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Abstract: This paper studies the ruin probability for a Cox risk model

with intensity depending on premiums and stochastic investment returns,

the model proposed in this paper allows the dependence between premiums

and claims. When the surplus is invested in the bond market with constant

interest force, coupled integral equations for Gerber-Shiu expected discounted

penalty function (GS function for short) are derived, together with the initial

value and Laplace transformation of the GS function, we provide a numerical

procedure for obtaining the GS function. When the surplus can be invested in

risky asset driven by a drifted Brownian motion, we focus on finding minimal

upper bound of ruin probability and find that optimal piecewise constant

policy yields the minimal upper bound. It turns out that the optimal piecewise

constant policy is asymptotically optimal when initial surplus tends to infinity.
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1 Introduction

Ruin theory models with force of interest or stochastic investment return have received

considerable attention in past two or three decades. For results on the ruin theory under

models with constant interest force see, for example, Albrecher and Boxma [1], Asmussen

and Albrecher [2], Cai [4], Cai and Dickson ([5], [6]), Cai and Yang [7], Konstantinides et

al. [18], Mitric and Sendov [20], Mitric et al. [21], Yang et al. [27], Yuen et al. [28] and

references therein. In Gerber and Shiu [11], an expected discounted penalty function is

introduced, and it is called Gerber-Shiu function (or GS function). This has been studied

by many authors in the literature. One popular method to study the ruin probability or

GS function is to analyze the integral-differential equation satisfied by the ruin probability

or GS function, and another group of literature is on bounds estimation or asymptotic

behavior of ruin probability. Most of the literature assumes that the premium income

rate is a fixed constant. Some work on variable premium rate models can be found in

Melnikov [19], Schmidli [23] and Taylor [24]. This paper focuses on the Cox risk model

with variable premium rate specified by a function of the Cox process intensity, and

thus the model allows the dependence between premium incomes and claims. Since more

premium income means more customers; therefore more claims probably will occur. So

the model is reasonable. The first part of this paper devotes to the GS function when the

model receives constants interest force. Coupled integral equations satisfied by the GS

function are obtained. Together with the initial value of GS function, we can derive the

expression of GS function.

The second part of the paper focuses on optimal investment policy when the model

has stochastic investment return. In a model with constant interest force, if the claim sizes

have exponential moments (i.e. the “light tailed claims”), the ruin probability decreases

exponentially as the initial surplus increases. However, when there is a stochastic invest-

ment return, the situation can be different. Frovola et al. [10], Gjessing and Paulsen [13],

Kalashnikov and Norberg [17] investigated the problem under the assumption that all the

surplus is invested in the risky market, it has been shown that even if the claims are “light

tailed claims”, the ruin probability decreases only in the order of a negative power of the
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initial surplus. This somehow indicates that investing the surplus into the risky market

can not be optimal. Naturally, one interesting problem is: if an insurer has the opportu-

nity to invest in the risky asset, what is the optimal investment policy if the insurer wants

to minimize the ruin probability? In particularly, can the insurer do better than keeping

the surplus in the bond? Browne [3] considered this problem for the drifted Brownian

motion risk model and found that the optimal policy is to invest constant amount in the

risky asset, independent of the surplus of wealth process. In this case ruin probability has

a closed form expression and is much smaller than the one without any investment in risky

asset. However, in most cases, it is not easy to obtain explicit solution for the optimal

policy. Alternatively, there are some papers focused on finding optimal policy minimizing

the upper bound of ruin probability (c.f. Gaier et al. [12] and Hipp and Schmidli [16]).

They found that the optimal policy to minimize the upper bound of ruin probability is a

kind of constant policy, and they proved that such constant policy is asymptotic optimal

when the initial surplus tends to infinity. Motivated by the work of Gaier et al. [12], the

second part of the paper aims to find optimal investment policy minimizing the upper

bound of ruin probability and prove its asymptotic optimality. Results obtained in this

part can be regarded as an extension of Gaier et al. [12] to the case of Cox risk model

with dependence between the premiums and claims.

