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Exploiting Implicit Information from
Data for Linear Macromodeling

Chi-Un Lei

Abstract— In macromodeling, data points of sampled structure
responses are always matched to construct linear macromodels
for transient simulations of packaging structures. However,
implicit information from sampled data has not been exploited
comprehensively to facilitate the identification process. In this
paper, we exploit implicit information from the sampled data
for linear marcomodeling. First, in order to include comple-
mentary data for a more informative identification, we propose
a discrete-time domain identification framework for frequency-
/time-/hybrid-domain macromodeling. Second, we introduce
pre-/post-processing techniques (e.g., P-norm identification cri-
terion and warped frequency-/hybrid-domain identification) to
interpret implicit information for configurations of identifications.
Various examples from chip-level to board-level are used to
demonstrate the performance of the proposed framework.

Index Terms— Discrete-time domain, frequency warping,
hybrid-domain, implicit information, macromodeling, P-norm
identification, system identification, vector fitting.

I. INTRODUCTION

With the increasing operation frequency and decreasing
feature size of circuits, high-frequency signal integrity (SI)
effects have become a dominant factor limiting integrated
circuit (IC) system performance [1]. Accurate and efficient
simulation is required during the IC design phase to capture
high-frequency SI behaviors of electronic systems. Linear
macromodeling, in this context, refers to replacing a high-
order system by a small-order linear model with similar input–
output responses, for computationally efficient simulation.

In contrast to other linear macromodeling techniques
[2], [3] for broadband system identification, vector fitting (VF)
[4], [5] involves iterative linear least-squares (LS) solves with
a continuous-time domain (s-domain) partial fraction basis to
match sampled data points. VF avoids ill-conditioned high-
frequency component calculation, and therefore works in a
more robust manner. However, due to the iterative pole-based
calculation framework, the numerical calculation of VF is
deteriorated by: 1) the dynamic behavior and the initial-guess
of pole-based basis, and 2) the distribution of sampled data.

Data points unilaterally describe characteristics of the
system. Meanwhile, implicit hidden information from sam-
pled data, such as delay time, signal energy, data point
distribution, signal/noise distribution, and low-/high-frequency
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characteristics, are potentially valuable to describe the sam-
pled system. However, this information often has not been
interpreted to facilitate the identification process. In our
opinion, a proper interpretation of implicit information can
lead to a realistic and accurate identification. For exam-
ple, sampled data of packaging responses in s-domain are
often logarithmically distributed. This distribution leads to an
ill-conditioned numerical computation. Therefore, VF and a
generalization of VF using discrete-time domain (z-domain)
rational bases have been proposed for system identifications
with an improved numerical conditioning [6]–[10]. However,
existing studies have not comprehensively exploited implicit
information from sampled data for identifications. Thus, input
data are not maximally informative for identifications. This
issue has not been explored thoughtfully by researchers, yet,
is significant. It is because amount and content of data can
affect properties and quality of the identification process.

In this paper, we generalize our preliminary study of
z-domain macromodeling in [10] and propose techniques to
interpret implicit information to facilitate the macromodeling
process. In particular, we aim to develop an identification
framework that matches data points of sampled responses as
well as to include physical insights from the packaging field
and implicit information, for a more informative (and thus,
accurate) identification process. To summarize, the contribu-
tions of our work are fourfold and as follows.

1) A hybrid-domain identification framework is proposed
for a more informative identification, based on com-
plementary response information provided from time-
sampled data and frequency-sampled data.

2) Frequency warping for frequency-/hybrid-domain
macromodeling is proposed for a well-conditioned
computation, based on the adaptive matching the way
the information is recorded in the sampled data.

3) P-norm identification framework is proposed for a more
realistic identification, based on the characteristic infor-
mation of signals provided from sampled responses.

4) Pre-processing techniques (i.e., order estimation, time
delay estimation, and initial pole selection) are pro-
posed to exploit implicit information with the sampled
response for identifications with suitable configuration.

In this manuscript, we introduce hybrid-z-domain macro-
modeling and various pre-processing techniques in Sections II
and III, respectively. Examples then confirm the remarkable
performance of the macromodeling framework in Section IV.

