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Abstract 

Dispersion in time-oscillatory electro-osmotic flows in a slit micro-channel under the 
effect of kinetic sorptive exchange at walls is theoretically investigated using the 
homogenization method.  The two walls of the channel are considered to be made up of 
different materials, and therefore have different zeta potentials and sorption coefficients. 
A general expression for the Taylor dispersion coefficient under different zeta potentials 
as well as various sorption conditions at the walls is derived analytically. The dispersion 
coefficient is found to be dependent on the oscillation frequency, the Debye parameter, 
the species partition coefficient, the reaction kinetics and the ratio of the wall potentials. 
The results demonstrate that the presence of wall sorption tends to enhance the dispersion 
when the oscillation frequency is low, but the effect is negligible in high-frequency 
oscillatory flows. Moreover, it is found that the dispersion coefficient could be 
significantly changed by adjusting the relative wall potentials for low-frequency flows.  

Key words: oscillatory electro-osmotic flows, dispersion, sorptive walls, homogenization 
method 

1. Introduction 

Electro-osmotic flow (EOF) describes the movement of fluid induced by an applied 
electric potential. Due to the electric double layer (EDL) effect formed at the contact 
interface of an electrolyte and a solid surface, the ions within the EDL migrate under the 
external electric field and leads to the movement of the adjacent fluid by virtue of viscous 
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momentum transfer. As species separation and mixing in micro- and nano-scales are key 
components in many microfluidics applications, a number of studies have been conducted 
on hydrodynamic dispersion in steady EOFs. For examples, dispersion in EOFs with low 
wall potentials[1, 2], high wall potentials[3-5], dispersion due to combined pressure-driven 
and EOF[6], and dispersion under different temperature distribution[7]. 

Compared to steady flows, oscillatory EOF driven by alternating currents (AC-driven 
EOF) has become more and more popular due to the wide applications and huge 
advantages. Dispersion in pressure-driven oscillatory flows was extensively investigated 
in macro-scales, the dispersion coefficient was found to be dependent on the oscillating 
frequency, velocity magnitude, cross-sectional geometry and Schmidt number[8-10].  
However, studies on dispersion in oscillatory EOFs are relatively rare. Huang and Lai[11] 
analyzed the mass transport driven by oscillatory EOFs in a two-dimensional micro-
channel. The results demonstrated that species separation could be well achieved by 
proper choices of Debye length, oscillation frequency and tidal displacement. Wang and 
Wu[12] examined the pressure-driven oscillatory flows in micro-channels with slippy 
walls and electro-viscous effect. Kuo et al.[13] studied a directional EOF due to a 
nonlinear interaction between oscillatory axial electrical fields and oscillatory wall 
potential. Paul and Ng[14] further investigated the dispersion behavior in such kind of 
flows. They found that the phase of wall potential plays an important role in determining 
the dispersion coefficient magnitude. The minimum and maximum dispersion 
coefficients can be achieved when the phase difference between the two wall potentials is 
zero and π , respectively. In addition, wall reaction plays an important role on the 
dispersion in micro-scale channels. Misra and Chandra[15] studied the oscillatory EOFs in 
a porous micro-channel. Ghosal[16] analyzed the effect of analyte sorption on EOFs, and 
pointed out that sorption of charged species at the wall could influence the zeta potential 
in a non-uniform manner[17]. Recently, Ramon et al.[18] investigated the dispersion in 
oscillatory EOFs in a cylindrical micro-tube with reactive wall by applying an approach 
similar to Ng[19]. It was shown that the presence of wall reaction could enhance the 
dispersion process. 

In reality, rectangular micro-channels are typically fabricated in a way that the materials 
of the two parallel plates are different. As a result, a more general model which can take 
into account the effects of different zeta potentials and sorption at the two walls is 
desirable. In the present study, dispersion of oscillatory EOFs in a two-dimensional 
micro-channel with different wall potentials as well as reversible sorption effect is 
theoretically investigated.  Results are presented to illustrate how the dispersion 
coefficient may depend on the various controlling parameters. 

2. Problem formulation 

In the present study, we consider time-oscillatory electro-osmotic flow (EOF) between 
two parallel plates with possibly different wall potentials and sorption. A sinusoidally 
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time-varying axial electric field is imposed on the system such that oscillatory EOFs 
could be generated inside the two-dimensional microchannel. As illustrated in Fig. 1, a 
Cartesian coordinate system is used where the x -axis represents the axial direction and 
the y -axis is perpendicular to the flow direction. The distance between the top and 
bottom walls is h2 .  The time-varying electric field E  is given by 

[ ]tieEE ωRe0=                                                                                                                     (1) 

where 0E  is a constant amplitude, i is the complex unit, Re stands for the real part, ω  is 
the angular frequency, and t  is time. 