This paper is organized as follows. Section 2 provides an introduction to the model

and the problem formulation. In Section 3, coupled system of integral equations satisfied

by the GS function is obtained and initial value of the GS function is derived. Section 4

investigates the optimal investment policy for minimizing upper bound of ruin probability

and proves that the optimal constant investment policy is asymptotically optimal when

initial surplus tends to infinity.

2 Model and problem formulation

Let (Ω,F ,P) be a complete probability space. The surplus process of an insurer is specified

by

Xt = u+

∫ t

0

c(λs)ds−
Nt∑
i=1

Yi, (2.1)
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where u > 0 is the initial surplus, {Nt, t ≥ 0}, denotes the number of claims arrived

up to time t, is a Cox process with intensity process {λt, t ≥ 0}. {Yi, i ≥ 1} are i.i.d.

random variables with common distribution function F (x) and F (0) = 0. {λt, t ≥ 0} is

a positive-valued, continuous time Markov chain with state space E = {αi, i = 1, 2, , , n}

and generator Q = (qij)n×n. c(·) is a continuous, positive valued function defined on

R+. Define τ1 the first time that the process {λt, t ≥ 0} leaves the initial state, i.e.

τ1 = inf{t : t > 0, λt ̸= λ0}. By the classical results on continuous time Markov chain, if

qi := −qii =
∑

j ̸=i qij <∞, then we have the following results:

Lemma 1 Suppose that λ0 = αi, then for any αi ∈ E, the following properties holds:

P (τ1 > t) = e−qit; (2.2)

P (τ1 ≤ t, λτ1 = αj) = (1− e−qit)
qij
qi
; (2.3)

P (λτ1 = αj) =
qij
qi
. (2.4)

The proof of the Lemma 1 can be found in Grandell [14]. Let Fλ
t = σ{λs, 0 ≤ s ≤

t}, FX
t = σ{Xt, 0 ≤ s ≤ t} and Ft = σ{(λs, Xs), 0 ≤ s ≤ t}. In this paper we shall use

Lemma 2.19 in Grandell [14], we cite it here:

Lemma 2

(i) Nt has independent increments with respect to Fλ
∞;

(ii) Nt −Ns is Poisson distribution with mean
∫ t

s
λrdr withe respect to Fλ

∞.

One common assumption in insurance risk model is the “positive safety loading”

condition, which guarantees the expected net income of the insurer is positive. Assume

that process {λt, t > 0} is stationary with initial distribution π = (π1, π2, · · · , πn). Then

the following condition guarantees “positive safety loading” holds.

Ec(λt) = Ec(λ0) > Eλ0EY := pEY. (2.5)

Note that qi < ∞ and λt is a finite-state Markov chain, it follows from the standard

results on stochastic process (c.f. Wentzell [25]) that E|λt − λ0|2 → 0 (t → 0+) and

consequently E|c(λt)− c(λ0)|2 → 0 (t→ 0+) and we also have E
∫ t

0
c(λs)ds =

∫ t

0
Ec(λs)ds

4



(c.f. Theorem 2.3, Wentzell [25]). In fact, Eq.(2.5) ensures that for any t ≥ 0, the expected

total premium income is larger than the expected aggregate claims since

E
∫ t

0

c(λs)ds =

∫ t

0

Ec(λs)ds = tEc(λ0) > E

N(t)∑
i=1

Yi

 = EY E
[∫ t

0

λsds

]
= EY Eλ0t

⇐⇒ Ec(λt) = Ec(λ0) > EY Eλ0 := pEY.

In particular, putting c(λt) = (1 + ρ)pEY with ρ > 0, our model reduces to the one

considered in Grandell [14].

Let Ti(u) = inf{t : Xt < 0|X0 = u, λ0 = αi}, the ruin time of Xt with λ0 = αi, X0 =

u, and T (u) = inf{t : Xt < 0|X0 = u} the ruin time of process (2.1), with the convention

that inf ∅ = ∞. Denote the ultimate ruin probability with initial surplus u and initial

intensity state αi by ψ(u, i), i.e.

ψ(u, αi) = P
{
Ti(u) <∞

}
= P

{
T (u) <∞|X0 = u, λ0 = αi

}
, (2.6)

the ruin probability with initial surplus u by ψ(u), i.e.