II. MACROMODELING IN THE HYBRID-z-DOMAIN

The I/O characteristics of the structure can be
described by the I/O response data. Generally, for a

2156-3950 © 2013 IEEE
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single-port system, macromodeling techniques intend to fit a
linear time-invariant system to the desired z-domain response
H (z) at a set of calculated/sampled points at the I/O ports.

In z-domain macromodeling [11], [12], the s-domain system
response f (t) is sampled through a finite L-point, uniformly
sampled ideal impulse sequence, with a sampling time Ts . The
obtained z-domain data F (z) is then used to construct the
z-domain macromodel F̂ (z)

L∑

k=0

f (k) z−k = F (z) ≈ F̂ (z) =
N∑

n=0

pnz−n

/
N∑

n=0

qnz−n.

(1)

Compared to s-domain macromodeling, z-domain macro-
modeling usually has a computation with a better numerical
condition because of the data distribution. In broadband
structure macromodeling, s-domain system frequency
responses are usually logarithmically sampled. Furthermore,
poles of approximated systems in s-domain are un-bounded
and usually logarithmically distributed. Meanwhile, z-domain
system sampled responses are relatively evenly distributed,
and stable poles in the z-domain are bounded within the
unit circle, so the identification in the z-domain has a
more numerically favorable computation for broadband
macromodeling. Because of the dual domain characteristics
and well-conditioned computation, z-domain models are
suitable for modeling, simulation, and analysis [11].

In this section, we discuss our proposed macromodeling
algorithms for frequency-z-domain (frequency-domain) (VFz),
time-z-domain (time-domain) (TD-VFz), and hybrid-z-domain
(hybrid-domain) (HD-VFz).

A. Frequency-Domain Macromodeling

In this section, we aim to approximate the response F (z)
in the z-domain with a causal and stable rational function (1)
where pμ, qυ ∈ �, q0 = 1. Therefore, all poles of F̂(z), i.e.,
zeros of Q(z), must lie in |z| < 1. Compared to the existing
formulation in [6] and [7], we apply an alternative z-domain
partial fraction basis for a versatile macromodeling framework
construction in Section II-C.

As in VF, we use a z-domain partial fraction basis to seek
a rational approximation to F(z). This is done by equating
(approximating) the macromodel F̂(z) in (1) to it, namely

F̂(z) =
(

N∑

n=1

cn

1 − z−1αn

)
+ d ≈ F(z) (2)

over the (discrete) frequency range of interest. Similarly, cn

and αn are either real or in complex conjugate pairs. To ensure
stability, the set of poles {αn} in (2) must be within the unit
circle (i.e., |αn | < 1). Analogous to VF, suppose an initial set
{α(0)

n }, |α(0)
n | < 1, is specified, we build

(
N∑

n=1

cn

1 − z−1α
(i)
n

)
+ d

︸ ︷︷ ︸
(σ F)(z)

≈
((

N∑

n=1

γn

1 − z−1α
(i)
n

)
+ 1

)

︸ ︷︷ ︸
σ(z)

F(z)

(3)

i = 0, 1, . . . , NT . Equation (3) is linear in its unknowns cn ,
d , and γn . Rewriting (3) for N f frequency points zk = e j�k ,
�k ∈ [−π, π), k = 1, 2, . . . , N f , N f � 2N + 1, gives an
over-determined linear problem. Specifically, when z = zk
(

N∑

n=1

cn

1 − z−1
k α

(i)
n

)
+ d −

(
N∑

n=1

γn F(zk)

1 − z−1
k α

(i)
n

)
≈ F(zk).

(4)

Repeating (4) at the N f frequency points, an over-determined
linear system matrix equation is formed

Ax = b. (5)

Using the last N elements of the LS solve of x (i.e., γ1 to
γN ), σ(z) of (3) can be reconstructed whose zeros, {α(i+1)

n },
then form the new set of starting poles in the next VFz
iteration. Similar to VF analysis [4], it can be easily shown
that reciprocals of zeros of σ(z), {α(i+1)

n } are obtained as the
eigenvalues of

� =
⎛
⎜⎝

⎡
⎢⎣

1/α
(i)
1

. . .

1/α
(i)
N

⎤
⎥⎦ +

⎡
⎢⎣
1/α

(i)
1

...

