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On the Analysis of the Bifurcation Sets of Equilibrium Points in

Parameter Space

G. Chesi, G. Tanaka, Y. Hirata, K. Aihara

Abstract— This paper addresses the problems of character-
izing and estimating the bifurcation sets of equilibrium points
in multi-parameter space of a class of nonlinear dynamical
systems. Specifically, we investigate the sets of parameters
that lead to saddle-node bifurcations and Hopf bifurcations
at an equilibrium point of interest. First, a characterization of
these sets is provided in terms of the zeros of some functions.
Second, this characterization is exploited to estimate such
sets through convex programming for the case of polynomial
dynamical systems. In particular, two conditions are proposed
for establishing whether a sublevel set of a given polynomial

does not contain parameters that lead to bifurcations. By
using these conditions, the largest of such sublevel sets can be
estimated by solving an eigenvalue problem. Some numerical
examples illustrate the proposed results.

I. INTRODUCTION

Nonlinear dynamical systems are commonly used to math-

ematically model time-varying behavior in the real-world,

based on determinism [3]. Originating from Newtonian me-

chanics, differential and difference equations have been stan-

dard mathematical tools to describe the dynamics of physical,

biological, chemical, and engineering systems [6]. Variation

of system parameters in nonlinear dynamical systems often

causes changes in qualitative or topological structure of the

solutions, which are called bifurcation phenomena. The stud-

ies of bifurcation phenomena have deepened our understand-

ing of transitive events caused by parameter variations, such

as sudden disappearance of a stable equilibrium state and

emergence of a disordered or chaotic state. Bifurcation theory

is a concept which enables to characterize such a transition

between qualitatively different regimes by formulating the

conditions for the transition [4], [8].

Developing mathematical methodology to specify bifurca-

tion sets and determine the presence or absence of bifurcation

sets in a certain parameter set is useful to establish practical

control theory for robustly maintaining a favorable state

and avoiding an unfavorable state in nonlinear dynamical

systems. Although numerical shooting methods to locate

bifurcation sets have been successfully applied to analyses

of nonlinear systems [5], less attention has been paid to the

problem of finding a (largest) parameter set in which it is

guaranteed that the system does not show any bifurcation.

Approaching this problem is significant as a first step to

consider a robust control method for nonlinear dynamical

systems with parameter uncertainty.
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This paper addresses the problems of characterizing and

estimating the bifurcation sets of equilibrium points in multi-

parameter space of a class of nonlinear dynamical systems.

Specifically, we investigate the sets of parameters that lead to

saddle-node bifurcations and Hopf bifurcations at an equilib-

rium point of interest. First, a characterization of these sets is

provided in terms of the zeros of some functions. Second, this

characterization is exploited to estimate such sets through

convex programming for the case of polynomial dynamical

systems. In particular, two conditions are proposed for estab-

lishing whether a sublevel set of a given polynomial does not

contain parameters that lead to bifurcations. By using these

conditions, the largest of such sublevel sets can be estimated

by solving an eigenvalue problem. Some numerical examples

illustrate the proposed results.

The paper is organized as follows. Section II introduces

some preliminaries. Section III describes the proposed char-

acterization and estimation of the bifurcation sets. Section

IV presents some illustrative examples. Lastly, Section V

concludes the paper with some final remarks.

II. PRELIMINARIES

A. Problem Formulation

First, let us introduce the notation used throughout the

paper:

- s.t.: subject to;

- R: space of real numbers;

- C: space of complex numbers;

- j: imaginary unit, i.e. j =
√
−1;

- ℜ(a), ℑ(a): real and imaginary parts of a, i.e. a =
ℜ(a) + jℑ(a);

- A′: transpose of A;

- det(A): determinant of A;

- spec(A) = {λ ∈ C : det(λI −A) = 0};

- A > 0, A ≥ 0: symmetric positive definite and

symmetric positive semidefinite matrix A.

We consider the class of continuous-time nonlinear dy-

namical systems defined by
{

ẋ(t) = f(x, p),
x(0) = xinit,

(1)

where x ∈ Rn is the state, xinit ∈ Rn is the initial condition,

p ∈ Rq is a parameter vector, and f : Rn × Rq → Rn is a

nonlinear function such that the solution of (1) exists.

Further assumptions on f(x, p) will be made throughout

the paper wherever required. In particular, in Section III-B it
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will be assumed that f(x, p) is nonlinear in x and polynomial

in p.