ψ(u) = P
{
T (u) <∞

}
= P

{
inf
t
Xt < 0|X0 = u

}
=

n∑
i=1

ψ(u, i)πi, (2.7)

and the probability that ruin occurs before or on the nth claim by

ψn(u) = P
{
T (u) ≤ Ln

∣∣∣X0 = u
}
, (2.8)

where Ln denotes the nth claim time. Besides the ruin probability, other important

ruin quantities in ruin theory include the Laplace transform of the ruin time, denoted by

E[e−αT ]; the surplus immediately before ruin, denoted by XT−; the deficit at ruin, denoted

by |XT |, etc are also important. A unified approach to study these ruin quantities is the

GS function which is defined as

ϕi,β(u) = E
[
ω(XT (u)−, |XT (u)|)e−βT (u)1{T (u)<∞}|λ0 = αi

]
, (2.9)

where ω(x, y), x ≥ 0, y ≥ 0 is a nonnegative function such that ϕi,β(u) exists. In this

paper ω(x, y) is assumed to be bounded, i.e. supx,y ω(x, y) = M < ∞, x ≥ 0, y ≥ 0, M

is a positive constant. The following boundary conditions are trivial.

ϕi,β(∞) = ψ(∞, αi) = ψ(∞) = 0. (2.10)
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3 Gerber-Shiu expected discounted penalty function

This section focuses on the case that the insurer would like to invest all its surplus to

the bond market with force of interest δ. Then, the dynamic of the surplus process is

specified as

dXt = Xtδdt+ c(λt)dt− dZt, (3.1)

where Zt =
∑Nt

i=1 Yi denotes aggregate claims up to time t. Eq.(3.1) implies that

e−δtdXt − δe−δtXtδdt = d
(
e−δtXt

)
= e−δtc(λt)dt− e−δtdZt.

Replace t with r in Eq. (3.2) and integrate both side w.r.t. r from 0 to t, it follows that

Xt = eδt
(
u+

∫ t

0

e−δrc(λr)dr −
∫ t

0

e−δrdZr

)
. (3.2)

Theorem 3.1. Vector (ϕ1,β(u), ϕ2,β(u), · · · , ϕd,β(u)) is the solutions to the following ma-

trix equation

Φβ(u) =

∫ u

0

K(u, t)Φβ(t)dt+B(u)Φβ(0)−C(u)

∫ u

0

m(t)dt−
∫ u

0

T(u)Φβ(t)dt

=

∫ u

0

[K(u, t)−T(u)]Φβ(t)dt+B(u)Φβ(0)−C(u)

∫ u

0

m(t)dt, (3.3)

where

Φβ(u) := (ϕ1,β(u), ϕ2,β(u), · · · , ϕd,β(u))
T ,

K(u, t) := diag

(
α1(1− F (u− t)) + β + δ

δu+ c(α1)
, · · · , αd(1− F (u− t)) + β + δ

δu+ c(αd)

)
,

B(u) := diag

(
c(α1)

δu+ c(α1)
,

c(α2)

δu+ c(α2)
, · · · , c(αd)

δu+ c(αd)

)
,

C(u) := diag

(
α1

δu+ c(α1)
,

α2

δu+ c(α2)
, · · · , αd

δu+ c(αd)

)
, (3.4)

T(u) = (tij(u))n×n a matrix with tij(u) =
qij

δu+c(αi)
, i, j = 1, 2, · · · , d and m(t) denotes∫∞

t
ω(t, y − t)dF (y).

Proof. Suppose that (X0, λ0) = (u, αi). Inspired by the “differential argument” applied

in Cai [4], consider a very short time interval [0,∆t], there are four cases:

(i) no claim arrives and λt does not jump in [0,∆t] , then

X∆t = ueδ∆t + eδ∆t

∫ ∆t

0

e−δrc(λr)dr = ueδ∆t + c(αi)
eδ∆t − 1

δ
≈ ueδ∆t + c(αi)∆t
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with probability (1 − qi∆t)(1 − αi∆t) + o(∆t). Note that when ∆t is very small, eδ∆t ≈

(1 + δ∆t);

(ii) λt does not jump but one claim occurs with arrival time ∆s(< ∆t) , then we have

X∆t = ueδ∆t +∆tc(αi)− Y1e
δ(∆t−∆s)

with probability (1−qi∆t)αi∆t+o(∆t). Note that in this case we should further consider

whether the claim cause ruin or not;

(iii) λt jumps but no claim occurs in time interval [0,∆t], denote the jump time by

∆h(< ∆t), then we have

X∆t = ueδ∆t +∆hc(αi) + c(αj)(∆t−∆h)

with probability qi∆t
qij
qi
(1− αi∆t) + o(∆t);

(iv) other cases happen with probability o(∆t).