The fluid is assumed to be isothermal, Newtonian and incompressible. In the absence of a 
pressure gradient, the governing equation for the flow field is 

E
y
u

t
u

eρµρ +
∂
∂

=
∂
∂

2

2

                                                                                                           (2) 

with the no-slip boundary conditions at the walls 

0=u  on hy ±=                                                                                                                  (3) 

where u  is the flow velocity along the axial direction, ρ  the fluid density, µ  the 
dynamic viscosity of fluid, and eρ  the electric charge density. 

Now we proceed to consider the electric field. Assume the electric charge density eρ  
satisfies the Boltzmann distribution, i.e. 

02 sinhe
B

zeezc
R T
ψρ

 
= −  

 
                                                                                                     (4) 

where e  is the electron charge, z  is the valence of the co- and counter- ions in the carrier 
liquid, 0c  is the ion concentration far from the charged walls, BR  is the Boltzmann 
constant, T  is the absolute temperature, and ψ  is the electric potential. Here, for the 
static Boltzmann distribution to be valid, the flow frequency shall be limited to around 1 
MHz to avoid EDL relaxation effects[14]. The electric potential can be expressed by the 
following Poisson equation, 

η
ρψ e

y
−=

∂
∂

2

2

                                                                                                                       (5) 

where η  is the permittivity of the liquid medium. 
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Substituting Eq. (4) into Eq. (5) and applying the Debye-Hückel approximation as the 
electric potential ψ  is assumed to be sufficiently small (i.e. 25≤ψ  mV), we obtain the 
following linear equation, 

ψψ 2
2

2

k
y

=
∂
∂

                                                                                                                         (6) 

where 
2/1

0
222

−









=

cze
TRk B η

 is known as the Debye parameter, or the reciprocal of the Debye 

length. 

The boundary conditions for Eq. (6) are prescribed by the wall potentials. In the present 
study, we consider the case where the top and bottom walls may have different potentials, 
i.e. 

1ψψ =  on hy =                                                                                                               (7a) 

2ψψ =  on hy −=                                                                                                             
(7b) 

Equation (6) along with Eq. (7) yields the following solution for ψ : 

( )
( )

( )
( )

2 2
1

cosh sinh1 1( )
2 cosh 2 sinh

ky ky
y

kh kh
ψ ψψ ψ

 ′ ′+ −
= +  

 
                                                                 (8) 

where 2ψ  is the ratio of the two wall potentials 

2 2 1/ψ ψ ψ′ =                                                                                                                         (9) 

Substituting Eqs. (8) and (1) into Eq. (2), the governing equation becomes 

( ) ( )
( )

( ) ( )
( )

2
2 22

2

1 cosh 1 sinh1 Re
2 cosh 2 sinh

i t
HS

ky kyu u k U e
t y kh kh

ωψ ψ
ν

 ′ ′+ −∂ ∂  = + +    ∂ ∂  
                           (10) 

where 
µ
ψη 10E

U HS
−

=  is the so-called Helmholtz-Smoluchowski velocity. 

Let us introduce the following form of velocity profile 

( ) ( )[ ]tieyftyu ωRe, =                                                                                                         (11) 

where ( )f y  is a complex function of y.  Substituting Eq. (11) into Eq. (10), we obtain 
the governing equation for f as below: 
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( ) ( )
( )

( ) ( )
( )

2
2 22

2

1 cosh 1 sinh
2 cosh 2 sinhHS

ky kyi d ff k U
dy kh kh

ψ ψω
ν

 ′ ′+ −
= + +  

 
                                        (12) 

with the boundary conditions 

0=f  on hy ±=                                                                                                               
(13) 

The solution can be obtained readily as follows 

( ) ( )
( )

( )
( )

( ) ( )
( )

( )
( )

2
2 2

2 2

1 cosh cosh 1 sinh sinh
2 cosh cosh 2 sinh sinhHS

y ky y kykf U
k h kh h kh

ψ λ ψ λ
λ λ λ

    ′ ′+ −
= − + −     −     

(14) 

where 2 /iλ ω ν=  or (1 ) /iλ δ= +  in which 2 /δ ν ω=  is the Stokes layer thickness. 

3. Mass transport 

For the solute dispersion, we consider that the materials of the two walls are different 
whereby the species in the fluid undergo reversible sorption at the top wall while the 
bottom wall is chemically inert. The dispersion is governed by the convection-diffusion 
equation, i.e. 