1/α
(i)
N

⎤
⎥⎦
[
γ1· · ·γN

]
⎞
⎟⎠

−1

. (6)

Once a converged set of poles {α(NT )
n } are obtained at NT

iterations, the final step is to reconstruct the macromodel F̂(z).
With reference to (3) and (4), we should now have σ(z) ≈ 1
and the following relationship holds:

F̂(zk) =
(

N∑

n=1

cn

1 − z−1
k α

(NT )
n

)
+ d ≈ F(zk) (7)

k = 1, 2, . . . , N f . The residues cn of F̂(z) are computed in
exactly the same manner as before, except that the last N
elements in both Ak and x are now truncated. This partial
fraction decomposition of F̂(z) then readily adds up to a
rational function.

The response F(z) in (2) may contain complex conjugate
poles and residues whose time-domain transforms are also
complex conjugates, thus conforming to a real response.
Discussion of pole relocation of complex poles can be found
in [10] and [8], and is not elaborated here.

B. Time-Domain Macromodeling

Frequency-domain macromodeling algorithms are often
used to generate reduced macromodels. However, frequency-
domain macromodeling requires spectral information, which
involves complicated measurement/simulation. Due to its high
computational cost, the full-wave analysis is usually termi-
nated before all transient responses vanish so that truncated
time responses are obtained. Macromodeling from truncated
time-sampled data is therefore desirable. Different numeri-
cal techniques (e.g., [13]) have been used for identification
of linear structures with time-sampled data. However, these
methods are based on large-scale matrix operations and expen-
sive singular value decompositions. Therefore, a time-domain
counterpart of VF has been developed for macromodeling of



1572 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 3, NO. 9, SEPTEMBER 2013

time-sampled data with lower computational cost [14], but its
performance is limited by the discretization in each iteration.
We, therefore, propose TD-VFz.

We start by transforming VFz to TD-VFz. As in VFz,
TD-VFz uses z-domain partial fractions to seek F̂(z) to a real
time-domain F(z). From (3), we apply an input W (z) to F(z)
and let Y (z) = F(z)W (z) be the output. The time-domain
relationship is then given by the inverse z-transform

y[k] ≈ dw[k] +
N∑

n=1

cnwn[k] −
N∑

n=1

γn yn[k]

yn[k] =
(
(α(i)

n )ku[k]
)

∗ y[k] , wn[k] =
(
(α(i)

n )ku[k]
)

∗ w[k]
(8)

where ∗ denotes the convolution and u[k] is the Heaviside
unit-step sequence. Suppose Nt samples of the input and out-
put sequences, w[k] and y[k], are captured, an over-determined
linear equation is set up, as shown in [10]. Using γ1 to γN ,
the new set of poles in the next iteration can be found through
obtaining eigenvalues of (6). When a converged set of poles
{α(NT )

n } are obtained, the final step is to compute residues and
reconstruct the rational function F̂(z). The detailed computa-
tion is shown in [10] and is not further discussed here.

C. Hybrid-Domain Macromodeling Using Frequency-Sampled
and Time-Sampled Response Data

We have proposed z-domain frequency-domain and
time-domain macromodeling, respectively, in Section II-A
and II-B. However, there are practical measurement lim-
itations in both domains [15]. For example, time-domain
measurement requires a long measurement time to capture
low-frequency characteristics. Meanwhile, frequency-domain
measurement requires a great deal of effort and time to
obtain hundreds of GHz frequency response data. Therefore,
it is practically efficient to model the structure using short
time-domain measurement and tens of low-frequency fre-
quency response data. Furthermore, information from dual
domain responses can be different if frequency responses
and/or time responses are under-sampled, or sampled with
measurement errors. From the analysis perspective, signal
integrity analyses are usually performed in the frequency
domain, while global interconnect architecture simulations
and eye diagram analyses are performed in the time domain.
Thus, the single-domain macromodeling is not as favorable as
hybrid-domain macromodeling since a completely frequency-
domain approximation approach may overlook certain time-
domain requirements and vice versa. These necessities have
spawned the interest to develop HD-VFz for linear macro-
modeling.