Let x∗(p) be an equilibrium point of interest of the system

(1). Clearly, x∗(p) satisfies

f(x∗(p), p) = 0. (2)

We consider the following problems.

Problem 1. To characterize the bifurcation set in the

parameter space of x∗(p), i.e. the set

B = {p̄ ∈ R
q : x∗(p) has a bifurcation at p = p̄} . (3)

Problem 2. To determine guaranteed subsets of the pa-

rameter space where x∗(p) has no bifurcation. In particular,

we consider the computation of the largest sublevel set of a

given function g(p) where x∗(p) has no bifurcation, i.e. the

optimization problem

c∗ = sup
c

c

s.t. G(c) ∩ B = ∅,
(4)

where

G(c) = {p ∈ R
q : g(p) ≤ c} . (5)

The function g(p) is supposed polynomial, nonnegative and

such that

c1 ≤ c2 ⇒ G(c1) ⊆ G(c2). (6)

Let us observe that Problems 1 and 2 are important

problems since dynamical systems are often affected by

parameters whose change can lead to bifurcations of the equi-

librium points. In particular, Problem 1 aims to determine the

set of parameters for which a given equilibrium point has a

bifurcation. Problem 2 aims to determine sets of parameters

for which a given equilibrium point has no bifurcations,

which is important in order to avoid bifurcations.

B. SOS Polynomials

A polynomial is said SOS if is the sum of squares

of polynomials. It turns out that establishing whether a

polynomial is SOS amounts to checking feasibility of an

LMI, see e.g. [2] and references therein.

Indeed, let p(x) be a polynomial of degree not greater than

2m with x ∈ Rn. We can express p(x) as

p(x) = b(x)′ (P + L(α)) b(x), (7)

where b(x) ∈ Rσ(n,m) (called power vector) is a vector

containing all the monomials of degree not greater than m,

whose number is given by

σ(n,m) =
(n+m)!

n!m!
, (8)

for instance according to

b(x) = (1, x1, . . . , xn, x
2
1, x1x2, . . . , )

′, (9)

P ∈ Rσ(n,m)×σ(n,m) is a symmetric matrix satisfying

p(x) = b(x)′Pb(x), (10)

L(α) ∈ R
σ(n,m)×σ(n,m) is a linear parametrization of the

linear subspace

L =
{

L = L′ ∈ R
σ(n,m)×σ(n,m) : b(x)′Lb(x) = 0

}

,

(11)

whose dimension is given by

τ(n,m) =
1

2
σ(n,m) (σ(n,m) + 1)− σ(n, 2m), (12)

and α ∈ Rτ(n,m) is a free vector. This representation is

known as Gram matrix method and square matrix represen-

tation (SMR).

The polynomial p(x) is said SOS if and only if there exist

polynomials p1(x), p2(x), . . . such that

p(x) =
∑

i

pi(x)
2, (13)

and this condition holds if and only if there exists α

satisfying the LMI

P + L(α) ≥ 0. (14)

Hence, establishing whether p(x) is SOS amounts to estab-

lishing whether the LMI (14) is feasible, and this problem

can be solved through a convex optimization problem.

III. PROPOSED RESULTS

A. Characterization

In this section we address Problem 1, i.e. the characteriza-

tion of the bifurcation set B in (3). Let us start by recalling

the following results, which establish a connection between

bifurcations of x∗(p) and the Jacobian matrix of f(x, p),
which is defined as

J(x, p) =
df(x, p)

dx
. (15)

Specifically, the next theorem considers the case of saddle-

node bifurcations.

Theorem 1 ( [3]): If there is a saddle-node bifurcation

of x∗(p) at p = p̄, then J(x∗(p̄), p̄) has a simple zero

eigenvalue.

The following theorem establishes a connection between

Hopf bifurcations of x∗(p) and the Jacobian matrix of

f(x, p).

Theorem 2 ( [3]): If there is a Hopf bifurcation of x∗(p)
at p = p̄, then J(x∗(p̄), p̄) has a simple pair of imaginary

eigenvalues.

Remark. Let us observe that Theorems 1 and 2 provide

necessary conditions for the existence of saddle-node bifur-

cations and Hopf bifurcations, respectively. Sufficient and

necessary conditions can be obtained by introducing further

requirements on the Jacobian matrix of f(x, p) as explained

in [3], which are not considered in this paper for simplicity.

