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 

Abstract—Dipole source analysis is applied to model brain 

generators of surface-recorded evoked potentials, epileptiform 

activity, and event-related potentials (ERP). The aim of this 

study was to explore brain activity of interaction between 

bimodal sensory cognition. Seven healthy volunteers were 

recruited in the study and ERP to these stimuli were recorded by 

64 electrodes EEG recording system. Subjects were exposed to 

either the auditory and the visual stimulus alone or the combined 

auditory-visual (AV) stimuli. The identification of brain areas of 

the EP was realized using CURRY 6.0 software. A source 

localization analysis was performed across conditions over 

initial, early and later temporal stages (i.e. 3 stimuli conditions × 

3 temporal stages). The source locations across conditions were 

contrasted over similar time periods, indicating that source 

location of the bimodal auditory-visual (AV) stimuli differed 

from the sum of source locations from the auditory and the visual 

stimulus alone. These data provide evidence that there exists 

interplay in the brain in the bimodal auditory-visual stimuli 

paradigm. 

I. INTRODUCTION 

To produce a unified percept of our surrounding 
environment, the brain must integrate multiple types of 
sensory information. An increasing number of studies are 
revealing how the brain achieves such multisensory 
integration. Evidence is mounting that multisensory 
interactions occur early in time post-stimulus onset and also 
within areas typically considered uni-sensory in their function, 
including even the primary cortices[1]. From such findings, 
new models of brain organization are being developed that 
incorporate the occurrence of multisensory interactions and 
integration both at low(e.g. primary visual cortices) and high 
levels(e.g. superior temporal sulcus, the intraparietal 
complex, and the frontal cortex) of processes  and also at early 
and late time following stimulus presentation[2-4].  

Although more attention was paid to how the brain 
integrates multisensory information, it remains unknown how 
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the brain regions vary under multisensory stimuli compared 
with uni-sensory conditions, and what the difference and 
relationship are between the multisensory versus unisensory 
experiences. Joassin et al. have discussed the implication of 
unimodal and multisensory convergence regions by a source 
localization analysis from the face recognition perspective [5], 
and the result was that the dipole modeling always included 
the superior colliculus, a mid-brain structure considered as a 
multimodal convergence region, which has been observed in 
an ERP study investigated the auditory–visual object 
recognition processes[6, 7]. Raphaёl V. Meylan, Micah M. 
Murraya reported that AV multisensory interactions attenuate 
subsequent visual responses in humans, and their source 
estimations indicated that attenuation occurred within 
low-level visual cortices. Multisensory interactions are 
ongoing in low-level visual cortices and affect incoming 
sensory processing[1]. In 2007, Durk Talsma et al. studied 
interactions  between  multisensory  integration  and  attention  
using a combined audiovisual streaming design and concluded 
that a superadditive audiovisual integration effect was 
observed on the P50 component when both the visual and 
auditory senses were attended, this  effect  was  reversed when 
un-sensory percept or multisensory object attended, and the 
P50 components of multi- sensory ERPs were smaller than the 
uni-sensory sum[3]. Mishra et al. showed that short-latency 
ERP activity located in auditory cortex and polymodal cortex 
of the temporal lobe, concurrent with gamma bursts in visual 
cortex, were associated with perception of the double-flash 
illusion[4]. These results provide evidence that perception of 
the illusory second flash is based on a very rapid dynamic 
interplay between auditory and visual cortical areas that is 
triggered by the second sound[8]. 

The present research was aimed to explore brain activity 
of interaction between bimodal sensory cognition, and it 
focused on dipole source analysis of event related potentials 
with AV stimuli and response these sources to known areas of 
activity, and compared the results with that from separate 
visual / auditory stimulus. 

II. MATERIALS & METHODS 

A. Subjects 

Seven right-handed healthy college students (4 male, 3 
female; mean age of 21.9 years) participated in the study after 
giving written informed consent. Each participant had normal 
or corrected-to-normal vision and normal hearing. 
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B. Experiment design 

The experiment was conducted in a soundproof chamber 
having a background sound level of 31 dB and a background 
luminance with intensity of 2 cd/m2. The subjects were asked 
to sit on a comfortable chair positioned at a viewing distance 
of 60 cm to the CRT monitor, be relaxed, focus attention, keep 
head still, and with eyes staring at the center of the monitor 
during the experimental session. Error reaction data caused by 
head and eye movements were excluded. 

The experiment equipment for stimulation is the Neuro 
Scan STIM2 system applying Oddball paradigm[9], the key 
point of this paradigm is two different kinds of stimulation are 
applied on the same sensory channel, but the probability of 
one stimulus is larger, such as 85%, the other is smaller, such 
as 15%. Visual (V) and auditory (A) stimulus was delivered 
respectively, both include target and non-target modality. 
Visual stimulus were green solid round with diameter of 3cm 
as target V, and red solid round with diameter of 3cm as 
none-target V’, both last on the center of the CRT monitor for 
60ms. Auditory stimulus was a 60ms, 80 dB 2 kHz target pure 
tone A and a 60ms, 80 dB, 1 kHz non-target pure tone A’, 
delivered from a speaker. Eight different stimuli combinations 
were presented in random order on each block of trials, which 
included uni-modal auditory stimulus of pure A or pure A’, 
unimodal visual stimulus of pure V or pure V’, and bimodal 
stimuli combinations included AV, AV’, VA’, and A’V’. Fig. 
1 is the schematic diagram of combined stimuli. 