Specifically, HD-VFz can fit both time- and frequency-
sampled responses simultaneously in the LS sense via the
over-determined equation (provided N f + Nt > 2N + 1)

Ax = b where A =
[

A f

At

]
and b =

[
b f

bt

]
(9)

where A f /b f and At/bt represent A/B in VFz computation
and TD-VFz computation, respectively. Using the last N

elements of the LS solution of x , i.e., γ1 to γN , σ(z) of (3) can
be constructed whose zeros, denoted by {α(i+1)

n }, then form the
new set of poles in the next HD-VFz iteration, as in VFz. The
zeros of σ(z) are constructed in a similar manner to the VFz
formulation in (6).

D. Building the Macromodel

The z-domain macromodel obtained from the framework
can be used directly for frequency-domain analyses or fixed
time step transient simulations. It can also be transformed into
an equivalent circuit [11] or an s-domain system by stability-
and passivity-preserving bilinear transformation. Besides con-
structing a rational function model, the model parameters {αn}
and {cn} in (2) and (8) can be used for recursive convolution
for transients simulations [11].

E. Remarks for the Framework

1) Convergence Analysis of TD-VFz: TD-VFz can be
regarded as a reformulation of the rational function fit-
ting procedure called Steiglitz–McBride (SM) iteration [16].
First, given F(z), SM iteration replaces the nonlinear LS
approximation objective ĜL2 = 	

Nt
k=1|F(zk) − P(zk )

Q(zk)
|2 with a

linearized ĜSM where

ĜSM =
Nt∑

k=1

1
∣∣Q(i−1) (zk)

∣∣2
∣∣∣Q(i)(zk)F(zk) − P(i)(zk)

∣∣∣
2
. (10)

Here, P(i) and Q(i) are, respectively, the numerator
and denominator determined during the i th SM iteration.
Although ĜSM is not equivalent to ĜL2 , by using the triangle
inequality, if we approximate F(z) by an N th-order system,
we get ||ĜL2 − ĜSM||2 ≤ 2σN+1. Here, σi , which denotes
the i th Hankel singular value (HSV) of a Hankel-form matrix
constructed by the time-domain impulse coefficients fk’s of
F(z) in (1), measures the significance of the N th approximant
order [17]. In general, SM iteration converges to a near-global-
optimal approximant in the LS sense for noise-free data, with
an a priori error bound for an N th-order approximant

min
deg( P

Q =N)

⎛

⎝ 1

2π

∫ π

−π

∣∣∣∣∣F(e jω) − P(i)(e jω)

Q(i)(e jω)

∣∣∣∣∣

2

dω

⎞

⎠
1/2

≤ σN+1.

(11)

2) Selection of Initial Poles in the Framework: Initial poles
assignment is required for most iterative identification frame-
works. In the framework, we assign

{
α

(0)
n

}
= {γ } e j {θ}, where

{γ } and {θ} are the sets of radii and angles of the initial poles,
respectively. In framework, initial poles are uniformly distrib-
uted along the passband. For example, if there is one single
passband in the interval

[
ωp1, ωp2

]
and N is even, the initial

estimates of the pole angles are θk = ωp1 + (2k − 1)
ωp2 −ωp1

N
for k = 1, 2, . . . , N

/
2. For lowpass responses, we assign

ωp1 to be zero and ωp2 to be the 3-dB cutoff frequency.
Furthermore, responses usually have fast-changing transients,
and the poles usually lie near the boundary of the unit circle.
Therefore, we usually set {γ } to be 0.9.
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3) Selection of Iterations: The number of iterations affects
the computation complexity of iterative frameworks. The step
size of parameter alteration can be used as the stopping
criterion, i.e., the algorithm can stop the iteration when

∣∣∣∣
�pi,i−1 − �pi−1,i−2

�pi−1,i−2

∣∣∣∣ ≤ ε (12)

where �pi, j is the parameter difference between i -th iteration
and j -th iteration and ε is a pre-defined threshold. If (12) is
not satisfied within a number of iterations, we need to adjust
the macromodel order for a better identification.

However, computational difficulties are also related to the
characteristics of the underlying structure and sampling distri-
butions. In situations with irregular disturbances, the approxi-
mation accuracy does not get much improved with higher order
models or more iteration, which implies generalized models
(e.g., grey-box models) are required for system descriptions.

