are normal, the three expectations depend only on the choice of constant ¢ in

Huber’s score function. We can also assign weights to each subject by diago-
nal weighting matrices W’ = diag(w., ... ,wfni)7 W, = diag(w}, ..., w); ) and

» Hing
WA = diag(w?‘l,...,wi)‘m). Similar to Qin, Zhu, and Fung (2009), the weight
function w;; is chosen to be the Mahalanobis distance

wij = w(pi;) = min {1’ [(Pz’j - mp)T;(;_l(pij - mp)]p/2}’

with p > 1, where m,, and S}, are some robust estimates of the location and scale
of p;j such as the minimum covariance determinant estimators. We introduce the
weight function to bound the influence of leverage points, covariate space only.
As indicated in He, Fung, and Zhu (2005), we can include certain covariates that
are likely to contribute to the leverage. In our simulation study, by is chosen
as the 95th percentile of the chi-squared distribution with degrees of freedom
equal to the dimension of p;; and p is fixed as 1. For simplicity and consistency,
we choose p;; = z;; for all three weighting matrices and denote them as W; =
diag(wil, PN ,wml)

Selecting variables is achieved by adding a penalty term to each estimating
equation. Usually, ¢ ) (-) is the first derivative for some penalty p_u)(-), where
[ = 1,2,3. For brevity, we replace p_a), p.2 and p_@) by pr and q.), ¢,
and ¢_3) by ¢ when no misunderstanding arises. In the simulation and data
analyses, we only consider SCAD and ALASSO penalties to show the asymptotic
properties. [Fan_and Ti (2001) defined the smoothly clipped absolute deviation
(SCAD) penalty function:

pr(101) = (oD {r(el) < 73 + “A2D 1 < o)) < a)
CL2T
+2(a—71)(|0\)1{(‘9|) > ar},

in which @ = 3.7 was suggested by the authors. As a compromise between
LASSO and Hard penalties, SCAD enjoys unbiasedness, sparsity and continuity
properties simultaneously.

As a consistent version of the L; penalty, ALASSO penalty is p, = 7|0|w, for
a known data-driven weight w. In this paper, we employ the weight w = 1/,
where 6 is the regression coefficient estimate obtained from solving (222)—(22)
without penalty.
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2.3. Asymptotic properties

We write the m subjects-based penalized estimator 6,, = ((651)T, (622)T)T
for the true value 6y = ((03")T, (652)T)T, where 65! and 6;* are the nonzero
and zero components of 6y, respectively. Denote the dimension of 63* by s; and
s = 81 + s9. The parameter space is assumed compact and the true value 6y is
in the interior of the parameter space ©.

In what follows we show that the penalized estimator 0,, exists and con-
verges to 0y at the rate Op(m_l/ 2), implying that it has the same consistency
rate as the ordinary estimator. We prove that the y/m-consistent estimator 05!
is asymptotically normally distributed and possesses the oracle property under
certain regularity conditions.

Theorem 1. Under the assumptions in S1 of the supplementary material,

(a) there exists an approzimate zero-crossing solution 0 of U(0) = 0, such that
6=0,+ Op(m_l/Q);
(b) for any \/m consistent approzimate zero-crossing solution of U(0) = 0, we
have
Tim P{6; =0, j>s1}=1.

The definition of the zero-crossing estimator 6, which is introduced in Tahn-
son, Lin, and Zeng (P00R), is given in S1 of the supplementary material. Theorem
1 implies that when we choose a proper 7,,, our robust penalized GEE approach
can simultaneously achieve /m consistency of the regularized regression coeffi-
cient estimation and consistency of variable selection.

To obtain the asymptotic distribution of 8, we take B = lim,_o0(1/m)
Cov[U%(6p)] and assume it to be positive definite. The definition of U (6y) is
given in supplement S1. We assume ki, (0) = E[ZUT(0)], km(60) = 0, k() is
continuous on O, and k,(0) is differentiable at 6y with nonsingular derivative
matrix G. Define ¢ = (g, (1051 ])s8n(61), - - - > gr,,, (1052, [)sgn(65: )T and Q =
diag{—q,. (|0o|)sgn(6p)}, where 7, is equal to either 0P or 7). depending
on whether y; is a component of By, 79, or A\g (1 < j < ). 6p; is the jth
component of 6, and 6 is the jth component of 65" (1 < j < s1).