By the Markov property of process (Xt, λt) we have

ϕi,β(u) = E
[
E
[
ω(XT (u)−, |XT (u)|)1T (u)<∞

∣∣∣X∆t, λ∆t

] ∣∣∣X0 = u, λ0 = αi

]
= (1− qi∆t)(1− αi∆t)e

−β∆tϕi,β([u(1 + δ∆t) + c(αi)∆t])

+(1− qi∆t)αi∆te
−β∆t

[∫ ∞

ueδ∆t+c(αi)∆t

ω(ueδ∆t + c(αi)∆t, y − ueδ∆t − c(αi)∆t)dF (y)

+

∫ ueδ∆t+c(αi)∆t

0

ϕi,β(ue
δ∆t + c(αi)∆t− y)dF (y)

]
+e−β∆t

∑
i̸=j

qij
qi
qi∆t(1− αi∆t)ϕj,β(ue

δ∆t + c(αi)∆h+ c(αj)(∆t−∆h))

+o(∆t). (3.5)

Rearranging Eq.(3.5) yields

ϕi,β(u)− ϕi,β(u+ [uδ + c(αi)]∆t)

= −(qi + αi + β)ϕi,β([u(1 + δ∆t) + c(αi)∆t])

+(1− qi∆t)αi∆te
−β∆t

[∫ ∞

ueδ∆t+c(αi)∆t

ω(ueδ∆t + c(αi)∆t, y − ueδ∆t − c(αi)∆t)dF (y)

+

∫ ueδ∆t+c(αi)∆t

0

ϕi,β(ue
δ∆t + c(αi)∆t− y)dF (y)

]
+e−β∆t

∑
i̸=j

qij
qi
qi∆t(1− αi∆t)ϕj,β(ue

δ∆t + c(αi)∆h+ c(αj)(∆t−∆h))

+o(∆t). (3.6)
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Eq.(3.6) indicates that ϕi,β(u) is continuous. Under the assumption that function ω(x, y)

is bounded, by dominated convergence theorem, differentiating both sides of Eq.(3.6) with

respect to ∆t yields

ϕ′
i,β(u)[uδ + c(αi)] = (αi + β + δ)ϕi,β(u)

− αi

[∫ ∞

u

ω(u, y − u)dF (y) +

∫ u

0

ϕi,β(u− y)dF (y)

]
−

d∑
j=1

qijϕj,β(u). (3.7)

Replace argument u in above equation by t and integrate both sides of Eq. (3.7) with

respect to t from 0 to u, and note that∫ u

0

(δt+ c(αi))ϕ
′
i,β(t)dt =

∫ u

0

(δt+ c(αi))dϕi,β(t)

= (δt+ c(αi))ϕi,β(t)
∣∣∣u
0
−
∫ u

0

δϕi,β(t)dt

= (δu+ c(αi))ϕi,β(u)− c(αi)ϕi,β(0)− δ

∫ u

0

ϕi,β(t)dt,

denote
∫∞
t
ω(t, y − t)dF (y) by m(t), then we have

ϕi,β(u) =
αi + β + δ

δu+ c(αi)

∫ u

0

ϕi,β(t)dt+
c(αi)

δu+ c(αi)
ϕi,β(0)

− αi

δu+ c(αi)

∫ u

0

m(t)dt− αi

δu+ c(αi)

∫ u

0

∫ t

0

ϕi,β(t− y)dF (y)dt

−
d∑

j=1

qij
δu+ c(αi)

∫ u

0

ϕj,β(t)dt. (3.8)