4) Passivity Enforcement in the z-Domain: Similar to the
case in VF, macromodels generated from the framework
are not guaranteed to be passive. s-domain passivity check-
ing/enforcement techniques [18] can be used to rectify the
model, since the bilinear continue-to/from-discrete transforma-
tion is passivity-preserved [19]. Furthermore, passivity issues
in z-domain systems are similar to the one in s-domain sys-
tems [19]. For example, positive real lemma [20], bounded real
lemma [21] in z-domain can be used for passivity enforcement.
Symplectic matrix [21] perturbation can also be developed for
z-domain passivity enforcement, from the similar derivation
of Hamiltonian matrix perturbation in s-domain.

III. ENHANCEMENTS OF LINEAR MACROMODELING VIA

PRE-PROCESSING TECHNIQUES

In this section, data pre-processing techniques are intro-
duced such that implicit information from the data is used
to generate a correct macromodel.

A. Selection of Macromodel Order Based on Time-Sampled
Data

Error bound (11) in TD-VFz is important as it provides a
certificate for the approximation accuracy and can be used to
select the approximant order for TD-VFz and HD-VFz. It is
shown that the singular value of an upper triangular Hankel
matrix H is equivalent to the HSVs of the impulse response
system [22]. Exactly analogous to balanced truncation [22], the
macromodel order N is chosen such that σN � σN+1. This
approach gives a quantitative metric to efficiently determine
the value of an appropriate macromodel order.

An efficient HSV-based computation could help users to
obtain a good estimation of order in practical applications.
Therefore, a partial SVD is compared with a full SVD. The
result shows that the partial SVD requires excessive matrix
operation to determine the first 40 singular values. However,
in practice, we need to compute the first 50 singular values
(the order of a general macromodel). Therefore, full SVD is
a better choice in this application.

B. Macromodeling Using a P-Norm Approximation Criterion

2-norm (L2) identification is usually used in identification
frameworks [8]. However, to give a more exact and realistic
description of the sampled system, the identification frame-
work can be generalized to a P-norm (L p) identification

min

∥∥∥∥
N (t) (z)

D(t−1) (z)
− D(t) (z)

D(t−1) (z)
H (z)

∥∥∥∥
p
. (13)

The identification norm can be specialized to meet different
macromodeling requirements [23]. In other words, P-norm
criterion is a better criterion for identifying models with a
generalized p-Gaussian noise [24], i.e., L∞ (Chebyshev norm)
approximation, L2 approximation, and L1 approximation are
more effective for identifying responses when the noise fol-
lows the Lapalace distribution, the Gaussian distribution, and
the uniform distribution, respectively. The exponent P can be
determined if the noise distribution is known, or estimated
from the given response samples [23]. Generally, Gaussian
distribution is usually used to model noise, measurement
discrepancy, and packaging surface roughness [25]. However,
stochastic process in the packaging simulation can also be
described by the spatial (or temporal) correlation function,
which can also be an exponential or other distribution.

In general, the L∞ (Chebyshev norm) approximation, L2
approximation, and L1 approximation give a more accu-
rate macromodel for linear-phase (time-delayed) responses,
white-noise-contaminated responses, and impulsive-noise-
contaminated responses, respectively. For example, an L1
approximation can be used if there are analog-to-digital con-
version errors and transmission bit errors in the measurement
process.

C. Macromodeling of Time-Delayed Systems in z-Domain

VFz has difficulties in identifying time-delayed systems,
since the cost function may be trapped at a local minimum.
For time-sampled response of a single excitation pulse, the
time difference between excitation pulse and resultant pulse is
a natural selection of the delay. For time-sampled responses
with overlapping pulses and random excitations, the delay can
be identified by a cross-correlation between I/O signals

τ = max
τ

∣∣∣∣∣
1

N − τ

N−1∑

t=τ

y (t) w (t − τ )

∣∣∣∣∣ . (14)

For frequency-sampled responses with an apparent passband,
the delay can be obtained by the mean slope of the unwrapped
phase of the response

τ = − 1

k2 − k1

k2−1∑

k=k1

	 F (zk+1) − 	 F (zk)

ωk+1 − ωk
(15)

where
[
ωk1 , ωk2

]
defines the passband of the system. The delay

can be included as z−(Td /Ts ) F̂ (z) after the delay-extracted
identification, where Td is the delay time that we estimated.
The proposed approach can be generalized to identify multiple
delays. For example, the causality information and phase can
be recovered by a z-domain Hilbert transform [26]. Mean-
while, z-domain delay can be included through inserting time
shifting operators [26].
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Fig. 1. Relationship of the sampled location between the z-domain (original
frequency) and the z̃-domain (warped frequency) with different warping
parameters (γ ).