2

2

2

2

x
CD

y
CD

x
Cu

t
C

∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

                                                                                           (15) 

with the boundary conditions, 

( )s
s CC

t
C

y
CD −=

∂
∂

=
∂
∂

− ακ     on hy =                                                                         (16a) 

0=
∂
∂

y
C

  on hy −=                                                                                                         (16b) 

where C  is the concentration of the mobile phase (mass of species dissolved in unit  
volume of fluid), sC  is the concentration of the immobile phase (mass of species 
adsorbed on unit surface area of wall), D  is the molecular diffusivity, κ  is the reaction 
rate constant and α  is a partition coefficient of the chemical. Here, we only consider the 
first-order reaction at the wall. Also, we assume that the wall lining is so thin that only 
the integrated effects across the layer need to be considered. When at equilibrium, sC  
can be related to C  by, 

α=
C
Cs                                                                                                                               (17) 
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We now introduce the homogenization approach with the multiple-scale perturbation 
analysis. For EOFs in micro-channels, the assumptions for the homogenization approach 
to be applicable are typically satisfied[14]. Adopting three sharply distinct time scales 0t , 

1t  and 2t  to represent the three different transport processes, i.e. diffusion across the 

channel ( 2 /h D ), advection along the axial direction ( / HSL U ), and dispersion along the 

axial direction ( 2 /L D ), respectively, where 

tttttt 2
210 ,, εε ===                                                                                                          (18) 

where L is the channel length, ε  is a parameter much smaller than one, the relative 
significance of terms in Eq. (15) can be indicated by ε  as below 

2

2
2

2

2

x
CD

y
CD

x
Cu

t
C

∂
∂

+
∂
∂

=
∂
∂

+
∂
∂ εε                                                                                       (19) 

subject to the boundary conditions 

( )s
s CC

t
C

y
CD −=

∂
∂

=
∂
∂

− ακ     on hy =                                                                         (20a) 

0=
∂
∂

y
C

    on hy −=                                                                                                       (20b) 

In the same manner, the concentration and the time derivative can be expanded as follows: 

( ) ( ) ( ) ( )0 1 22, ,C x y t C C Cε ε= + + +                                                                                 (21) 

( ) ( ) ( ) ( )0 1 22,s s s sC x t C C Cε ε= + + +                                                                                 (22) 

2

2

10 tttt ∂
∂

+
∂
∂

+
∂
∂

→
∂
∂ εε                                                                                                   (23) 

At the leading order ( )1O , Eq. (19) becomes 

( )

2

02

0
y
CD
∂
∂

=                                                                                                                      (24) 

with the boundary conditions 
( )

( ) ( )( )00
0

sCC
y

CD −=
∂
∂

− ακ     on hy =                                                                           (25a) 

( )
0

0

=
∂
∂

y
C

    on hy −=                                                                                                    (25b) 
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Equations (24) and (25b) imply that 
( ) ( )( )21

00 ,, ttxCC =                                                                                                             (26) 

Also, Eq. (25a) suggests 
( ) ( )00 CCs α=                                                                                                                       (27) 

At ( )εO , the concentration 1C  is governed by: 

( ) ( ) ( ) ( )

2

120

1

0

0

1

y
CD

x
Cu

t
C

t
C

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

                                                                                    (28) 

and the boundary conditions become 

( ) ( ) ( )
( ) ( )( )11

0

1

1

01

s
ss CC
t

C
t

C
y

CD −=
∂
∂

+
∂

∂
=

∂
∂

− ακ     on hy =                                                  (29a) 

( )
0

1

=
∂
∂

y
C

    on hy −=                                                                                                     (29b) 

Taking time and cross-sectional average of Eq. (28), we obtain 
( )

0
1

0

=
∂
∂

t
C

                                                                                                                          (30) 

Substituting Eq. (30) back into Eq. (28), the equation is modified to 
( ) ( ) ( )

2

120

0

1

y
CD

x
Cu

t
C

∂
∂

=
∂
∂

+
∂
∂

                                                                                                (31) 

with the boundary conditions 

( ) ( )
( ) ( )( )11

0

11

s
s CC
t

C
y

CD −=
∂
∂

=
∂
∂

− ακ     on hy =                                                                 (32) 

In view of linearity, the first order concentration 1C  can be expressed as: 

( ) ( )[ ]
( )

( )xX
x

CeyBC ti +
∂
∂

=
0

1 0Re ω                                                                                       (33) 

( ) [ ]
( )

s
ti

ss X
x

CeBC +
∂
∂

=
0

1 0Re ω                                                                                              (34) 

where B  is a complex function of y  that will be derived later. 

At ( )2εO , Eqs. (19) and (20) give 
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( ) ( ) ( ) ( ) ( ) ( )

2

22

2

021

0

2

1

1

2

0

y
CD

x
CD

x
Cu

t
C

t
C

t
C

∂
∂

+
∂

∂
=

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

                                                  (35) 

with the boundary conditions 

( ) ( ) ( ) ( )
( ) ( )( )22

0

2

1

1

2

02

s
sss CC
t

C
t

C
t

C
y

CD −=
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

− ακ     on hy =                                   (36a)                               

( )
0

2

=
∂
∂

y
C

    on hy −=                                                                                                    (36b) 

Taking time and cross-sectional average of Eqs. (35), (36a) and (36b), we obtain  
( ) ( )

2

02
*

2

0

Re
2
1

x
CfB

RR
D

t
C

∂
∂







 −=

∂
∂

                                                                                   (37) 

where 1 / 2R hα= +  is the retardation factor, the angular brackets 
 
denote the cross-

sectional average and the asterisk denotes the complex conjugate. Hence, 

*Re
2
1 fB
R

DTw −=                                                                                                         (38) 

is a dispersion coefficient due to the oscillatory flow. 

