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SUMMARY

Althoughmuch is known about themolecular players
in insulin signaling, there is scant information about
transcriptional regulation of its key components.
We now find that NUCKS is a transcriptional regu-
lator of the insulin signaling components, including
the insulin receptor (IR). Knockdown of NUCKS leads
to impaired insulin signaling in endocrine cells.
NUCKS knockout mice exhibit decreased insulin
signaling and increased body weight/fat mass along
with impaired glucose tolerance and reduced insulin
sensitivity, all of which are further exacerbated by a
high-fat diet (HFD). Genome-wide ChIP-seq iden-
tifies metabolism and insulin signaling as NUCKS
targets. Importantly, NUCKS is downregulated in
individuals with a high body mass index and in
HFD-fed mice, and conversely, its levels increase
upon starvation. Altogether, NUCKS is a physiolog-
ical regulator of energy homeostasis and glucose
metabolism that works by regulating chromatin
accessibility and RNA polymerase II recruitment to
the promoters of IR and other insulin pathway
modulators.

INTRODUCTION

Type 2 diabetes (T2D) and one of its major risk factors, obesity,

are pandemic problems (Friedman, 2009). Inherent genetic pre-

dispositions in combination with an inappropriate diet and a

sedentary lifestyle contribute to the pathogenesis of these

disorders (Ramachandrappa and Farooqi, 2011). T2D is charac-

terized by high blood glucose levels due to relative insulin defi-

ciency, the result of reduced insulin secretion and/or impaired

insulin sensitivity (Gustavsson et al., 2008). Defective response
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to insulin often leads to serious metabolic disorders, including

hyperglycemia, dyslipidemia, and hypertension (Leavens and

Birnbaum, 2011). A better understanding of insulin signaling is

critical for the development of therapeutic strategies toward

T2D and obesity. Insulin activates a diverse array of biological re-

sponses by binding to its receptor (IR), which then phosphory-

lates and recruits different adaptors such as the insulin receptor

substrate (IRS) (Vollenweider et al., 2002). Phosphorylated IRS

proteins coordinate the activation of numerous well-defined

downstream signaling pathways, including the phosphatidylino-

sitol 3-kinase (PI3K) cascade (Bozulic and Hemmings, 2009).

PI3K signaling culminates in the activation of a multitude of

kinases including Akt/PKB and PKCz, which elicit the biological

action of insulin such as glycogen synthesis through GSK-3 or

protein synthesis via mTOR (Manning and Cantley, 2007). Insulin

signaling can be regulated at multiple levels (Taniguchi et al.,

2006), with transcriptional control, microRNA-mediated post-

transcriptional control (Trajkovski et al., 2011), posttranslational

modifications (Zick, 2005), changes in subcellular localization

(Inoue et al., 1998), protein degradation (Rui et al., 2002), and

modification of phosphoinositol phospholipid all known to play

a part (Sleeman et al., 2005). While many studies focus on nega-

tive regulators associated with impaired insulin signaling, the

positivemechanisms and their dysregulation during insulin resis-

tance are less explored.

As part of a directed screen to identify molecules that respond

to dietary cues in adipose tissue during development of

obesity and insulin resistance, we report the identification of

NUCKS (nuclear ubiquitous casein and cyclin-dependent kinase

substrate) as a regulator of insulin signaling. NUCKS was identi-

fied as a highly phosphorylated protein ubiquitously expressed in

vertebrates (Ostvold et al., 1990). NUCKS can be phosphory-

lated by casein kinase 2, cyclin-dependent kinases, DNA-acti-

vated protein kinase, and second messenger-activated kinases

(Meijer et al., 1991). Expression of NUCKS is deregulated in inva-

sive breast cancers (Drosos et al., 2009; Zió1kowski et al., 2009).

These studies implicated NUCKS in signal transduction and
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regulation of cell-cycle-related processes and DNA repair. How-

ever, the function of NUCKS beyond these signaling pathways

has not been reported. In this paper, we characterize the function

of NUCKS in the regulation of energy homeostasis and glucose

metabolism. Expression of NUCKS is inversely correlated with

body mass index (BMI) in humans and body fat in mice. Ablation

of NUCKS results in weight gain, increased body fat accumula-

tion, glucose intolerance, and insulin resistance. NUCKS plays

a critical role in insulin signaling and is required for efficient Akt

activation following insulin stimulation. Using chromatin immu-

noprecipitation sequencing (ChIP-seq), we show that NUCKS

is a key chromatin modifier and transcriptional regulator of a

number of insulin signaling genes, including IR.