D. Frequency Warping in Frequency-/Hybrid-Domain Macro-
modeling

Recently, the calculation in a parameter-controlled
frequency-warped z-domain (̃z-domain) has been introduced
to improve the numerical condition in the time-domain
macromodeling [27]. To further alleviate ill-conditioned
computation problems in the linear macromodeling process,
we have generalized the time-domain frequency warping to
frequency-/hybrid-domain pre-processing process.

From the time-domain signal perspective, frequency warp-
ing can be adaptively adjusted, in order to re-interpret the
recorded information in the source signal and manifest some
characteristics of the signal source. In other words, frequency
warping acts as a nonstationary re-sampling in time of the
input signal performed by sampling the output signal of an all-
pass filter chain. The warping starts by replacing all operators
(z−1) in the original signal G

(
z−1

)
by allpass operators (z̃−1)

in the warped signal H
(
z̃−1

)
with a warping parameter γ

G
(

z−1
)

≈ H
(

z̃−1
)
, z̃−1 = z−1 + γ

γ z−1 + 1
(16)

then continues the macromodeling process in z̃ domain, finally
warps the macromodel back to z−1 (original) domain through
an inverse bilinear transform of (16).

From the frequency-domain signal perspective, frequency
warping is to reshape the frequency axis. In other words,
frequency warping transforms the structure response by assign-
ing a weighting in the frequency domain and gives a
higher resolution (accuracy) in the desired region. Warping
of frequency-sampled response can be done through chang-
ing the location of the sampled frequency by (16) directly.
The mapping of the sampled location between z-domain
and z̃-domain of some γ values is shown in Fig. 1. From the
figure, the reshaping of axis in frequency warping is linear,
nonsingular, and isometric. Furthermore, we observe that the
frequency warping is a mapping of a composition of a semi-
sigmoid function and its inverse scaled with γ .

Frequency warping is initially proposed to identify fixed-
time step responses in time-domain macromodeling, since
z-domain systems have a fixed-time step property. However,
this technique can also be applied in frequency-sampled
responses and fixed-step hybrid-sampled responses, since they
also have a fixed-time step property in z-domain. Furthermore,
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Fig. 2. Frequency responses of the channel example using VFz and VF
(a) magnitude responses and (b) error in magnitude responses.
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Fig. 3. Magnitude responses of the channel example using VFz
(a) magnitude response and (b) phase response.

warping usually suffers from significant approximation errors
at a high-pass response relative to half the sampling rate
due to the mapping process. However, this situation is not
common in SI applications. Furthermore, frequency warping
can be applied to different situations, such as hybrid-domain
macromodeling and multiport macromodeling, by applying a
unified γ to all responses in the modeled system.

IV. NUMERICAL EXAMPLES

In this section, we use different examples to show the
performance of algorithms in modeling linear structures. The
proposed algorithms are coded in MATLAB m-script (text) files
and run in the MATLAB 7.4 on a 1-GB-RAM 3.4-GHz PC.

A. Macromodeling of a Differential Transmission Channel
Using VFz With Performance Analysis

The test example arises from modeling a 40.5” differential
transmission channel on a full mesh ATCA backplane
(DTC) [28]. The single-ended four-port scattering parameters
are measured at 750 frequency samples ranging from
50 MHz to 15 GHz. The four-port scattering parameters
are converted to differential two-port scattering parameters.
The frequency sampled response is delay-extracted and
fitted using VFz and VF with a 60-pole approximant.
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Fig. 4. Computation details of VFz with a different number of iterations.
(a) Relative error. (b) Condition number of the system equation matrix.

Matrix normalization is applied to both VFz and VF
to improve the numerical condition. It takes 1.90 s
and eight iterations for VFz to achieve a relative error
(‖Fitted response−Original response‖2/‖Original response‖2)
of −50.75 dB. The average relative error of VF and VFz is
0.0024 and 0.0024, respectively. The CPU time of VF and
VFz is 14.49 and 10.93 sec., respectively. Figs. 2 and 3 plot
the fitted responses and show the excellent accuracy of VFz.
The relative error and the condition number of the system
equation matrix [A in (5)] in each iteration are shown in
Fig. 4. VFz converges after 45 iterations, while VF requires
61 iterations to achieve a −52.3-dB accuracy. Compared
with VF, VFz has a more numerically favorable computation,
hence VFz achieves an accurate fitting in the first iteration
(achieving a −48-dB error) and converges much faster.
It also shows that VFz can identify board-level responses
and responses with delay(s). The data set is obtained from
MATLAB RF toolbox V2.4 (default.s4p).