Since ∫ u

0

∫ t

0

ϕi,β(t− y)dF (y)dt =

∫ u

0

∫ u

y

ϕi,β(t− y)dtdF (y)

=

∫ u

0

∫ u−y

0

ϕi,β(t)dtdF (y) = F (y)

∫ u−y

0

ϕi,β(t)dt
∣∣∣u
0
−
∫ u

0

F (y)d

(∫ u−y

0

ϕi,β(t)dt

)
=

∫ u

0

F (u− t)ϕi,β(t)dt, (3.9)

it follows that

ϕi,β(u) =

∫ u

0

αi(1− F (u− t)) + β + δ

δu+ c(αi)
ϕi,β(t)dt+

c(αi)

δu+ c(αi)
ϕi,β(0)

− αi

δu+ c(αi)

∫ u

0

m(t)dt−
d∑

j=1

qij
δu+ c(αi)

∫ u

0

ϕj,β(t)dt, i = 1, 2, · · · , d. (3.10)

8



For i = 1, 2, ...d, equations (3.10) compose a coupled system of integro equations and

Eq.(3.3) is the matrix form. T his completes the proof. �
Eq.(3.3) provides the way to obtain the value of Φβ(u) by Piccard recursive method

once the value of Φβ(0) is known. The rest of this section provides a result for Φβ(0)

under some suitable conditions. To proceed our discussion, let

K(r, αi) = E
[
e−r(XL1

−u)|λ0 = αi

]
,

K(r) = E
[
e−r(XL1

−u)
]
=

d∑
i=1

πiE
[
e−r(XL1

−u)|λ0 = αi

]
=

d∑
i=1

πiK(r, αi). (3.11)

The proof of the following Lemma 3.2 can be found in the Appendix.

Lemma 3.2. Suppose that Ri is positive root of equation K(r, αi) = 1, i = 1, 2, · · · , d

and R is the positive root of equation K(r) = 1. Let R̄ := minRi. Then

ψ(u, αi) ≤ ϱe−R̄u, i = 1, 2, · · · , d (3.12)

ψ(u) ≤ ϱe−Ru, (3.13)

where ϱ is specified by ϱ−1 = inft≥0

∫∞
t e−RudF (u)

eRtF̄ (t)
. Naturally, since ω(x, y) is nonnegative

and bounded by M , we have

ϕi,β(u) ≤ ϱMe−R̄u, i = 1, 2, · · · , d. (3.14)

Theorem 3.3. Suppose the conditions of Lemma 3.2 hold, we have

Φβ(0) =

(
α1

c(α1)
,
α2

c(α2)
, · · · , αd

c(αd)

)T

Θ, (3.15)

where Θ = limu→∞
∫ u

0
m(u− t)dt.

Proof Revisit Eq(3.10) with t replaced by u− t , by some mathematical manipulations,

it follows that

ϕi,β(u) =

∫ u

0

αi(1− F (t)) + β + δ

δu+ c(αi)
ϕi,β(u− t)dt− αi

δu+ c(αi)

∫ u

0

m(u− t)dt

+
c(αi)

δu+ c(αi)
ϕi,β(0)−

d∑
j=1

qij
δu+ c(αi)

∫ u

0

ϕj,β(u− t)dt, i = 1, 2, · · · , d. (3.16)
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Multiply δu+ c(αi) on both sides of Eq.(3.16), note that Eq.(3.14) guarantees that

lim
u→∞

ϕi,β(u)(δu+ c(αi)) = 0, i = 1, 2, · · · , d. (3.17)

By Eq.(3.17), together with boundary condition Eq.(2.10) and dominated convergence

theorem, letting u→ ∞ on both sides of Eq.(3.16) yields

ϕi,β(0) =
αi

c(αi)
lim
u→∞

∫ u

0

m(u− t)dt. (3.18)