Now we proceed to solve the function B , which is the key towards the determination of 
the dispersion coefficient. To better illustrate the problem, we introduce the normalized 
parameters as below, 

2/ ,  ,  / ,   ,  ,  /
/HS

HS

Bf f U B y y h k kh h h
U h D

λ λ α α′ ′ ′ ′ ′ ′= = = = = =                             (39) 

It is easy to express f ′  in non-dimensional form as  

( ) ( )
( )

( )
( )

( ) ( )
( )

( )
( )

2
2 2

2 2

1 cosh cosh 1 sinh sinh
2 cosh cosh 2 sinh sinh

y k y y k ykf
k k k

ψ λ ψ λ
λ λ λ

    ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ −′
′ = − + −     ′ ′ ′ ′ ′ ′−     

 

                                                                                                                                          (40) 

The function B′  is governed by, 
2

2
2

d BB f
dy

γ
′

′ ′ ′+ =
′

                                                                                                             (41) 

with the boundary conditions 
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dB B
dy

β
′

′ ′− =
′

 on 1y′ =                                                                                                    (42a)                                                        

0dB
dy
′
=

′
on 1y′ = −                                                                                                          (42b) 

where ih
D
ωγ ′ =  , 

( )
( )
( )2

/ 1
/ 1

ii h Da
i D

κ ωωκαβ α
κ ω κ ω

+
′ ′= =

+ +
 and 

D
hDa

2κ
=  is the Damkohler 

number. 

The solution of Eq. (41) can be obtained as, 

( ) ( ) ( )
( )( ) ( )

( )

( )
( )( ) ( )

( )

2
2

1 2 2 2 2 2

2
2

2 2 2 2

1
cosh sinh cosh

2 cosh

1
sinh

2 sinh

k
B C y C y y

k

k
y

k

ψ
γ γ λ

λ λ γ λ

ψ
λ

λ λ γ λ

′ ′+
′ ′ ′ ′ ′ ′ ′= + +

′ ′ ′ ′ ′− −

′ ′−
′ ′+

′ ′ ′ ′ ′− −

( )
( )( ) ( )

( ) ( )
( )( ) ( )

( )
2 2

2 2
2 2 2 2 2 2 2 2

1 1
cosh sinh

2 cosh 2 sinh
k k

k y k y
k k k k k k

ψ ψ
λ γ λ γ

′ ′ ′ ′+ −
′ ′ ′ ′− −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − − −
      

                          (43) 

The unknown parameters 1C  and 2C  can be determined by applying the boundary 
conditions.  Their expressions are presented in Appendix. 

Substituting Eqs. (40) and (43) into Eq. (38) and taking cross-sectional average, we 

obtain the dimensionless dispersion coefficient 2 2 /
Tw

Tw
HS

DD
U h D

′ =  as below,                   

( ) ( ) ( ) ( )* * * *
* *

1 1 1 1* * * *

sinh sinh sinh sinh1 Re
4Tw

k k
D C E C F

R k k
γ λ γ λ γ γ

γ λ γ λ γ γ

    ′ ′ ′ ′ ′ ′ ′ ′+ − + −
′    = − + + +

   ′ ′ ′ ′ ′ ′ ′ ′+ − + −    
 

( ) ( ) ( )* *
1 1 1 1

2 *2 2 *2

sinh sinh sinh 2
1

2
k k kF E F F

k k k k k
λ λ

γ λ λ γ
′ ′ ′ ′ ′+ −   

+ + + +   ′ ′ ′ ′ ′ ′ ′ ′ ′− + − −   
 

( ) ( ) ( ) ( )* * * ** *
1 1 1 1

*2 *2 * * *2 *2 * *

sinh sinh sinh sinhk kE E E F
k k

λ λ λ λ λ λ

λ γ λ λ λ λ λ γ λ λ

   ′ ′ ′ ′ ′ ′ ′ ′+ − + −
   + + + +
   ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + − − + −   

 

( ) ( ) ( ) ( )* * * *
* *

2 2 2 2* * * *

sinh sinh sinh sinhk k
C E C F

k k
γ λ γ λ γ γ

γ λ γ λ γ γ

   ′ ′ ′ ′ ′ ′ ′ ′+ − + −
   + − + −
   ′ ′ ′ ′ ′ ′ ′ ′+ − + −   
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( ) ( ) ( )* *
2 2 2 2