 

 

 

 

 

 

 

 

Fig.1 Diagrammatic drawing of different stimuli configurations 

The stimuli were delivered in 5 blocks with 150 trials. 
Each of the eight stimuli combination occurred on each block 
in a randomized sequence. All stimuli appeared with the 
probability as 10%, 20%, 10%, 20%, 10%, 10%, 10%, and 
10%, and were presented at irregular intervals of 2 ms. All 
subjects had prior experience before the experiment with 50 
trials. The subject was required to make a judgment as soon as 
they perceived target stimuli after each stimulation, to press 
down the button on the reaction box with the right forefinger, 
and also to count the number of target stimuli. Simultaneously, 
reaction time, correct or not, the EEG data were recorded.  

C. Electrophysiological data recordings and preprocessing 

The EEG data were recorded from 64 surface electrode 
sites using Neuroscan system in seven normal subjects 
throughout the experimental session. The electrodes were 
located according to the 10-20 system. Reference electrode 
was at the parietal lobe. Electrode impedances were kept 
below 5 kOhm (Fig.2), and the bandpass was 0.05-100 Hz. 

The EEG data was filtered at 0.05-30 Hz, and stored for later 
analysis. The EEG epoches weer averaged from 200 ms 
before to 800 ms after stimulation onset. Artifact caused by 
eye movements, blinks, or amplifier blocking was rejected 
from each sweep, and baseline correction (-200 ms ~ 0 ms) 
was performed before source analysis so that the mean of the 
200 ms prestimulus voltages was zero. Data from the eight 
kind stimuli were averaged accordingly. 

 

 

 

 

 

 

 

 

Fig.2 Position of the 64 electrodes on the spherical head model 

Fig.3, Fig.4 and Fig.5 were the averaged EEG of one 
subject recorded from 64 electrode sites with unimodal 
auditory (A), visual (V) stimulus and bimodal auditory-visual 
(AV) stimuli respectively. In these figures, the reference 
electrode is the average reference, and the time window is the 
interval between 200 ms before the stimulation and 1000 ms 
after the stimulation. Blue waveforms in each figure are the 
EOG (HEO or VEO) and bilateral mastoid potentials, yellow 
waveforms are the potentials from the other electrodes for 
source analysis, red waveforms are mean global field power 
(MGFP), the time period for source analysis can refer to the 
peak time of MGFP with 75% of peak MGFP as the 
boundaries.  

       

 

 

 

 

 

 

Fig.3 The averaged EEG of one subject recorded from 64 electrode sites with 
unimodal auditory (A) stimulus 

 

 

 

 

 

 

 

Fig.4 The averaged EEG of one subject recorded from 64 electrode sites with 
unimodal visual (V) stimulus 

 

 

 

 

86



  

 

 

 

 

 

 

 

Fig.5 The averaged EEG of one subject recorded from 64 electrode sites with 
bimodal auditory-visual (AV) stimuli 

 D. Source analysis  

Dipole source analysis was performed on the average ERP 
data of five applicable subjects using CURRY 6.0 software.It 
has been extensively used to model brain generators of 
surface-recorded evoked potentials, epileptiform activity, and 
ERP[11]. This method offers a noninvasive approach to the 
localization of areas in the brain that generate surface 
recorded electrophysiologic signals. By calculating potential 
variation of brain surface when the neurons was excited, the 
position and intensity of equivalent dipole can be found[10]. 
To determine the accuracy of the dipole position, and whether 
the brain electrical activity is concentrated in practical 
application, the measurement of related variance and 
neurophysiology were analyzed[12,13].  

In the experiment, an average human model was used to 
obtain the thickness of brain, skull and scalp surface by virtue 
of average MRI on the basis of three balls model[13]. A fixed 
dipole method was applied in which the position of the dipoles 
was constrained while their orientation and strength remained 
free. The applied coordinate system was PAN (R, A, S), 
namely the X axis point to the right end across left and right 
mastoid, the Y axis points to the tip of the nose, the Z axis is 
up. 

III. RESULTS 

Fig.6 is averaged evoked potentials with bimodal 
auditory-visual stimuli at electrode site FCz from one of the 
subjects. The time windows were defined by means of global 
field power (MGFP). Dipoles were fit to the time intervals 
around the peaks in MGFP using a 75% of peak GFP 
criterion[11].  