Theorem 2. Under the conditions given in S1 of the supplementary material,
for the SCAD penalty we have

V(G + Q{0 — 05 + (G +201) tem} — Ny, (0, B™)

S1

in distribution, where B*', G351, and 25} are the s1 X s1 submatriz of B, G, and

Q corresponding to the nonzero components 0" .
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As a result, the asymptotic covariance matrix Cov(#5!) of 5! is
1 .
(G ) B G o)

Thus, our proposed robust penalized joint model based on the SCAD penalty
possesses the oracle property. Proofs of Theorems are sketched in S1 of the
supplementary material.

2.4. Implementation

An iterative MM algorithm for estimating 5, v and A is described in detail
in S2 of the supplementary material. Meanwhile, the choice of 7 is critical. In
practice, we select 7() by minimizing the robustified generalized cross-validation
(GCV) criterion

RSS3(T)/m
GCV, =
M= = dinymy

where RSSg(7) is the robustified residual sum of squares

m

> Wi (A7 (g — i),
i=1
and d(r) is the effective number of parameters, dg(7) = tr([G(8)+A(5,)] "
[G(3)]T); here B, is the solution of the penalized robust GEE when 7 is fixed.
We select 7 = argmin, GCVg.
Similar to the choice of 7() we select tuning parameters 7(2) and 7(3) by
minimizing the robustified GCV statistics

_ RSS,(1)/m o) = RSSy\(1)/m
= T dym/me SN = T

where RSS, () = S0 (Wi (D)2 (ri =) and RSS) () = S Wi (472
(62 —62))]2. d,(7) and dy(7) are the effective numbers of covariance parameters.

GCV, (1)

To avoid computational burden, we recommend selecting parameters sequen-
tially, as follows
(1) Fix 7@ = 76) = 0, choose +(V) = argminT(UGCVB(T(l));
(2) Fix M =+ and 7G) = 0, choose 72 = argmin7<2)GCVv(T(2))§
(3) Fix 7 = 7 and 72 = 7 choose 73) = argmin_ GCV,(73);
(4) The final choice is (+(1), #(2) #(3)),

The process of tuning parameter selection has merits aside from reducing the
computational burden. From a numerical point of view, minimizing GCV, and
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GCV) does not always benefit mean estimation. Sequentially selecting tuning
parameters lets us adjust and stabilize selection while balancing the importance
of estimation for the mean and the covariance structure.

3. Simulation

We conducted a simulation study to assess the performance of the proposed
estimators on three aspects: The efficiency of our robust model compared with
the corresponding non-robust version; the necessity of the robust method for the
presence of outliers; comparison with the classical GEE method under covariance
matrix misspecification.

We compared model errors of different variable selection procedures using
median of model error (MME), where model errors are evaluated, following Fan
and L (2001) as

MEg = (8~ o) XXT(5 ~ bo), ) )
ME, = (7 =70) TTT(§ = 70), MEx = (A= X)" 22" (A= ),

where X = (XT,..., X)), T =(1L,....,T)T, and Z = (ZF,..., ZL)T. We
employ average correctly fit percentage (CF%) to measure the accuracy of the
model selection procedure, where correctly fit means that the procedure selects
the exact subset model. Moreover, we compare the average numbers of regression
coefficients that are correctly shrunk (CS) to zeros. Replications of each scenario
were at 200.

We generated balanced data sets, n; = n, for convenience. In practice, our
method also works well for the nearly balanced data set (Zhou and Qu (2012)). In
the data example, we can also handle unbalanced data when the observation time
information is available; this is a reasonable assumption for longitudinal data, as
the subjects’ measurements are recorded along with the observation time.