RESULTS

Identification of NUCKS
To identify regulators of energy homeostasis and glucose meta-

bolism, we performed liquid chromatography-mass spectrom-

etry (LC-MS) analysis using white adipose tissue (WAT) lysates

from mice fed a low-fat diet (LFD) or a high-fat diet (HFD). We

performed reductive dimethyl (DM) labeling experiments (Fig-

ure 1A) of mixed peptides from LFD and HFD WAT samples, fol-

lowed by LC-MS analysis. In addition, the samples were also

subjected to label-free analysis. In this screen, we identified

more than 5,000 proteins, including several proteins detected

in LFD samples with significant iBAQ (intensity based absolute

quantification) value but absent in HFD samples (refer to Tables

S1 and S2 for complete proteomic analysis). Among these pro-

teins, we decided to focus on NUCKS, which was only detected

in LFD WAT samples (Figures 1B and 1C). NUCKS resembles

high-mobility group A (HMGA) proteins in amino acid composi-

tion and DNA binding domain structure. Despite being the

most modified protein in the genome (Wi�sniewski et al., 2008),

the physiological role of NUCKS is very poorly defined in the liter-

ature. The dramatic reduction of NUCKS in WAT from HFD-fed

mice prompted us to investigate if NUCKS may have important

functions in metabolic regulation.

Reduced NUCKS Levels in WAT of High-BMI Human
Subjects
Clinical relevance of NUCKS in obesity was evaluated by

measuring NUCKS expression levels in the subcutaneous fat

of human subjects with differing BMIs (Figure 1D). Overweight in-

dividuals (BMI > 25 kg/m2) displayed more than 40% reduction

in NUCKS protein levels when compared to lean individuals

(BMI < 23 kg/m2) (Figure 1E). Expression levels of NUCKS

showed a strong inverse correlation with BMI (Figure 1F). A sig-

nificant inverse correlation was also observed between NUCKS

expression and HOMA-IR (Figure 1G). Furthermore, like in hu-

mans, expression of NUCKS was drastically reduced in the

WAT of mice fed an HFD for 16 weeks when compared to age-

and sex-matched C57Bl6 mice on an LFD (Figures 1H and 1I).

Interestingly, IR levels were also lower in tissues from HFD-fed

mice (Figures 1H and 1I), suggesting a positive correlation

between NUCKS and IR expression. Besides WAT, NUCKS

was also markedly reduced in the liver, hypothalamus, and mus-

cle of HFD-fed mice (Figures S1A–S1F). On the other hand,
C

NUCKS protein and mRNA levels increased in starved MIHA

hepatocytes (Figures S1G and S1H) and several endocrine cells

(data not shown), indicating that NUCKSmay be amolecular link

between physiological cues and signaling that regulates energy

homeostasis.

NUCKS, present in the cytoplasm and nucleus (Grundt et al.,

2002, 2007), is composed of two nuclear localization signals

(NLS) and one DNA binding domain (DBD) (Figure S1I). We

examined whether NUCKS plays a direct role in insulin signaling.

First, we generated 3T3-L1 cells with stable knockdown (KD) of

NUCKS by using lentivirus-mediated small hairpin RNAs. Insulin-

stimulated Akt phosphorylation was reduced in NUCKS KD cells

(Figure S1J). To test the generality of our observations regarding

the role of NUCKS in insulin signaling and to evaluate whether

the KD effects were specific, we transfected another insulin-

responsive cell line, AML12 hepatocytes, with three independent

small interfering RNAs (siRNAs) against NUCKS and examined

insulin-induced Akt phosphorylation in these cells. Lowering

NUCKS expression by independent siRNAs resulted in reduced

Akt phosphorylation under all conditions (Figure S1K). Indeed,

NUCKS was required for insulin-mediated Akt phosphorylation

in a dose- (Figure S1L) and time-dependent (Figures S1M and

S1N) manner, suggesting that NUCKS is possibly an essential

positive regulator of insulin signaling. Taken together, these re-

sults indicate a strong inverse relationship between NUCKS

expression and obesity in mice and humans and suggest a

potential role of NUCKS in regulating insulin signaling.