Summarizing the previous discussion, we complete the proof. �

Remark 1. Eq.(3.17) plays a key role in Theorem 3.3, one can easily see that ϕi,β(u) =

o(u−(1+γ)) for some γ > 0 sufficiently justifies Eq.(3.17), thus conditions in Lemma 3.2

seem too strong. However, Lemma 3.2 can also serve as an exponential bound estimation

for the GS function, which is a classical research topic in risk theory. �

Remark 2. Taking Laplace transform on both sides of Eq. (3.7) yields

c(αi)sϕ̃i,β(s)−αiΘ− δ
dϕ̃i,β(s)

ds
= (αi+β)ϕ̃i,β(s)−αim̃(s)−αiF̃ (s)ϕ̃i,β(s)−

d∑
j=1

qijϕ̃j,β(s),

(3.19)

where

ϕ̃i,β(s) =

∫ ∞

0

e−suϕi,β(u)du, i = 1, 2, · · · , d;

m̃(s) =

∫ ∞

0

e−sum(u)du;

F̃ (s) =

∫ ∞

0

e−sudF (u).

Eq.(3.19) can be rewritten in the matrix form:

δ
dϕ̃β(s)

ds
= Dβ(s)ϕ̃β(s)−H1Φβ(0) +H2M̃(s), (3.20)

where ϕ̃β(s) =
(
ϕ̃1,β(s), · · · , ϕ̃d,β(s)

)T
and Dβ(s) is a d× d matrix of the form

Dβ(s) =
[
(H1s+Q− βI)−H2 +H2F̃ (s)

]
(3.21)
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with

I = diag(1, 1, · · · , 1)

H1 = diag(c(α1), c(α2), · · · , c(αd));

H2 = diag(α1, α2, · · · , αd),

M̃(s) = (m̃(s), m̃(s), · · · , m̃(s))T . (3.22)

Eq.(3.20) is a first order, nonlinear matrix ODE. To our knowledge, there is no close form

solution to Eq.(3.20). Using the method of inverting Laplace transformation, Eq.(3.3)

provides a numerical method for solving Eq.(3.20). �

Example 1 Consider the case that λt ≡ α and c(λt) = (1 + ρ)αEY with ρ > 0, then

our model reduces to the compound Poisson risk model. If ω(x, y) ≡ 1 and β = 0 then

ψi,β(0) is the ruin probability for classical risk model with positive safety loading ρ. By

Eq.(3.18), we have

ψ(0) =
α

(1 + ρ)αEY
lim
u→∞

∫ u

0

∫ ∞

x

dF (t)dx =
1

1 + ρ
. (3.23)

This is a classical result for compound Poisson risk model (c.f. Grandell [14]).

4 Minimizing upper bound of ruin probability

Motivated by Gaier et al. [12], this section focuses on finding investment policy that min-

imizes the upper bound of ruin probability, and we also prove its asymptotic optimality.

Thus, the purpose of this section is to investigate whether there are constants R∗
i and

C(αi) such that

ψ̂(u, αi) ≤ C(αi)e
−R∗

i u, (4.1)

where ψ̂(u, αi) is the minimum ruin probability over all admissible investment policy and

it is also known as value function in control theory. Of course, there is always a possibility

not to invest anything in the risky asset at all, resulting in an exponential bound for the

ruin probability ψ̂(u, αi), which is the so-called Lundberg upper bound for Cox risk model

without investment (c.f. Grandell [14]). Our purpose is to find the tightest upper bound
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for the minimum ruin probability, that is to say we want to find the optimal (i.e. the

largest) coefficient R∗
i such that (4.1) holds.

To proceed our discussion, we assume that there are two kinds of assets available

for investors in the financial market: a risk-free asset and risky asset, and their dynamics

are specified respectively by

dr(t) = δr(t)dt,

dPt

Pt

= µdt+ σdBt, (4.2)

where {Bt, t ≥ 0} is a standard Brownian Motion, δ, µ and σ are positive constants.

P = {Pt, t ≥ 0} and λ = {λt, t ≥ 0} are mutually independent. Due to the non-arbitrage

assumption of financial market, it is assumed that µ > δ > 0.

Denote by {At} the amount invested in the risky asset at time t and XA
t the wealth

process with policy {At, t > 0}. XA
t − At is the amount invested in bond. Denote by

F = {Ft}t≥0 the smallest filtration satisfying the usual condition such that the process

{(λt, Pt), t ≥ 0} is measurable. Assume that strategies {At, t ≥ 0} are predictable w.r.t.