Study 1. We simulated 100 (or 200) subjects, each of which had 5 observations
that were multivariate normal N5(u;, ;). The true values of the mean parame-
ter and log-innovation variances were 3 = (3,0,0,—2,1,0,0,0,0, —4)" and A\ =
(0,1,0,0,0,—2,0)7, respectively. Two specifications are designed for generalized
autoregressive parameters; v = (0,0,0,0,0,0,0)” and v = (0.2,0,0,0,0,0,0)7.
The mean covariates x;; = (z;j:);2; were drawn from the multivariate normal
with mean 0 and covariance matrix of AR(1) structure with variance o? =
1 and correlation parameter p = 0.5 (¢ = 1,...,100; j = 1,...,5). Then
Gijk = (Tije — Tirt)i—; and Zij = (xijt)zzl were covariates for the generalized
autoregressive parameters and the log-innovation variances. Using these values,
the mean p; and covariance matrix 3; were constructed through the modified
Cholesky decomposition from (E22)—(24). The responses y;’s were then drawn
from N(u;,%;) (1 =1,...,100).
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We consider two contaminations:

C0: randomly choose 1% of z;j1 to be z;;1 — 1;

C1: randomly choose 2% of z;j1 to be z;;; — 3 and 2% of y;; to be y;; + 10.

NC represents no contamination situation hereafter. C1 is a commonly used
contamination setting in previous research on robust methods, and we consider a
tiny contamination in CO. The initial value of the mean estimation was obtained
from the robust GEE estimation in He, Fung, and Zhu (2005) with independent
working correlation that guarantees consistency of the autoregressive parameters
and innovative parameters after the first iteration. If the covariance matrix falls
into the spanned space of the covariates, the proposed method converges quickly
under no contamination, usually in a few steps. However, in non-robust modeling,
the traditional MM algorithm has a large probability of non-convergence under
contaminations. Typically, in C1, 180 of 200 replications cannot obtain a final
estimation due to divergence of iteration in covariance estimation, even when the
initial value of estimation for the mean parameter S is close to the true value.
Moreover, in 10%-20% of replications the non-robust algorithm fails to converge
in CO, where the perturbation is almost negligible.

To check asymptotic properties, we simulated with sample size of 100 and
200 subjects. In Table 1, we list the median of model error (MME), average
correctly fit percentage (CF%), and average numbers of regression coefficients
that are correctly shrunk (CS) for both robust and non-robust methods, under
NC (no contamination) and CO (tiny contamination). Notice that the results for
CO0 were obtained based on convergence cases only. Rgeeq and Ryjasso represent
the proposed robust method employing SCAD and ALASSO, respectively. NR
is the non-robust method.

As the number of subjects m increases, the MME of both robust and non-
robust methods decreases, while CF% and CS approach 1 and the true number
of zero parameters, respectively. These are consistent with the oracle property.
The Rgeqq and NR methods perform equally well in variable selection under NC,
although an acceptable loss of efficiency for the robust method can be detected
from the slightly larger MME (in NC Rg.qq compared to NC NR). However,
under CO, the robust method apparently outperforms the non-robust method in
both estimation efficiency and variable selection. Especially in covariance model
identification, the non-robust method fails to correctly identify the innovation
variance model under small contamination in most replications.

We compare the performance of Rgeqq and Ryjesso to find that Rge.q outper-
forms Rgjgsso in B and A estimation and Ryjqss0 performs better in « estimation.
In fact, SCAD allows almost no penalty if the true parameter is far from 0 while
ALASSO penalizes all parameters, which increases the MME, especially in A. In
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Table 1. Parameter estimation and selection in Study 1.