Increased Body Weight and Reduced Energy
Expenditure in NUCKS Knockout Mice
To determine the physiological role of NUCKS in vivo, we gener-

ated NUCKS knockout (KO) mice (Figures S2A–S2D). NUCKS

KO animals were born at the expected Mendelian ratios and

were morphologically indistinguishable from their wild-type

(WT) littermates at birth (Figure S2E). NUCKS KO mice progres-

sively gained more weight when compared with WT mice over

the following 4 months when fed a normal chow diet (NCD) (Fig-

ure 2A). By 3 months of age, as compared to WT mice, NUCKS

KO mice show significantly higher body fat (Figure 2B). Weight

gain in NUCKS KO mice was mainly from liver and both visceral

and subcutaneous fat (Figure 2C). We then performed indirect

calorimetry analysis of paired NUCKS KO andWT mice. NUCKS

KO mice on the NCD consumed more food (Figure 2D) and ex-

hibited lower energy expenditure (Figure 2E) and lower basal

metabolic rates (Figure 2F) as compared to the age-matched

WT mice. The respiratory exchange rate was higher in the

NUCKS KO mice during the day (Figure 2G). Body temperature

was comparable between WT and KO mice fed a normal diet

(Figures S2F and S2G). NUCKS KO mice also displayed lower

locomotor activities at night and for the whole day as compared

to the age-matched WT mice (Figures 2H and 2I). The obese

phenotypes in NUCKS KO mice are exacerbated by an HFD.

NUCKS KO mice on an HFD gained significantly more body

weight (Figure 2J; Figure S2H) and body fat over time (Figure 2K).

The perirenal fat pads of the NUCKS KO mice were enlarged

(Figure S2I) with larger adipocytes compared to those of the

WT animals (Figure S2J). Hematoxylin and eosin staining and

oil red O staining showed more lipids in the cytosol of the KO
ell Reports 7, 1876–1886, June 26, 2014 ª2014 The Authors 1877
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Figure 1. Identification of NUCKS by Mass Spectrometry-Based Whole-Proteomics Analysis

(A) Workflow for mass spectrometry (MS) analysis of adipose tissues from mice on a low-fat diet (LFD) and high-fat diet (HFD). Two approaches (label-free and

reductive dimethyl labeling [DM]) were carried out to compare the protein expression levels between LFD and HFD samples.

(B) The table shows iBAQ (intensity-based absolute quantification) values in the label-free approach and peptide intensity in the DM approach. NUCKS was

detected in LFD, but not in HFD, samples for both approaches.

(C) MS spectrum of a detected NUCKS peptide further confirms its presence in an LFD sample, but not in an HFD sample. The asterisk (*) in red corresponding to

the heavy form of the NUCKS peptide was either below the noise level (very low expression) or not expressed at all.

(D) Immunoblot analysis of NUCKS expression in human subcutaneous fat. b-Actin was used as a loading control. The body mass index (BMI) of individuals is

shown on the top.

(E) Quantification of normalized NUCKS protein expression in human subcutaneous fat (n = 29).

(F) Correlation between normalized NUCKS expression and BMI in humans (n = 29).

(G) Correlation between normalized NUCKS expression and the HOMA-IR index in humans.

(H) Immunoblot analysis of NUCKS and IR expression in WAT 6-month-old mice fed a low- or high-fat diet (LFD or HFD, respectively) (n = 4).

(I) Real-time analysis of NUCKS and IR mRNA expression in WAT 6-month-old mice fed with a low- or high-fat diet (LFD or HFD, respectively) (n = 4).

*p < 0.05, **p < 0.01. See also Figure S1.
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Figure 2. Increased Body Weight and Fat Mass in NUCKS KO Mice Fed an NCD and HFD

(A) Body weight of WT and KO mice was monitored from 8 to 24 weeks of age (n = 9). Data are representative of three independent cohorts of mice.

(B) MRI of 3-month-old WT and KO mice. The fat and lean mass were expressed as absolute weight (n = 22).