Next, we study the fitting robustness of VFz when the data is
noisy. We repeat the example but with the frequency-sampled
response corrupted by white noise resulting in a signal-to-noise
ratio (SNR) of 35 dB. In this case, VFz converges at a relative
error of −35.34 dB.

B. Macromodeling a Power Distribution Network Using VFz

A 14 × 14 admittance parameter matrix of a system-
in-package intelligent network communicator (INC) board
is obtained [3], whose 1286-points response ranges from
10 KHz to 9 GHz. The tested INC board contains digital,
ratio frequency (RF), and optoelectronic sections on a single
83 mm × 65 mm single test bed. By removing unnecessary
computations of un-coupled responses, the identification
is significantly reduced from fitting 196 responses to
fitting 54 responses. The average relative error of VF and
VFz is 0.0177 and 0.0189, respectively. The CPU time
of VF and VFz is 682 and 271 sec., respectively. This
large-scale package-level example has a large amount of
response data to be fitted, but VFz is computationally
well-conditioned and obtains an accurate approximation
within five iterations. The data set is obtained from
http: // www.ece.gatech.edu /research /labs /hppdl /Epsilon2008/
bemp/examples_thesis/powerplane/multiport/TMM_PRC.s14p.
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Fig. 5. Magnitude responses of the power distribution network. (a) Approx-
imation using L1 norm. (b) Approximation using L2 norm.

C. Modeling a Power Distribution Network Using a P-Norm
Approximation Criterion in VFz

The example arises from a power distribution network of
an IC power plane ( [29], page 111), whose 1286-point
admittance response ranges from DC to 9 GHz. In
addition, additive signals and subtractive disturbances
have been included to model impulsive noise/errors from
the measurement. The noise-contaminated response is fitted
using VFz with a 35th-order macromodel with L2 norm
approximation and a set of linear-spaced initial poles, which
gives 0.1078 L1 and 0.0606 L2 error in the fitting. The
responses are also fitted using the L1 norm approximation
with the same configuration, which gives an approximation
with 0.0996 L1 error and 0.0546 L2 error. The magnitude
response of the converged approximation is shown in Fig. 5. It
shows that in identifying responses with impulsive noise, L1
norm approximation renders a more accurate approximation in
terms of both L1 norm and L2 norm. Subsequently, P-norm
approximation can be used as an alternative approximation
criterion for approximations. The data set is obtained from
http : // www.ece.gatech.edu /research /labs /hppdl /Epsilon2008/
bemp/examples_thesis/powerplane/oneport/Powerplane.s1p.

D. Modeling Transmission Channel Using TD-VFz

The test example arises from modeling the transmission
channel in Section IV-A. The time-domain response is excited
from a pre-determined 200-pole model and an ideal impulse
signal (w [0] = 1 and w [n] = 0 for n = 1, 2, . . . , L − 1), and
the sampling rate is 33.3 ps. The 500-point output signal is
fitted using TD-VFz with a 25-pole approximant, ending up
at a relative error of −35 dB. It takes 0.46 s (three iterations)
for TD-VFz to reach convergence, while TD-VF [14] requires
∼1 s (four iterations) to achieve −27.04-dB accuracy. Fig. 6
plots the fitted responses. We observed that a poor fitting is
obtained for frequency ranges with small magnitudes. Weight-
ing functions (e.g., inverse magnitude weighting [30]) or a P-
norm identification criterion can be applied for a better fitting.
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Fig. 6. Frequency responses of the channel example using TD-VFz and
TD-VF. (a) Magnitude responses. (b) Phase responses.
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Fig. 7. HSVs of the system in the channel example. (a) All HSVs. (b) HSVs
in comparison with the identification error.