The first idea proposed in this paper consists of obtaining

a characterization of the bifurcation set in the parameter

671



space by deriving an analytical expression of the set of

parameters for which the Jacobian matrix J(x∗(p̄), p̄) has

null or imaginary eigenvalues. In particular, we define the

sets

Bsn = {p ∈ Rq : J(x∗(p), p) has a simple

zero eigenvalue} , (16)

and

Bh = {p ∈ Rq : J(x∗(p), p) has a simple pair

of imaginary eigenvalues} . (17)

From Theorems 1 and 2 it follows that

B ⊆ Bsn ∪ Bh. (18)

The following result provides a characterization of the

bifurcation set Bsn in terms of the zeros of two functions

of p.

Theorem 3: Let us define

f0(p) = det (J(x∗(p), p)) , (19)

and

f1(p) =
dr(λ, p)

dλ

∣

∣

∣

∣

λ=0

, (20)

where

r(λ, p) = det (λI − J(x∗(p), p)) . (21)

Then,

Bsn = {p ∈ R
q : f0(p) = 0, f1(p) 6= 0} . (22)

Proof. From (16) one has that p ∈ Bsn if and only if

J(x∗(p), p) has a simple zero eigenvalue. Since the deter-

minant of a square matrix is the product of its eigenvalues,

it follows that J(x∗(p), p) has a zero eigenvalue if and only

if

f0(p) = 0

i.e. f0(p) = 0 is a necessary condition for p to belong to Bsn.

In order to make this condition also sufficient, let us observe

that the characteristic polynomial of J(x∗(p), p) should have

a root in zero with multiplicity not greater than one. Let

us observe that r(λ, p) is the characteristic polynomial of

J(x∗(p), p), and r(λ, p) has a root λ = 0 with multiplicity

not greater than one if and only if

f1(p) 6= 0

which completes the proof. �

Theorem 3 provides an equivalent expression of the bi-

furcation set Bsn through the functions f0(p) and f1(p). In

particular, such a set is given by the values of p that are

zeros of f0(p) but not zeros of f1(p).
The following result provides a characterization of the

bifurcation set Bh in terms of the zeros of two functions of

p and an additional scalar variable.

Theorem 4: Let us define

f2(ω, p) = r(jω, p), (23)

and

f3(ω, p) =
dr(λ, p)

dλ

∣

∣

∣

∣

λ=jω

. (24)

Then,

Bh = {p ∈ R
q : f2(ω, p) = 0, f3(ω, p) 6= 0, ω ∈ R \ {0}} .

(25)

Proof. From (17) one has that p ∈ Bh if and only if

J(x∗(p), p) has a simple pair of imaginary eigenvalues. Since

the roots of the characteristic polynomial of a square matrix

are the eigenvalues of the matrix, it follows that such a

polynomial should have a simple pair of imaginary roots.

Since r(λ, p) is the characteristic polynomial of J(x∗(p), p)
and since J(x∗(p), p) is real, it follows that J(x∗(p), p) has

a pair of imaginary eigenvalues if and only if there exists

ω ∈ R \ {0} such that

r(jω, p) = f2(ω, p) = 0,

i.e. f2(ω, p) = 0 for some ω ∈ R \ {0} is a necessary

condition for p to belong to Bh. In order to make this

condition also sufficient, let us observe that the root jω of

r(λ, p) should have multiplicity not greater than one, which

is the case if and only if

dr(λ, p)

dλ

∣

∣

∣

∣

λ=jω

= f3(ω, p) 6= 0.

Therefore, the theorem holds. �

Theorem 4 provides an equivalent expression of the bifur-

cation set Bh through the functions f2(ω, p) and f3(ω, p). In

particular, such a set is given by the values of p for which

there exists ω ∈ R \ {0} such that f2(ω, p) is zero and

f3(ω, p) is nonzero.

B. Estimation

In this section we address Problem 2, i.e. the computation

of the largest sublevel set defined by c∗ in (4) of a given

polynomial g(p) where x∗(p) has no bifurcation. For this,

we assume that f(x, p) is nonlinear in x and polynomial in

p.

First of all, let us define the largest sublevel sets of g(p)
where x∗(p) has no saddle-node bifurcations and no Hopf

bifurcations by introducing the quantities

csn = sup
c

c

s.t. G(c) ∩ Bsn = ∅,
(26)

and
ch = sup

c

c

s.t. G(c) ∩ Bh = ∅.
(27)
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From (18) one has that
{

G(c) ∩ Bsn = ∅,
G(c) ∩ Bh = ∅, ⇒ G(c) ∩ B = ∅, (28)

which implies that the sought quantity c∗ is not greater than

csn and ch, i.e.

c∗ ≤ min{csn, ch}. (29)

Let us start by introducing the following result, which

provides a condition for establishing whether the sublevel

set G(c) has no intersection with Bsn.