(C) The weight of liver and visceral adipose tissues from the perirenal fat pad and subcutaneous fat (SC) from 6-month-old WT and KO mice in absolute weight.

Eight pairs of mice from three independent cohorts of mice fed a normal diet were analyzed.

(D) Food intake by 3-month-old WT and KO mice monitored over 5 days using the metabolic chamber (n = 6). Data are representative of two independent

experiments.

(E) Oxygen consumption as a measure of energy expenditure by 3-month-old WT and KO mice; shown are the average readings from six mice monitored

over 24 hr.

(F) Basal metabolic rate taken as an average of the oxygen consumption rates measured from 7 a.m. to 5 p.m. (n = 6).

(G) Respiratory exchange rate (RER) of 3-month-old WT and KO mice monitored over 5 days (n = 6).

(H) Total horizontal (X) activity of 3-month-old WT and KO mice monitored over 5 days (n = 6).

(I) Total vertical (Z) activity of 3-month-old WT and KO mice monitored over 5 days (n = 6).

(J) Body weight of WT and KO mice were monitored weekly beginning at 2 months of age for 4 months. Data are representative of three independent cohorts of

HFD-fed mice (n = 10).

(K) MRI of WT and KO mice before (2 months old) and 10 or 16 weeks after HFD (n = 10).

*p < 0.05, **p < 0.01. See also Figures S2 and S3.
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Figure 3. Glucose Intolerance, Impaired Insulin Sensitivity, and Insulin Signaling in NUCKS KO Mice

(A) Glucose tolerance tests performed on 3-month-old WT and KO mice fed a normal diet (n = 7).

(B) Area under curve (AUC) was calculated based on the GTT data and is shown on the right panel.

(C) Insulin tolerance tests performed on 3-month-old WT and KOmice fed a normal diet (n = 7). Glucose levels in ITT tests were expressed as fold change relative

to time 0 before insulin injection.

(D) Area above the curve (AAC) was calculated based on the ITT data.

(E–G) Hyperinsulinemic euglycemic clamping of 10-week-old NUCKS WT mice (n = 5) and NUCKS KO mice (n = 4). Glucose infusion rate (GIR) was expressed

as mg/kg.min (E). Percent suppression of hepatic glucose production by insulin was expressed as percentage (F). Glucose disappearance rate was expressed

as mg/kg.min (G).

(H–K) GTT (H–I) and (J and K) ITT of WT and KO mice fed a HFD for 4 months (n = 7). AUC and AAC are shown on the right of these panels, respectively.

(L) Phosphorylation of Akt in liver were checked before and 15min after insulin stimulation (1 U/kg) in 3-month-old NUCKSWT and KOmice. Each lane represents

extracts obtained from individual mouse, and data are representative of three independent cohorts of mice (n = 4 for each experiment).

(legend continued on next page)
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livers (Figures S2K and S2L). No significant differences were

observed in liver triglyceride (TG), high-density lipoprotein

cholesterol, or low-density lipoprotein/very low-density lipopro-

tein cholesterol levels betweenWT and KOmice on an HFD (Fig-

ures S3A and S3B) and in serum triglyceride (TG) or free fatty

acid (FFA) levels between the normal NCD-fed KO and WT

mice (Figures S3C and S3D). Serum leptin and adiponectin levels

were comparable between WT and KO mice fed with the NCD

(Figures S3E and S3F). Consistent with the obese phenotype,

leptin levels were elevated while those of adiponectin were

decreased in HFD-fed NUCKS KO mice (Figure S3G and S3H).

Together, these results, especially the finding that nutrient over-

load exacerbates the metabolic phenotypes in the absence of

NUCKS, suggest that NUCKS plays a role in metabolic homeo-

stasis in vivo.

Impaired Glucose Tolerance and Reduced Insulin
Sensitivity in NUCKS KO Mice
To test whether NUCKS is directly involved in the regulation of

glucose metabolism and insulin signaling at the organism level,

we first measured resting and fasting glucose and insulin levels

of NCD-fed NUCK KO and WT mice. There was no difference

in resting or fasting glucose levels between the two groups,

but resting insulin levels were higher in NUCKS KO mice

compared withWTmice (Figures S4A and S4B; data not shown).