22 *2 2 *2

sinh sinh sinh 2
1

2
k k kF E F FE

k k k k k
λ λ

γ λ λ γ
′ ′ ′ ′ ′+ −   

+ − + −   ′ ′ ′ ′ ′ ′ ′ ′ ′− + − −   
 

( ) ( ) ( ) ( )* * * ** *
2 2 2 2

*2 *2 * * *2 *2 * *

sinh sinh sinh sinhk kE E E F
k k

λ λ λ λ λ λ

λ γ λ λ λ λ λ γ λ λ

   ′ ′ ′ ′ ′ ′ ′ ′+ − + −
   + − + −

   ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + − − + −    
                  (44) 

where 
( )

2
2

1 2 2

1
cosh

kE
k

ψ
λ λ

′′ +
=

′ ′ ′−
, 

( )
2

2
2 2 2

1
sinh

kE
k

ψ
λ λ

′′ −
=

′ ′ ′−
, 

( )
2

2
1 2 2

1
cosh

kF
k k

ψ
λ

′′ +
= −

′ ′ ′−
 and 

( )
2

2
2 2 2

1
sinh

kF
k k

ψ
λ

′′ −
= −

′ ′ ′−
. 

Particular cases 

(1) 

For the particular case where the electric potential of the two walls are the same, i.e. 
2 1ψ ′ = , Eq. (44) can be simplified to 

( ) ( ) ( ) ( )* * * *
* *

1 1 1 1* * * *

sinh sinh sinh sinh1 Re[
4Tw

k k
D C E C F

R k k
γ λ γ λ γ γ

γ λ γ λ γ γ

   ′ ′ ′ ′ ′ ′ ′ ′+ − + −
′    = − + + +

   ′ ′ ′ ′ ′ ′ ′ ′+ − + −   
 

( ) ( ) ( )* *
1 1 1 1

2 *2 2 *2

sinh sinh sinh 2
1

2
k k kF E F F

k k k k k
λ λ

γ λ λ γ
′ ′ ′ ′ ′+ −   

+ + + +   ′ ′ ′ ′ ′ ′ ′ ′ ′− + − −   
 

( ) ( ) ( ) ( )* * * ** *
1 1 1 1

*2 *2 * * *2 *2 * *

sinh sinh sinh sinhk kE E E F
k k

λ λ λ λ λ λ

λ γ λ λ λ λ λ γ λ λ

   ′ ′ ′ ′ ′ ′ ′ ′+ − + −
   + + + +
   ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + − − + −   

                                                                                                                                          (45) 

where ( )'cosh
2

''
'

22

2

1 λλ−
=

k
kE , 

( )
2

1 2 2

2
cosh

kF
k kλ

′
= −

′ ′ ′−
 and  

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )( )

1
1 2 2 2 2

2 sinh cosh cosh cosh sinh sinh

2 sinh cosh cosh sinh

k k k k k F
C

k

γ γ β γ γ β γ

γ γ γ γ β γ β γ γ

 ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ += −
′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + −

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )( )

1
2 2 2 2

2 sinh cosh cosh cosh sinh sinh

2 sinh cosh cosh sinh

Eλ γ λ γ β γ λ γ β λ λ γ

γ γ γ γ β γ β γ λ γ

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + 
′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + − 

. 



11 

 

(2) 

For the case where the two wall potentials are the same and no sorption occurs at both 
walls, the form of the dispersion coefficient remains the same as Eq. (45) with 1C  
becomes 

( ) ( ) ( ) ( )
( )

2 2 2 2
1 1

1

sinh / sinh /
sinh

E k k F k
C

λ λ λ γ γ

γ γ

′ ′ ′ ′ ′ ′ ′ ′− + −
= −

′ ′
 

The derived result is the same as the dispersion coefficient due to the interaction of the 
oscillatory electric field with the steady component of the wall potentials presented in 
Paul and Ng[14]. 

(3) 

For the case that the two wall potentials are identical and symmetric sorption occurs at 
both walls, R  in Eq. (45) becomes '1 α+=R , and the boundary conditions (42b) 
changes to 

0dB
dy
′
=

′
on 0y′ =  

We obtain 

( ) ( )( ) ( ) ( ) ( )( ) ( )
( ) ( )

2 2 2 2
1 1

1

sinh cosh / sinh cosh /
sinh cosh

E k k k F k
C

λ λ β λ λ γ β γ

γ γ β γ

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ − + + −
= −

′ ′ ′ ′+
 

4. Results and discussion 

We evaluate the dependence of the dimensionless dispersion coefficient TwD′  on various 
dimensionless parameters as illustrated below.  We first review the physical significance 

of these parameters.  / 2 / /h hδ δ ν ω′ = =  is the dimensionless Stokes boundary layer 
thickness. For flow with higher oscillation frequency, the Stokes boundary layer is 
thinner and δ ′  is smaller, and vice versa. By recalling the definitions of λ′  and γ ′ , one 
finds that δ ′  is inversely proportional to λ′  and γ ′ , i.e. ( )1 /iλ δ′ ′= +  and 