Theorem 5: Suppose there exist a polynomial s(p) and

scalars c and ε > 0 such that

v(p) is SOS, (30)

where u(p) is the polynomial

v(p) = s(p)f0(p) + (1 + ‖p‖2)k (g(p)− c− ε) , (31)

and k is a chosen integer. Then,

G(c) ∩ Bsn = ∅. (32)

Proof. Suppose that v(p) is SOS. Then,

v(p) ≥ 0 ∀p ∈ R
q.

Let us consider any p ∈ Bsn. From Theorem 3 this implies

that f0(p) = 0 and, hence,

0 ≤ v(p)
= s(p)f0(p) + (1 + ‖p‖2)k (g(p)− c− ε)
= (1 + ‖p‖2)k (g(p)− c− ε) .

Since (1+ ‖p‖2)k is positive, the previous condition implies

that

g(p)− c− ε ≥ 0,

and, due to the positivity of ε,

g(p) > c,

i.e. any point p of Bsn lies outside G(c). �

Theorem 5 provides a condition for establishing whether

G(c) ∩ Bsn = ∅. This condition exploits SOS polynomials

and amounts to solving an LMI feasibility test by exploiting

the Gram matrix method described in Section II-B.

The condition of Theorem 5 can be used to obtain a lower

bound of csn via a convex optimization problem, in particular

ĉsn = sup
c,s

c

s.t. v(p) is SOS.
(33)

Indeed, Theorem 5 implies that

ĉsn ≤ csn. (34)

The optimization problem (33) consists of maximizing a

linear function subject to an LMI, and hence belongs to the

class of eigenvalue problems, see e.g. [1].

The following result extends Theorem 5 to the estimation

of Bh by providing a condition for establishing whether the

sublevel set G(c) has no intersection with Bh.

Theorem 6: Suppose there exist polynomials t(ω, p) and

u(ω, p) and scalars c and ε > 0 such that

y(ω, p) is SOS, (35)

where

y(ω, p) = t(ω, p)ℜ(f2(ω, p)) + u(ω, p)ℑ(f2(ω, p))
+ω2(1 + ‖p‖2 + ω2)k (g(p)− c− ε) .

(36)

Then,

G(c) ∩ Bh = ∅. (37)

Proof. Suppose that y(ω, p) is SOS. Then,

y(ω, p) ≥ 0 ∀ω ∈ R ∀p ∈ R
q.

Let us consider any p ∈ Bh, and let ω ∈ R \ {0} be such

that f2(ω, p) = 0 (the existence of such a ω is ensured by

Theorem 4). We have that

0 ≤ y(ω, p)
= t(ω, p)ℜ(f2(ω, p)) + u(ω, p)ℑ(f2(ω, p))

+ω2(1 + ‖p‖2 + ω2)k (g(p)− c− ε)
= ω2(1 + ‖p‖2 + ω2)k (g(p)− c− ε) .

Since (1+‖p‖2)k and ω2 are positive, the previous condition

implies that

g(p)− c− ε ≥ 0,

and, due to the positivity of ε,

g(p) > c,

i.e. any point p of Bh lies outside G(c). �

Theorem 6 provides a condition for establishing whether

G(c)∩Bh = ∅. As the condition of Theorem 5, the condition

of Theorem 6 exploits SOS polynomials and amounts to

solving an LMI feasibility test by exploiting the Gram matrix

method described in Section II-B. Let us observe that the

polynomials in the condition of Theorem 6 are polynomials

in the vector p and in the scalar ω.

The condition of Theorem 6 can be used to obtain a lower

bound of ch via an eigenvalue problem similarly to (33), in

particular

ĉh = sup
c,t,u

c

s.t. y(ω, p) is SOS.
(38)

Indeed, Theorem 6 implies that

ĉh ≤ ch. (39)

The lower bounds ĉsn and ĉh can be used to obtain a

lower bound of the sought quantity c∗. Indeed, from (29)

one obtains

c∗ ≥ ĉ, (40)
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where

ĉ = min{ĉsn, ĉh}. (41)

This means that the inner points of the sublevel set G(ĉ) are

guaranteed not to belong to the bifurcation set B, i.e.

G(c) ∩ B = ∅ ∀c ∈ [0, ĉ). (42)

IV. EXAMPLES

In this section we present some illustrative examples of

the proposed results. The eigenvalue problems (33) and (38)

are solved with the toolbox SeDuMi [7].