Glucose tolerance tests (GTT) showed that NCD-fed NUCKS KO

mice had higher blood glucose levels at the 30 and 60 min time

points and significantly worse maintenance of glucose levels

during the 120min testing period (Figures 3A and 3B). Consistent

with reduced insulin sensitivity, the KO mice exhibited slower

reduction of glucose levels after insulin injection in insulin toler-

ance tests (ITT) (Figures 3C and 3D). To confirm the insulin-resis-

tance phenotype and the role of NUCKS in regulating glucose

homeostasis, we performed hyperinsulinemic euglycemic clamp

experiments. NUCKSmice exhibited a reduced glucose infusion

rate (Figure 3E), enhanced hepatic glucose production (Fig-

ure 3F), and impaired glucose uptake (Figure 3G). Resting blood

glucose levels in HFD-fed NUCKS KO mice were significantly

elevated compared with HFD-fedWTmice (Figure S4C). Resting

plasma insulin levels were significantly elevated in both HFD-fed

NUCKS KO and WT mice, with NUCKS KO mice showing more

than twice the levels of plasma insulin than the WT mice (Fig-

ure S4D). Similar to the body-weight phenotype, glucose intoler-

ance and insulin resistance were also markedly exacerbated in

HFD-fed NUCKS KO mice when compared with HFD-fed WT

mice (Figures 3H–3K). To investigate the molecular basis under-

lying the observed metabolic phenotype, including reduced

insulin sensitivity in vivo, we next examined insulin signaling in

tissues of WT and KO mice. Consistent with decreased insulin

signaling observed in cell lines (Figures S1J–S1N), insulin-stimu-

lated phosphorylation of Akt was significantly attenuated in livers

andWATof NUCKSKOmicewhen comparedwithWTmice (Fig-
(M) Quantification of P-Akt normalized to total Akt is shown on the right (n = 4).

(N) Strength of insulin signaling in WAT as judged by Akt phosphorylation after 15

(O) Quantification of P-Akt normalized to total Akt is shown on the right (n = 4). D

(P and Q) Akt phosphorylation before and 15 min after insulin stimulation in liver,

*p < 0.05, **p < 0.01. See also Figure S4.

C

ures 3L–3O). Similarly, insulin-dependent Akt phosphorylation

was also suppressed in the WAT and livers of NUCKS KO mice

on an HFD (Figures 3P and 3Q). Consistent with lower p-Akt acti-

vation in NUCKS KO livers, we observed higher levels of mRNAs

encoding gluconeogenic enzymes fructose 1, 6 bisphosphatase

1 (Fbp1) and glucose-6-phosphatase (G6P) in the KO livers (Fig-

ure S4E) and higher glucose output in the KO mouse primary

hepatocytes (Figure S4F). Taken together, these results support

the notion that NUCKS is a positive regulator of glucose meta-

bolism and insulin signaling in vivo.

Genome-wide Approach Identifies NUCKS as a Key
Integrator of Metabolic Signaling
It is clear from our assays that NUCKS has an important role in

regulating glucose homeostasis and loss of NUCKS leads to

obesity. Toget anunbiasedhandle on theplausiblemechanism(s)

of NUCKS action, we performed a genome-wide ChIP-seq for

NUCKS in primary hepatocytes. We successfully mapped

25 mln reads to the mm9 genome and detected NUCKS binding

at 10,203 sites, 60% of which were located in the proximity of a

transcription start site (TSS) (Figure 4A). The peaks of NUCKS

occupancy were often broad, with some around 1 kb (Figure 4B),

suggesting that multiple NUCKS molecules could bind coopera-

tively to the same genomic loci. Gene Ontology and signaling

pathway analyses of NUCKS-bound genes revealed that 16 of

the top 20 pathways were metabolic and biosynthetic processes

and that the insulin signaling pathway was represented with high

significance in the top categories, with cytokine secretion/

signaling being the other most prominent module (Figures 4C

and 4D). We also performed de novo motif discovery to identify

specific sequences bound by NUCKS (Figure 4E). Interestingly,

we identified motifs resembling those bound by SP1, which has

been previously shown to be involved in the regulation of the IR

(Brunetti et al., 2001; Foti et al., 2003, 2005). Since ChIP

sequencing revealed that NUCKS bound the TSS of a few mem-

bers of the insulin signaling pathway (Table S3), we validated

theChIP data and also checkedwhether NUCKSbinding to these

genes regulates their expression. Indeed, NUCKS could bind the

promoter regions of a few genes in the insulin pathway, including

IRb, IRS1, IRS2, and PDK1 (Figure 4F). These results suggest

that NUCKS-mediated regulation of key insulin signaling genes

like IR and some other targets like PDK1, Rictor, andDeptor con-

tributes to the metabolic phenotype of the NUCKS KO mice.