( )1 /Sc iγ δ′ ′= + , where /Sc Dν=  is the Schmidt number which is fixed to be 1000 in 

the present study. EOF allows a wide range of frequencies, typically below ~ 1 MHz as 
stated before, and thus a wide range of the Stokes boundary layer thickness will be 
considered in the following, i.e. ( ) ( )10~1.0 ΟΟ . k′  characterizes the EDL thickness and 
smaller k′  implies larger Debye length. Typically, the value of k′  is large, i.e. 
( ) ( )100~10 ΟΟ . α′  denotes a normalized partition coefficient of the species, Da  

signifies the reversible sorption rate where larger Da  implies faster phase exchange 
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kinetics, and 2ψ ′  represents the potential of the bottom wall relative to that of the top wall, 
which is kept between -1 and 1. 

The velocity profile is governed by the Stokes boundary layer thickness, the Debye 
length as well as the wall potentials. Figure 2 shows the velocity profile at different times 
within an oscillation cycle when the potentials at the two walls are the same, i.e. 2 1ψ ′ = , 

where the dimensionless / HSu u U′ = . It can be seen that for the flow with a high 
frequency, the velocity varies significantly near the wall due to the viscous effect, and 
becomes almost a constant (zero) in the core region due to inertia. As ω  decreases, the 
velocity profile becomes more uniform and finally turns to a ‘plug flow’ profile as that of 
a steady EOF when δ ′  reaches 10. The effect of Debye length is obvious; as k′  increases, 
the plug-like core region of the flow increases in size. For the conditions that the wall 
potentials are different, the velocity profiles become asymmetrical about the centerline 
but possess similar trends (not shown). 

We next proceed to evaluate the dispersion coefficient induced by the oscillatory EOFs 
with the presence of wall sorption effect. Ramon et al.[18] investigated the dispersion in a 
circular channel with small oscillating frequency where the flow behaves as a plug flow. 
In the present study, we consider a much wider range of the oscillating frequency. Figure 
3 shows the variation of TwD′  with the Stokes boundary layer thickness δ ′  under different 

wall reaction conditions. It is obvious that the dimensionless TwD′  increases with 'δ  
significantly. It suggests that keeping the velocity amplitude unchanged, the dispersion 
coefficient is enhanced by reducing the oscillation frequency. This is reasonable as the 
tidal displacement increases when ω  decreases and thus leads to stronger mass transfer. 
One thing needs to be noted is that by fixing the tidal displacement, the dispersion 
coefficient increases with the oscillation frequency due to the fact that the flow velocity 
increases as the frequency increases. Figure 3 also compares the TwD′  under various wall 
sorption conditions, i.e. no sorption at either wall, sorption at the top wall only and 
symmetric sorption at both walls. The results demonstrate that the presence of wall 
sorption could enhance the dispersion process: the faster the reaction kinetics, the 
stronger the dispersion when δ ′  is large. This may be attributed to the fact that wall 
sorption allows for a greater temporal storage and thus enhances the mass transfer under 
appropriate flow conditions[18]. However, for small δ ′ , i.e. δ ′  less than around 2, the 
difference among different sorption conditions is almost negligible. It suggests that for 
high-frequency oscillatory flows, the effect of reactive wall on the longitudinal dispersion 
is very small due to the too short time for reaction.   

Figure 4 shows the relationship between the reciprocal of the Debye length k′  and TwD′  
under various wall sorption conditions. For the flows with thin Stokes boundary layer, i.e. 
δ ′=0.1, the dimensionless dispersion coefficient decreases with the EDL thickness. As 
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can be seen from Figs. 2(a) and 2(b), the velocity profile varies more significantly near 
the boundaries when the EDL thickness is thinner. Also, the reaction kinetics Da  has 
almost no influence on the dispersion in a high-frequency oscillatory EOF (not shown). 
For the condition of ‘plug flow’, 'k  has different effect on the dispersion coefficient 
depending on the wall sorption conditions: TwD′  tends to increase with the Debye length 
when there is no sorption. Different from high-frequency flow, as can be seen from Figs. 
2(e) and 2(f), the velocity profile is flatter at a larger 'k , hence, the dispersion coefficient 
is limited when the Debye length is thin. For the conditions of presence of wall sorption, 
the ‘temporal storage’ effect of wall sorption dominates the dispersion and weakens the 
effect of Debye length. This explains why under a particular Da  the dispersion 
coefficient varies slightly with the Debye length.   