¥=0 7 #0
n = 100 n = 200 n = 100 n = 200

MME CF% CS MME CF% CS MME CF% CS MME CF% CS
NC NRjscad
B 0.040 66.0 5.61 0.030 80.5 5.79 0.032 56.5 547 0.021 73.5 5.70
v 0.016 36.5 586 0.000 76.0 6.62 0.021 45.0 5.09 0.004 86.0 5.82
A 0.067 735 471 0.032 93.5 493 0.043 775 471 0.026 96.0 4.96
NC Rscad
B 0.050 72.0 5.68 0.040 84.0 5.82 0.039 53.0 538 0.026 73.0 5.70
v 0.018 35.5 5.77 0.000 69.5 6.49 0.025 37.5 5.00 0.006 76.0 5.67
A 0.078 925 492 0.048 100 5.00 0.060 93.0 4.92 0.040 99.5 5.00
NC Ralasso
B 0.047 54.5 541 0.033 75.5 5.73 0.049 52.0 538 0.030 69.0 5.65
v 0.012 445 6.01 0.000 72.0 6.50 0.021 47.0 5.00 0.003 85.5 5.85
A 0.242 51.0 428 0.193 73,5 471 0.318 67.0 4.57 0.265 86.0 4.84
Co NRscad
8 0.068 65.0 557 0.067 81.5 5.79 0.068 575 542 0.066 71.5 5.63
v 0.021 33.0 566 0.000 59.5 6.37 0.061 28.0 4.45 0.039 52.5 5.14
A 0331 175 3.12  0.520 15.0 3.02 0.408 19.0 3.06 0.575 12.0 2.83
Co Rscad
B 0.053 72.0 5.67 0.043 85.0 584 0.052 52.0 5.34 0.065 87.5 5.87
v 0.018 35.0 582 0.000 72.0 6.55 0.040 31.5 4.77 0.000 71.0 6.53
A 0.068 91.0 491 0.052 99.5 5.00 0.088 85.0 4.83 0.069 99.0 4.99
Co Ralasso
B 0.055 52.5 541 0.038 74.0 5.70 0.091 50.5 529 0.061 64.5 5.54
v 0.013 41.5 593 0.000 74.5 6.55 0.049 285 454 0.017 71.5 5.61
A 0.280 435 422 0224 67.5 4.63 0.550 60.0 4.49 0.420 84.0 4.82

Simulation results of median of model error (MME), average correctly fit percentage (CF%),
and average numbers of regression coefficients that are correctly shrunk (CS) for both robust
(Rscad, Raiasso) and non-robust (NR) methods, under NC (no contamination) and CO (tiny
contamination), with 200 replications.

sum, although both robust methods can resist the contamination according to
our simulations, Rg..q is preferred.

Standard errors for SCAD estimators in Study 1 for non-zero parameters
(81, Ba, Bs, P10, 71, A2, and Ng) are attached in Table S3.1 of the supplemen-
tary material. In fact, the standard errors of the robust method are close to
those of the non-robust method under no contamination and are much smaller
under contamination C'0. To investigate the influence of outliers in covariance
estimation, we list entropy losses and quadratic losses (defined in S3 of the supple-
mentary material) in Table 2. Again, we find poor performance of the non-robust
method in CO compared to the robust approach.
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Table 2. Entropy loss (L1) and quadratic loss (L2) in estimating ¥ in Study 1.

=0 v #0
n = 100 n = 200 n = 100 n = 200
Ly Lo L, Lo Ly Lo Ly Lo
NR 0.097 0.253 0.024 0.091 0.104 0.249 0.038 0.097
NC Rsead 0.117 0.318 0.036 0.129 0.135 0.361 0.054 0.144
Ratasso  0.189  0.756 0.122 0.528 0.251 1.112 0.151 0.698
NR 0.255 1.070 0.289 1.454 0.463 2.318 0.479 2.911
CO0  Rgead 0.107 0.272 0.038 0.139 0.190 0.601 0.049 0.187
Ratasso  0.215  0.900 0.134 0.610 0.436 2.289 0.286 1.473

Study 2. In this study, we looked into the effect of covariance misspecification
on mean estimation. We compared the performance of the robust penalized
joint model, denoted rpj in Table 3, method with that of robust and non-robust
penalized generalized estimating equations, denoted rpgee and pgee, methods
that assume a fixed working correlation matrix and solve (22) for the mean.
The most salient difference of the three methods is that our joint model builds
regression models after decomposing the covariance matrix, while RPGEE and
PGEE treat the covariance matrix as a nuisance and the marginal variance of
y; is estimated from the sample. In PGEE, we set the tuning parameter of the
Huber function ¢ as 1,000 and the weight W = I when solving (Z3) for the mean.

Under the same mean set-up as in Study 1, we considered the covariance
structures working independence (IN), auto-regressive (AR), and exchangeable
(EX) with correlation parameter 0.5. We compared the performance of eight
estimators: rpj,, and rpj;, are robust joint models with independent and AR(1)
correlation structure assumptions for Cov(e?) in (E4), respectively; rpgeee;,
rpgeeeg,, and rpgeee.; (or pgeee;,, pgeeeqr, and pgeee.,) are robust (or non-
robust) penalized GEE estimations with IN, AR and EX as working correlation
matrices. We adopted SCAD penalty in the study.