NUCKS Regulates IR Transcription by Opening
Chromatin and Enhancing Pol II Recruitment
We next examined the molecular mechanism of NUCKS-medi-

ated transcription, especially that of IRb. We generated lucif-

erase reporter constructs driven by the first 2,000 bp of the

mouse or human IR promoter region. Overexpression of NUCKS

led to increased IR transcription, whereas NUCKS-DC, a C-ter-

minal deletion mutant lacking the DBD (Figure S1I), failed to
min of insulin stimulation (1 U/kg). Each lane represents an individual mouse.

ata are representative of two independent cohorts of mice.

and WAT obtained from mice fed an HFD for 4 months.
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induce the IR promoter (Figure 5A), suggesting direct binding of

NUCKS to the IR promoter/enhancer is essential for IR transcrip-

tion. According to a previous report, HMGA1, one of the high-

mobility group family members, binds to a specific probe from

the IR promoter and regulates IR transcription (Foti et al.,

2003). An electrophoretic mobility shift assay found that NUCKS

could directly bind to the human and mouse IR probes (Fig-

ure 5B). The specificity of the interaction was confirmed using

cold competition (Figure 5B, lane 3). To gain further mechanistic

insights, we checked if NUCKS regulates openness of chromatin

and Polymerase II (Pol II) recruitment to the IR promoter. Using

the formaldehyde-assisted isolation of regulatory elements

(FAIRE) method (Simon et al., 2012), which assesses the level

of open chromatin, we found that depletion of NUCKS in primary

hepatocytes decreased the degree of open chromatin in the IR

promoter at the TSS (Figure 5C). Concomitantly, loss of NUCKS

led to reduce Pol II recruitment at the TSS (Figure 5D). We

checked IR mRNA levels in primary hepatocytes from WT and

KO mice fed an NCD and HFD and loss of NUCKS leads to a

reduction of IRmRNA (Figure 5E). Wemade use of in vitro mouse

embryonic fibroblast (MEF)-differentiated adipocyte culture

derived from WT and KO mice. Akt phosphorylation was signifi-

cantly attenuated in NUCKS KO MEF-differentiated adipocytes

(Figures 5F and 5G).Moreover, we found that IRbprotein expres-

sion was dramatically reduced in the KO MEF adipocytes when

compared with WT cells (Figures 5F and 5G), along with a corre-

sponding reduction in IRb transcript levels (Figure 5H). Consis-

tent with the findings in primary cells (Figures 5E–5H), we also

observed dramatic changes of IR in adipose and liver tissue

from HFD-fed mice (Figures 5I–5K). As the ChIP-sequencing re-

sults showed that NUCKS also binds to members of the insulin

signaling pathway, we checked the mRNA and protein levels of

those members between WT and KO mouse hepatocytes and

found that NUCKS also regulates the expression of Deptor and

PDK1 (Figures S5A and S5B), suggesting that NUCKS might

target a few key players in the insulin signaling pathway (Fig-

ure 5L). Further study will delineate how NUCKS regulates these

genes in a context- and cell-type-specific manner. Taken

together, these results define the molecular mechanism of

NUCKS action and explain how it transcriptionally regulates IR

and other members of the insulin signaling pathway and hence

impacts insulin signaling.

DISCUSSION

Numerous studies have focused on the transcriptional, transla-

tional, and posttranslational modifications of insulin, insulin
Figure 4. Genome-wide ChIP Sequencing of NUCKS

(A) Genome-wide distribution of NUCKS-bound sites. Approximately 60% of pea

(B) Density of NUCKS binding across all RefSeq annotated TSSs.