The partition coefficient is a chemical constant of the species. Similar to Fig. 3, it is 
found that as the normalized partition coefficient α′  increases from 0 to 5, the dispersion 
coefficient declines with a decreasing rate when δ ′  is small, and the difference among 
various Da  is negligible as well (not shown). For ‘plug flow’ with large δ ′ , the effect of 
α′  on TwD′   relies on the value of Da . Figure 5 illustrates the relationship between TwD′  

and α′  under various conditions. It is observed that TwD′  increases with α′  and then 
decreases with a peak exists at 1α′ ≈  at large Da , i.e. 10=Da , for all cases. However, 
the effect of α′  on the dispersion coefficient is not obvious when Da  is small. 
Comparing the conditions of single wall and both walls sorption, i.e. Figs. 5(a) and 5(b), 
and Figs. 5(c) and 5(d), one finds that there is no big difference on the dispersion 
coefficient at small Da , however, both walls sorption could induce relatively stronger 
dispersion than single wall sorption when Da  is large, especially at the peak. The 
existence of the peak indicates that, to separate two chemicals with different reaction rate, 
one could adjust the non-dimensional partition coefficient α′  of the chemical with larger 
Da  to be around 1.   

The results presented above are all based on the condition of the same potential at both 
walls, i.e. 2 1ψ ′ = . The effect of the relative wall potential on the dispersion coefficient 
under different wall sorption conditions is shown in Fig. 6. Figures 6(a) and 6(b) 
demonstrate the conditions of high-frequency flows, where a minimum dispersion 
coefficient is achieved at 2 0ψ ′ =  for most cases ( 2 0.18ψ ′ =  for both walls sorption in Fig. 
6(b)). The reason is that when the potential of the bottom wall is zero, the flow velocity 
varies near the top wall only while keeps zero at the rest area, which leads to a more 
limited velocity shear across the channel. It also suggests that the variation of dispersion 
coefficient induced by changing the relative wall potential is tiny for high-frequency 
flows as the magnitude of TwD′  is extremely small in Figs. 6(a) and 6(b). The conditions 
of low-frequency flows, where the flow behaves like a slowly varying steady flow, are 
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illustrated in Figs. 6(c) and 6(d). Basically, TwD′  tends to increase as 2ψ ′  changes from -1 
to 1 for the case of sorption at both walls but decrease for the cases of no sorption and 
single wall sorption. The minimum TwD′ , as shown in Fig. 6(c) for the cases of no 

sorption, one wall sorption and both walls sorption, occurs at 35.0'2 =ψ , 0.24 and -0.63, 
respectively. The results in Figs. 6(c) and 6(d) indicate that for the condition of opposite 
wall potentials, i.e. 12 −=′ψ , the presence of wall sorption tends to have reversed effect 
on the dispersion. 

5. Conclusions 

In the present paper, dispersion in oscillatory EOFs between two parallel plates with 
reversible sorption effect has been analytically studied. A general expression for the non-
dimensional dispersion coefficient has been derived through the homogenization 
technique. The results show that keeping the velocity amplitude constant, the dispersion 
coefficient decreases with the oscillation frequency significantly. The presence of 
reversible sorption at the walls could influence the dispersion coefficient in a complicated 
manner: generally, the effect is not obvious for high-frequency flows, while for low-
frequency flows, the existence of wall sorption tends to enhance the dispersion and the 
enhancement is proportional to the reaction rate. 

The effect of disparate wall potentials on the dispersion coefficient has also been 
examined. It is found that the dispersion could be minimized by making the bottom wall 
potential approach zero for high-frequency flows even though the change is small. For 
low-frequency flows, the opposite wall potentials could lead to the strongest dispersion 
for the case of no sorption but the weakest dispersion for the case of sorption at both 
walls. 

The present analytical study provides a guideline for the microfluidic system design for 
various applications. For example, for low-frequency oscillatory flows, the dispersion 
coefficient is a strong function of the sorption effects when the chemical partition 

coefficient 1≈=′
h
αα , and hence, chemical separation for species with different wall 

reaction rate could be achieved by adjusting the channel dimensions and materials. 
Furthermore, mixing in micro-devices can be speeded up/slowed down by changing the 
electric potentials of both the top and bottom walls according to the sorption conditions.  

Appendix 

Expressions for 
1C  and 

2C  in Eq. (43) 
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( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )( )

1
1 2 2 2 2

2 sinh cosh cosh cosh sinh sinh

2 sinh cosh cosh sinh

E
C

λ γ λ γ β γ λ γ β λ λ γ

γ γ γ γ β γ β γ λ γ

 ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ += −
′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + −

 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )( )

2
2 2 2 2

sinh cosh cosh sinh

2 sinh cosh cosh sinh

Eβ γ λ γ β λ λ γ

γ γ γ γ β γ β γ λ γ

′ ′ ′ ′ ′ ′ ′ ′−
+

′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + −
 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )( )

1
2 2 2 2

2 sinh cosh cosh cosh sinh sinh

2 sinh cosh cosh sinh

k k k k k F

k

γ γ β γ γ β γ

γ γ γ γ β γ β γ γ

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ +
+

′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + −
 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )( )

2
2 2 2 2

sinh cosh cosh sinh
.