Table 3 lists the results under NC and C1. In the table, we employed MRME
(the median of relative model error) to compare the performance of the eight
estimators

ME (model error) of the estimator

ME of PGEE estimator with true covariance matrix

In the absence of outliers (NC), in general, pgee estimators performed slightly
better than rpgee estimators which in turn were better than the rpj estimators.
Besides, rpj;, and rpjq, had similar performances, which suggests that the choice
of the § in (E3) has little effect on the mean and covariance estimation. As a
result, we fixed 6 = 0 in a later application.
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Table 3. Simulation results for Study 2.

IN AR EX
MRME CF% CS MRME CF% CS MRME CF% CS
IDjar 1.09 920 5.92 1.33  76.0 5.74 1.87 67.5 5.63
IDjin 1.09 920 5.92 1.34  75.5 5.73 1.87  67.5 5.63

rpgee,,  1.04 945 5.94 1.12 96.0 5.96 1.56 92.0 5.92
NC rpgee., 1.04 93.5 5.93 1.20 92.0 5.92 1.15 91.0 5.91
rpgee;n, 1.07 93.0 5.93 1.33 80.0 5.79 1.92 69.0 5.65
pgeeqr 0.99 91.5 591 1.01 94.5 5.95 1.41 89.5 5.90
pgeees 0.99 90.5 5.90 1.11 86.5 5.87 1.01 83.5 5.83
Pgeein 1.00 91.5 5.92 1.26 72.0 5.70 1.83 63.0 5.57

IDjar 0.08 92.0 5.92 0.08 95.5 5.96 0.10 89.0 5.89
IDjin 0.08 92.0 5.92 0.08 95.5 5.96 0.10 89.0 5.89
rpgeeqr  0.16 90.0 5.90 0.11 88.5 5.88 0.13 83.0 5.83
Cl rpgeee, 0.16 89.5 5.90 0.10 88.5 5.88 0.13 88.0 5.88
rpgee;,  0.15 89.0 5.89 0.09 76.5 5.75 0.11 71.0 5.68
pgeeqr 0.95 30.0 4.94 0.62 67.0 5.63 0.76 62.5 5.99
pgeeey 0.96 30.5 4.93 0.58 65.0 5.58 0.75 67.5 5.62
pPgeein 0.92 28.0 4.88 0.52 54.0 5.43 0.63 48.0 5.34

Simulation results of median of relative model error (MRME), average correctly fit percentage
(CF%), and average numbers of regression coefficients that are correctly shrunk (CS) under NC
(no contamination) and C1 (contamination), with 200 replications. rpjar and rpji, are robust
joint models with independent and AR(1) correlation structure in (E4), respectively; rpgeee;n,
rpgeeeqr, and rpgeeees (Or pgeeein, pgeeeqr, and pgeee.) are robust (or non-robust) penalized
GEE estimations with IN, AR, and EX as working correlation matrices.

Under C1, rpj estimators improved substantially over the rpgee and pgee
estimators. Without the bounded score on the mean estimator, pgee mean esti-
mators collapsed in any of the IN, AR or EX covariance structure, as all MRME’s
for rpj and rpgee are less than 1 in C1. By adopting the robust estimator for the
mean, rpgee estimators had reasonable performances on the mean estimation.
However, rpj estimators further improved the performance of the mean estima-
tor (variable selector). Standard errors for the mean estimators can be found in
supplementary Table S3.2, which reveals the influence of outliers on the mean
estimation.

Table S3.3 of the supplementary material lists entropy losses and quadratic
losses on covariance matrix estimation. When there is no contamination, rpgee
and pgee had comparable performances, and better than rpj. However, under
C1, rpgee and pgee can be seriously affected by the contamination.

4. Data Analysis

In this section, we illustrate our method analyzing the hormone data that
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has been analyzed be [Fung et al] (2002), He, Zhu, and Fung (2002), Fan, Qin!
and Zhu (2007), and Qin, Zhu. and Fung (P2009). The data set contains 492
observations of progesterone level within a menstrual cycle, collected from 34
women clinical participants. In our model, the response variable y;; is the log-
transform of progesterone level and the observation time is ¢;;, apart from which
patient’s age and body mass index (BMI) are recorded. Two objectives were
considered when we implemented the robust variable selection method in the
joint mean and covariance model to this hormone data set: to accommodate the
influence of outliers and leverage points, and to detect outliers in the data set;
to identify statistically significant covariates in linear models of both mean and
covariance matrix.
The starting mean model we proposed was

Yij = Bo + BrAge; + B2 BMI; + Bstij + Puty;
+085Age; x BMI; + BgAge; X tij + B7BMI; x tij + €5

T
= x5 + €ij.