(C) NUCKS-bound promoter regions of genes enriched very significantly for met

(D) Gene Ontology analysis of pathways from NUCKS ChIP-seq results. These pe

significance), including the insulin pathway (false discovery rate q-value = 6.2761

(E) NUCKS-bound sites were enriched for motifs associated with SP1 (e-value =

(F) Quantification of DNA enrichment after immunoprecipitation with NUCKS-spe

quantitative PCR and normalized to DNA input. Chromatin enrichment of each m

elsewhere in the chromosome.

All data shown are representative of three independent experiments.

C

secretion, and insulin-driven signal transduction (Emanuelli

et al., 2000; González-Rodrı́guez et al., 2010; Taniguchi et al.,

2006). However, mechanisms that respond to dietary cues

and/or contribute to direct transcriptional regulation of insulin

signaling components are poorly elucidated. In this study, by

using unbiased proteomic and genomic approaches, we report

the identification and characterization of NUCKS as a transcrip-

tional regulator of metabolic processes and insulin signaling.

This study demonstrates that NUCKS regulates energy and

glucose homeostasis. NUCKS expression inversely correlates

with obesity in both humans and mice, and it is sensitive to star-

vation or HFD. Mice deficient in NUCKS in all the tissues are

obese, with increased body fat content, and display decreased

locomotor activities, hyperphagia, and reduced energy expendi-

ture. Whole-body deletion of NUCKS also leads to glucose

intolerance and impaired insulin sensitivity, accompanied by

elevated serum insulin levels. We further show that NUCKS reg-

ulates transcription of members of the insulin signaling pathway,

including IR (by binding to IR promoter/enhancer sequences),

and regulates its chromatin context to allow Pol II recruitment

at the TSS. Much like NUCKS, it is well documented that IR

expression levels correlate with starvation and nutritional status

both in tissue culture cells and in animals (Hatada et al., 1989;

Puig and Tjian, 2005). The genome-wide ChIP-seq approach

also showed with very high confidence (false discovery rate

q-value = 6.27616 3 10�31) that insulin signaling is among the

top signaling pathways regulated by NUCKS. This unbiased

approach not only ratified our observations that the insulin pro-

moter is bound and regulated by NUCKS but also identified a

few key players in insulin signaling that could be both bound

and regulated by NUCKS. These findings could explain how

NUCKS positively regulates AKT downstream of insulin in an

IR-dependent and IR-independent manner and may suggest a

more physiological manner in which these processes are regu-

lated in nature.

Although complete loss of IR leads to early lethality in mice,

loss of IR in different tissues or within regions of a given tissue

has very distinct phenotypes (Kitamura et al., 2003). While it is

tempting to speculate that NUCKS-mediated effects are largely

due to loss of IR, it is also important to discern that NUCKS loss is

not synonymous with IR loss. NUCKS deletion leads only to par-

tial loss of IR, and other HMGAproteinsmay compensate for loss

of NUCKS in some tissues or cells. In addition, NUCKS has other

targets that regulate insulin signaling (Figure 5L), and it is not un-

common for transcription factors like nuclear factor kB or Myc to

regulate multiple members of a signaling cascade to regulate the

physiological effect (Ang and Tergaonkar, 2007; Cildir et al.,
ks are within 5 kb of a known transcription start site (TSS).

abolic processes.

aks are also highly enriched for genes involved in several pathways (with similar

6 3 10�31).

8.3 3 10�66) and STAT1/3 (e-value = 4.6 3 10�58).

cific antibody from mouse primary hepatocytes. ChIP DNA was quantified by

otif has been documented as fold change over enrichment of a control region
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2013; Dang, 2012; Tergaonkar, 2006). Since loss of NUCKS is

also seen in individuals with a high BMI, and since NUCKS levels

could be modulated by diet, this offers the exciting possibility

that NUCKS could be a worthwhile molecular target for thera-

peutic intervention. Given the number of signaling cascades

that covalently modify NUCKS (Wi�sniewski et al., 2008), it is

highly likely that modifications of NUCKS could link insulin

signaling and energy homeostasis to changes in myriad cellular

processes regulated by these enzymes.

In summary, we have identified NUCKS as a positive regulator

of members of the insulin signaling pathway, including IR

transcription, that could play a role in regulating insulin signaling.