We also study the robustness of TD-VFz. First, we repeat the
example but with the output sequence y[k] perturbed by white
noise under an SNR of 35 dB. In this case, TD-VFz converges,
ending up with a relative error of −31 dB.

Moreover, we investigate the use of the HSV in guiding the
model order selection for TD-VFz. Fig. 7 shows the HSVs
found by the impulse response channel and the relative error
of different approximant orders. With excluding the numerical
deviation, an evidential correlation can be seen between these
two parameters. Such HSV design guideline, as far as we are
aware, is unavailable in other algorithms.

E. Modeling Transmission Channel Using HD-VFz

The test example arises from modeling the transmission
channel in Section IV-A. The time-sampled response sig-
nal is excited by an ideal impulse signal, and the sam-
pling rate is 33.3 ps. Time-sampled and frequency-sampled
response signals are fitted using VFz, TD-VFz, and HD-
VFz with a 25-pole approximant. It takes 0.75 s (three
iterations) for convergence. The quantitative comparison is
shown in Table I. The identified result is shown in Fig. 8. The
more time-consuming computation in HD-VFz than VFz and
TD-VFz is justified by the more accurate approximation and
better preservation of dual-domain characteristics, in contrast
to VFz and TD-VFz, which operate completely in a single

TABLE I

RESULT OF CHANNEL MACROMODELING USING

TD-VFZ, VFZ, AND HD-VFZ

TD-VFz VFz HD-VFz

Number of time-sampled points 300 0 300
Number of frequency-sampled points 0 100 100
L2 error in frequency responses 0.1366 0.1447 0.1317
L∞ error in frequency responses 0.0258 0.0193 0.0146
L2 error in time-domain responses 0.0036 0.0037 0.0034
L∞ error in time-domain responses 0.0007 0.0009 0.0009
CPU time (s) 0.3594 0.2656 0.7500
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Fig. 8. Frequency responses of the channel example using VFz, TD-VFz,
and HD-VFz. (a) Magnitude responses. (b) Error in the magnitude responses.
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domain. This demonstrates the superiority of a dual-domain
fitting property in HD-VFz.

F. Macromodeling of a Backplane Channel With Frequency
Warping Pre-Processing in VFz and HD-VFz

The scattering parameters of a 16-port high-speed back-
plane differential channel are simulated at 500 frequencies
ranging from 0.05 to 15 GHz [28]. The frequency response
of the backplane is warped using (16) with 20 uniformly
distributed γ , where 0 ≤ γ ≤ 0.95. Each warped response
is approximated by a 40th-order macromodel using VFz in
the z̃-domain. The macromodel is then mapped back to the
z-domain. The result with different warping parameters is
shown in Fig. 9. Results show that warping with γ = 0.30
gives the best approximation, which reduces L2 error from
0.0287 to 0.0047, when compared to the original case (γ = 0).
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Furthermore, the crosstalk between two differential channels
is also modeled to generate a 60th-order macromodel with the
same configuration. The L2 error using VFz is reduced from
0.9166 to 0.0020 after applying frequency warping.

Moreover, the two responses are combined for a multiport
macromodeling process. The example is then fitted using VFz
with a 40th-order model. The frequency warping generates a
macromodel with a minimum L2 error 0.0104 and 0.0076 for
the two responses, respectively, using γ = 0.30. The result
shows that the numerical computation of identifications can
be significantly improved using frequency warping. The data
set is obtained from MATLAB RF Toolbox V2.4 (default.s16p).

Another test example arises from modeling the transmission
channel in Section IV-A and IV-E is used for a hybrid-domain
frequency warping demonstration. The L2 error is reduced
from 0.1317 to 0.1093 after applying frequency warping
(γ = 0.66). Results show that there is a less error reduction
in hybrid-domain warping, compared to the single-domain
warping. This is because hybrid-domain data usually contain
more element discrepancies in the system matrix, and thus,
constitute a well-conditioned computation already.

V. CONCLUSION

A z-domain linear macromodeling framework was presented
with exploitation of implicit information from sampled data
for macromodeling. The proposed hybrid-domain identifica-
tion framework, P-norm identification criterion, time-/hybrid-
domain model order selection, and frequency-/hybrid-domain
frequency warping interpret implicit information to facilitate
the macromodeling process. Various examples confirmed that
the framework exhibits an efficient computation and produces
accurate macromodels for simulation.
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