For the covariance model, we followed the model in (1) and chose the correspond-
ing covariates as

gijk = (1, (tij — tir), (tij — tir)%, (tig — tin)®)T, 2ij = @45

Three estimators were under consideration: rpj is the robust penalized joint
model; pj is the penalized joint model proposed by Kou and Paxl (2011); gee
is the widely-used GEE estimator. Table 4 summarizes estimators of the mean
parameters with standard errors. We noticed that the joint models (rpj and
pj) are more parsimonious than gee as they choose time as the only significant
variable. This is consistent with previous research that found that both Age,
BMI, their interaction and interactions with time are not statistically significant
in the model. We found that the regression coefficients for Time obtained by rpj
and pj rather different, the non-robust pj estimator is affected by outliers.

Estimates with standard errors for the generalized autoregressive coefficients
and innovation variances are summarized in Table 5. We found that the cubic
polynomial of time is statistically significant for autoregressive coefficients ~ in
all fits. Standard errors in non-robust method are larger than those in the robust
method. Unlike estimators of generalized autoregressive coefficients, significant
covariates for innovation variances were not found in our analysis. Due to the
existence of outliers, the non-robust method failed to select significant covariates
for innovation variances.

Outlier detection was practiced with our procedure. By investigating the
standardized residuals s;; and the weight function w;;, we found one observation-
level outlier (observation 10) and one subject-level leverage point (subject 18).
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Table 4. Estimators of the mean parameters 8 and standard errors (inside
brackets) for progesterone data.

Intercept Age BMI Time Time? Agex BMI Agex Time BMIx Time

rpj  0.837 0 0 0.691 0 0 0 0
(0.074) () () (0.053) () (-) ) )

Pj 0.892 0 0 0.562 0 0 0 0
(0.078) () (-)  (0.056)  (-) -) ) )

gee  0.870 1.684 -2.671 0.709 0.186 -4.829 1.493 0.701
(0.126) (2.180) (2.928) (0.049) (0.085)  (50.09) (0.827) (0.857)

In the table, rpj represents the robust penalized joint model; pj represents penalized joint model
proposed by Kouand Pan (2011); gee is the traditional GEE estimator. Working independence
is considered.

Table 5. Estimates of the generalized autoregressive parameters vy and inno-
vation variance parameters A for progesterone data.

et 72 V3 V4

rpj 0902  -2.726  2.339  -0.579
(0.056)  (0.203)  (0.190)  (0.050)
pj  0.882  -2.623 2185  -0.523
(0.063)  (0.234)  (0.223)  (0.060)

A1 A2 A3 A4 As A6 A7 Ag
Ipj -1.111 0 0 0 0.180 45.30 0 -1.317
0103) () ) () (01200 (3450) () (2.435)

pj -0.882  -1.527 -0.283 0.8  0.029 5698 0175 1313
(0.099) (1.398) (1.761) (0.086) (0.115) (29.03) (1.699) (2.044)

pij = (AGE;, BMI;) contributed to the weight functions w;; in our robust
method. Subject 18 is a leverage point which had not been identified before;
it has an extremely high BMI of 38 that heavily downweights the cluster of ob-
servations from the patient. A careful inspection of the standardized residual s;;
tells us that case 10 is the most extreme point with s;; = —6.09. The proges-
terone level of the 10th observation for subject 1 (case 10) is 2.46, which is very
different from its neighborhood observations 9 and 11 measured one day before
and one day after. This inconsistency has not been noticed in the literature. All
other thirteen observations of subject 1 range from 8.5 to 13.4 and in particular,
this observation was the lowest progesterone level in the data set. We concluded
that case 10 of subject 1 is a clear outlier. The influence of this outlier on the
parameter estimates is detailed in Table S4.1 of the supplementary material.
We also noticed that some observations have large standardized residuals, such
as cases 117, 334 and 372, due to the fact that they are extreme values of the
progesterone level within a subject. The effects on these potential outliers are
downweighted by our robust method in the estimation of mean and covariance
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parameters.
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