Future studies directed at understanding its tissue- and stimuli-

specific downstream targets may provide promising therapeutic

approaches in the treatment of obesity and insulin resistance.

We also hypothesize that unlike studying the function of mice

with complete depletion of single-candidate targets like IR,

which are not reflective of human physiology, molecules like

NUCKS, which are central regulators of a few key molecules

and levels of which respond clinically in response to diet, provide

a better understanding of physiology. Given that signaling com-

ponents are shared amongmany pathways, the subtle regulation

of multiple inputs rather that ‘‘on-off’’ regulation of a key member

ensures easy return to homeostasis. Hence, nature uses rheo-

stats like NUCKS that fine-tune response via signaling through

additive inputs.

EXPERIMENTAL PROCEDURES

Animal Welfare

All animals were kept on a 12 hr light-dark cycle. All procedures involving

animal experimentation were approved by the Institutional Animal Care and

Use Committee of A*STAR.

Chromatin Immunoprecipitation Assays, Formaldehyde-Assisted

Isolation of Regulatory Elements Analysis, and ChIP-Seq Library

Preparation

Cells were crosslinked with 1% paraformaldehyde for 20 min at room temper-

ature. The reaction was quenched for 10 min at room temperature by adding
Figure 5. NUCKS Positively Regulates Insulin Receptor Transcription

(A) 293T cells were transfected with the indicated plasmids and harvested for a d

used for luciferase activity measurement, and firefly luciferase activity was normal

insulin receptor (hInsR-luc) and mouse insulin receptor (mInsR-luc) promoter fu

eliminates this effect. Levels of NUCKS proteins are shown in the panel below.

(B) Electrophoretic mobility shift assay with NUCKS binding site probes with lysat

(the sequences are shown below the figure).

(C) Open chromatin (% of input) in the mouse IR promoter region in WT and KO

(D) Fold enrichment of Pol II binding to the mouse IR TSS region in WT and KO m

(E) IR mRNA levels in WT and KO mouse primary hepatocytes with the NCD and

(F) WT and KOMEFs were differentiated into adipocytes and harvested on day 8 a

an independent clone of an MEF.

(G) Quantification normalized levels of IR, p-Akt(S473), and pAkt(T308) in (F).

(H) Transcript level of IR in day 8 adipocyte culture quantified by quantitative RT

representative of two or three independent experiments.

(I and J) Western analysis of liver and WAT extracts obtained from mice on an HF

(liver, n = 16; adipose, n = 11).

(K) Quantitative RT-PCR analysis of IR transcript in WAT (n = 9). Expression leve

(L) Scheme of NUCKS’s mechanism to regulate insulin signaling. Black arrows st

phosphorylation by upstream kinase.

*p < 0.05, **p < 0.01. See also Figure S5.

C

0.125 M glycine and the washed cell pellet frozen at �80�C. Cell pellets

were lysed and centrifuged at 12,0003 g for 1 min at 4�C. Sheared chromatin

generated from cell pellets by sonication was incubated with NUCKS antibody

or control rabbit immunoglobulin G overnight at 4�C. The immunocomplexes

were precipitated with 20 ml preblocked protein A-agarose beads (1 hr at

4�C) and washed extensively. Reversion of crosslinking was performed over-

night by heating samples and input at 65�C, and DNA was purified using the

QIAquick spin kit (QIAGEN). Open chromatin was prepared by the FAIRE

method (Simon et al., 2012) and followed by quantitative PCR analysis.

Libraries were prepared using a standard Illumina pipeline and sequenced

using a 50 bp single-end format on an Illumina HiSeq 2000 as previously

described with minor variations (Migliori et al., 2012). The Sample Prep oligo-

nucleotide kit (Illumina) was used for barcoding/multiplexing.

Statistics

Statistical analysis between two groups was performed by Student’s t test

using PRISM software. Statistical significance of ITT and GTT curves was

determined by comparing differences in area above the curve or under the

curve. Data are presented as mean ± SEM (*p < 0.05, **p < 0.01, ***p <

0.001). For further details, please refer to Supplemental Experimental

Procedures.
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The GEO accession number for the genome-wide ChIP sequencing of NUCKS

data reported in this paper is GSE58100.
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