2 sinh cosh cosh sinh

F

k

β γ λ γ β λ λ γ

γ γ γ γ β γ β γ γ

′ ′ ′ ′ ′ ′ ′ ′− + 
′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + − 

 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )( )

2
2 2 2 2 2

2 cosh sinh sinh sinh cosh cosh

2 sinh cosh cosh sinh

E
C

λ γ λ γ β γ λ γ β λ λ γ

γ γ γ γ β γ β γ λ γ

 ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ += −
′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + −

 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )( )

1
2 2 2 2

cosh sinh sinh cosh

2 sinh cosh cosh sinh

Eβ γ λ γ β λ λ γ

γ γ γ γ β γ β γ λ γ

′ ′ ′ ′ ′ ′ ′ ′−
+

′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + −
 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )( )

2
2 2 2 2

2 cosh sinh sinh sinh cosh cosh

2 sinh cosh cosh sinh

k k k k k F

k

γ γ β γ γ β γ

γ γ γ γ β γ β γ γ

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ +
+

′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + −
 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )( )

1
2 2 2 2

cosh sinh sinh cosh
.

2 sinh cosh cosh sinh

F

k

β γ λ γ β λ λ γ

γ γ γ γ β γ β γ γ

′ ′ ′ ′ ′ ′ ′ ′− + 
′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + − 
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List of symbols 

 

C Concentration of mobile phase 

Cs Concentration of immobile phase 

0c  Ion concentration far from the charged walls 

D  Molecular diffusivity 

TwD  Taylor dispersion coefficient 

Da  Damkohler number 

e  Electron charge 

E  Electric field 

0E  Amplitude of electric field 

h  Half of channel height 

k  Reciprocal of Debye length 

L Channel length 

R  Retardation factor 

BR  Boltzmann constant 

Sc Schmidt number 

t  Time 

T  Absolute temperature 

u  Axial velocity 

HSU  Helmholtz-Smoluchowski velocity 

x  Axial direction 
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y  Lateral direction 

z  Valence of the co- and counter- ions 

ω  Angular frequency 

ρ  Fluid density 

eρ  Electric charge density 

µ  Dynamic viscosity 

ν  Kinematic viscosity 

ψ  Electric potential 

1ψ  Electric potential of top wall 

2ψ  Electric potential of bottom wall 

η  Permittivity of fluid 

δ  Stokes boundary layer thickness 

κ  Reaction rate 

α  Partition coefficient 

ε  Perturbation parameter 

 

Note: parameters with prime are non-dimensional. 
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Fig. 1 Schematic diagram of the system  
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(a) 10,  0.1k δ′ ′= =  

 
(b) 100,  0.1k δ′ ′= =  

 
(c) 10,  1k δ′ ′= =  

 
(d) 100,  1k δ′ ′= =  

 
(e) 10,  10k δ′ ′= =  

 
(f) 100,  10k δ′ ′= =  

Fig. 2 Scaled velocity profiles at various times within an oscillation for 2 1ψ ′ =  and 

1000=Sc .  
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(a) 

 
(b) 

Fig. 3 Dispersion coefficient TwD′  as a function of δ ′  for 100k′ = , 2 1ψ ′ = , 1α′ =  and 

1000=Sc . (a) Comparison among different Da  and (b) Comparison among different 

sorption conditions under 1=Da .  
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(a) 

 
(b) 

Fig. 4 Dispersion coefficient TwD′  as a function of k′  for 10δ ′ = , 2 1ψ ′ = , 1α′ =  and 

1000=Sc . (a) Comparison among different Da  and (b) Comparison among different 

sorption conditions under 1=Da . 
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(a) 10,  10kδ ′ ′= =  

 
(b) 10,  10kδ ′ ′= =  

 
(c) 10,  100kδ ′ ′= =  

 
(d) 10,  100kδ ′ ′= =  

Fig. 5 The variation of TwD′  with α′  for 2 1ψ ′ =  and 1000=Sc . ((a) and (c) for sorption at 

one wall, and (b) and (d) for sorption at both walls). 
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(a) 0.1,  10kδ ′ ′= =  

 
(b) 0.1,  100kδ ′ ′= =  

 
(c) 10,  10kδ ′ ′= =  

 
(d) 10,  100kδ ′ ′= =  

Fig. 6 The relationship between the relative bottom wall potential 2ψ ′  and the dispersion 

coefficient under different sorption conditions for 1α′ = , 1=Da  and 1000=Sc . 