 

 

 

 

 

 

 

Fig. 6 The averaged evoked potentials in response to bimodal auditory-visual 
target stimulus recorded from electrode FCz of one subject 

Dipole modeling was performed within the time window 
of each wave (Table 1). For the 80-95 ms time window, the 
auditory and visual electrophysiological results were best 
explained by one pair of bilateral dipoles localized in the 
middle temporal gyrus (MTG) and inferior occipital gyrus 
(IOG), respectively. Under auditory-visual stimuli, the 
electrophysiological results were best explained by two pairs 
of bilateral dipoles localized in the thalamus and middle 
occipital gyrus (MOG) with an explained variance of around 
85%. For the 160-190 ms time window, the visual 
electrophysiological results were best explained by one pair of 
bilateral dipoles localized in the superior temporal gyrus 
(STG) , that of visual were best explained by two pairs of 
bilateral dipoles localized in the lobulusparietalisinferior 
(LPI)and the middle occipital gyrus (MOG), and that of 
auditory-visual were best explained by two pairs of bilateral 
dipoles localized in the gyrus frontalis inferio (IFG) and 
middle temporal gyrus (MTG) with an explained variance of 
above 90%. Finally, for 380-420 ms time window, the 
electrophysiological results were best explained by two pairs 
of bilateral dipoles localized in the hippocampus (HP) and 
thalamus under auditory stimulus, in the thalamus and middle 
temporal gyrus (MTG) under visual stimulus. The scalp 
cerebral activities were best explained by 5 dipoles, with one 
pair of bilateral dipoles localized in the gyrus frontalis 
superior (SFG), one pair in the thalamusnd, and one in the 
precuneus. 

Table 1. Averaged dipole modeling of event-related potentials of 

five subjects with unimodal  audio/visual and bimodal audio-visual stimuli 

Stimulus 

Type 

Time  

Window 

(ms) 

Optimal 

 Time 

 (ms) 

Explained  

Variance 

(standard) 

(%) 

Cerberal area 

A 

80-95 

89 84.22 (R)(L) MTG 

V 88 86.60 (R)(L) IOG 

AV 87 96.91 
(R)(L)Thalamus 

(R)(L)MOG 

A 

160-190 

171 95.78 (R)(L) STG 

V 179 97.19 
(R)(L) LPI   

(R)(L)MOG 

AV 173 96.26 
(R)(L)IFG 

(R)(L) MTG 

A 

380-420 

400 96.93 
(R) (L) HP 

(R)(L)Thalamus 

V 407 97.94 
(R)(L)Thalamus 

(R)(L)MTL 

AV 400 98.04 

(R)(L)SFG 

(R)(L)Thalamus 

(L)Precuneus 

Cerberal area: MTG--middle temporal gyrus; STG--superior temporal 
gyrus; IOG--inferior occipital gyrus; MOG--middle occipital gyrus; 
HP--hippocampus; PLI--lobulusparietalisinferior; SFG--gyrus frontalis 
superior; IFG--gyrus frontalis inferior; MTL-- middle temporal lobe. L--left, 
R--right. 

IV. DISSCUSSION & CONCLUSION 

The present study aimed at comparing the dipoles source 
of auditory and visual between umimodal and bimodal 
conditions at the electrophysiological level. For the early time 
period of 80-95 ms, we observed that auditory activity was 
best explained by one pair of bilateral dipoles localized in the 
middle temporal gyrus namely auditory area, and visual 
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activity source labeled C1 component was in the occipital lobe 
namely visual area[14], whereas the auditory-visual bimodal 
was in the thalamus and occipital lobe, which demonstrated 
bimodal source was not the simple addition of the unimodal 
conditions. Driver, Ghazanfar stated that the channel 
integration function of thalamus, with the result that the 
occipital lobe was derived from the feedback of thalamus to 
visual under auditory-visual stimuli[2, 5, 15]. Their results 
gave us new clue to understand the multi-modal l internal 
interaction mechanism.  

At the 160-190 ms period, the auditory 
electrophysiological source labeled N1/P2 component were 
located in the superior temporal gyrus, the visual source in the 
parietal lobe and the occipital lobe, which was both the ventral 
and dorsal streams bifurcated from primary visual cortex[13], 
whereas the auditory-visual bimodal source was in the parietal 
lobe and frontal lobe. The results indicated bimodal source 
was not the simple addition of the unimodalsource. Ghazanfar 
reported the channel integration function of frontal lobe[2], 
thus reflects the source of parietal lobe was the feedback of 
frontal lobe to auditory. 

Finally, from late dipole source analysis results about the 
380-420 ms period, auditory component (namely P3 ) was 
related to cognitive, memory and other brain activities, and 
the effect source was located in the hippocampusand 
thalamus, consistent with those obtained by Tarkka and 
Horovitz[16, 17]. The visual source were located in the 
hypothalamus and temporal lobe, similar to the late visual 
source analysis by Yamazaki and Bledowski[13,18]. The 
auditory-visual bimodal source was in the thalamus, the 
frontal and occipital lobe, it once again demonstrated that 
bimodal source was not the simple addition of the unimodal 
source, they had same sources, and may be considered as the 
negative feedback from thalamus and frontal lobe to occipital 
lobe. 

In summary, we have observed the different 
electrophysiological sources with unimodal of audio and 
visual stimuli and auditory-visual stimuli which suggests the 
presence of auditory-visual interaction area. This research 
may provide the basis of the promoting effect of bimodal 
stimuli for brain computer interface, and present a new tool for 
the study of multi-modal interaction.  
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