A. Example 1

Let us consider (1) with

f(x, p) =





−2x2 + (1 + 2p1)x3 − x2
2

7x1 − (1− p1)x2 + x1x3

(1 + p1)x1 − x3 − x3
1



 ,

and

x∗(p) = (0, 0, 0)′.

First, let us use Theorems 3 and 4 to obtain a description

of the sets Bsn and Bh. From Theorem 3 it follows that Bsn

is given by (22) with

f0(p) = −13− p21 + 2p1 − 2p31,

and

f1(p) = 14− 4p1 − 2p21.

From Theorem 4 it follows that Bh is given by (25) with

f2(ω, p) = 13− 2p1 + p21 − 2ω2 + 2p31 + ω2p1
+j

(

14ω − 4ωp1 − 2ωp21 − ω3
)

,

and

f3(ω, p) = 14− 4p1 − 2p21 − 3ω2 + j (4ω − 2ωp1) .

Second, let us estimate the largest sublevel set of the

function

g(p) = p2,

that does not contain values of p leading to bifurcations, i.e.

the quantities csn and ch in (26)–(27). For csn, we solve the

eigenvalue problem (33), finding the lower bound

ĉsn = 5.021.

For ch, we solve the eigenvalue problem (38), finding the

lower bound

ĉh = 0.524.

Figure 1 shows the curves ℜ(f2(ω, p)) = 0, ℑ(f2(ω, p)) = 0
and g(p) = ĉh in the plane p-ω.

−6 −4 −2 0 2 4 6

−4

−3

−2

−1

0

1

2

3

4

p

ω

Fig. 1. Example 1. Curves ℜ(f2(ω, p)) = 0 (red line), ℑ(f2(ω, p)) = 0
(green line) and g(p) = ĉh (black dashed line) in the plane p-ω.

B. Example 2

Let us consider (1) with

f(x, p) =





x1(1 + p1)− 6x2 + x1x3 − x2x3

4x1 − x3(2p1 − p2 + 3)− p1x
2
1

−3x1 + (3− p2)x2 − x3 + p2x
2
2



 ,

and

x∗(p) = (0, 0, 0)′.

First, let us use Theorems 3 and 4 to obtain a description

of the sets Bsn and Bh. From Theorem 3 it follows that Bsn

is given by (22) with

f0(p) = −21p1−8p1p2+12p2+p22−69+6p21−2p21p2+p1p
2
2,

and

f1(p) = 5p1 − 2p1p2 − 6p2 + p22 + 32.

From Theorem 4 it follows that Bh is given by (25) with

f2(ω, p) = 69 + 21p1 − 12p2 − 6p21 + 8p1p2 − p22
+2p21p2 − p1p

2
2 + ω2p1 + j (32ω + 5ωp1

−6ωp2 − 2ωp1p2 + ωp22 − ω3
)

,

and

f3(ω, p) = 32+5p1−6p2−2p1p2+p22−3ω2+ j (−2ωp1) .

Second, let us estimate the largest sublevel set of the

function

g(p) = p21 + p22,

that does not contain values of p leading to bifurcations, i.e.

the quantities csn and ch in (26)–(27). For csn, we solve the

eigenvalue problem (33), finding the lower bound

ĉsn = 3.574.

Figure 2 shows the curves f0(p) = 0 and g(p) = ĉsn in the

plane p1-p2.
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−10 −8 −6 −4 −2 0 2 4 6 8 10

−6

−4

−2

0

2

4

6

p1

p
2

Fig. 2. Example 2. Curves f0(p) = 0 (red line) and g(p) = ĉsn (black
dashed line) in the plane p1-p2.

For ch, we solve the eigenvalue problem (38), finding the

lower bound

ĉh = 1.510.

Figure 3 shows the surfaces ℜ(f2(ω, p)) = 0, ℑ(f2(ω, p)) =
0 and g(p) = ĉh in the space p1-p2-ω.

V. CONCLUSIONS

We have investigated the sets of parameters that lead to

saddle-node bifurcations and Hopf bifurcations at an equi-

librium point of interest for a class of nonlinear dynamical

systems. A characterization of these sets has been provided in

terms of the zeros of some functions. This characterization

has been exploited for the case of polynomial dynamical

systems to derive conditions based on convex programming

for establishing whether a sublevel set of a given polynomial

does not contain parameters that lead to bifurcations. By

using these conditions, the largest of such sublevel sets can

be estimated by solving an eigenvalue problem.
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