Ft and the insurer are allowed to invest more than its current wealth in risky asset. This

means that the value of an admissible policy at time t may depend on the history of the

process (XA
t , λt, Pt) up to time t, but it may not depend on the size of a claim occurring

at time t. Thus the admissible set is

A=
{
A = (At)t≥0: A is predictable and P

[∫ t

0
A2

sds <∞
]

for all t ∈ [0,∞)
}
.

Fleming and Soner [9] states that when the state process of a controlled system is Marko-

vian, then a Markov optimal control is also a general optimal control. Note that (XA
t , λt)

is a controlled Markov vector process, thus it is sufficient to consider the Markovian control

here, i.e. At takes the form of

At = A(XA
t−, λt), (4.3)

where A(·, ·) is the deterministic of investment policy At.

Remark 3. The dynamic of XA
t is

dXA
t = c(λt)dt− dZt + At(µ− δ)dt+XA

t δdt+ AtσdBt, (4.4)
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which implies that

e−δtdXA
t − δe−δtXA

t dt = e−δt [c(λt)dt− dZt + At(µ− δ)dt+ AtσdBt]

and thus

d
(
e−δtXA

t

)
= e−δt [c(λt)dt− dZt + At(µ− δ)dt+ AtσdBt] =: e−δtdX̃A

t (4.5)

e−δtXA
t is the discounted process of XA

t and thus has the same ruin probability of XA
t .

Consequently, X̃A
t has the same ruin probability with XA

t , for mathematical convenience,

we only study the optimal policy for process X̃A
t . �

Denote by µ̃ = µ− δ > 0, then

dX̃A
t = [µ̃At + c(λt)]dt+ AtσdBt − dZt. (4.6)

Denote the time of ruin with initial surplus u and policy A by

T (u,A(·, ·)) = inf{t ≥ 0 : X̃
A(·,·)
t < 0

∣∣X̃A(·,·)
0 = u} (4.7)

and ruin probability by ψA(·,·)(u, αi) = P(T (u,A(·, ·)) < ∞|X̃A(·,·)
0 = u, , λ0 = αi). The

value function is

ψ̂(u, αi) = inf
A(·,·)∈A

ψA(·,·)(u, i). (4.8)

Denote by AC the piecewise constant control policy and the value of At only depend

on the value of intensity process λt, i.e.

AC = {A ∈ A, At = A(λt), t ≥ 0}. (4.9)

It is obvious that AC ⊂ A. The idea of this section is to find an optimal policy in AC.

Then we prove that the optimal policy in AC is the limits of the true optimal policy in

A when u → ∞. To distinguish two different type investment strategies, denote by A(·)

the piecewise constant policy and by A(·, ·) the general policy. Suppose that function

V (x, l) belongs to the domain of the infinitesimal operator of Process (X̃A
t , λt), then for

all A(·) ∈ AC,

LA(·)V (u, αi) = c(αi)Vx(u, αi) + αiE[V (u− Y, αi)− v(u, αi)] + A(αi)µ̃Vx(u, αi)

+
1

2
A(αi)

2σ2Vxx(u, αi) +
d∑

j=1

qijV (u, αj), i = 1, 2, 3, · · · , d, (4.10)
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where Vx, Vxx denote the first and second partial derivative of V (u, αi) with respect to u.

The following boundary condition is natural,

V (+∞, αi) = 0, i = 1, 2, · · · , d. (4.11)

Dynkin Theorem (see [8]) claims that M(t) = V (X̃A
t , λt) is a martingale for any V such

that

LA(·)V = 0. (4.12)

Since the main purpose of this paper is to find an optimal exponential upper bound for ruin

probability and corresponding optimal investment piecewise constant policy, motivated

by Grandell [14] ( Prop. 52 of Chapt. 4), we restrict ourself to function V with the form

of

V (u, αi) = g(αi)e
−ru, i = 1, 2, · · · , d. (4.13)

Theorem 4.1. Fix A > 0, for any i = 1, 2, · · · , d, if there exists g : R+ 7→ R+ and

Ri(A) > 0, i = 1, 2, · · · , d such that

αi[EerY − 1] +
1

2
A2σ2r2g(αi)− r[c(αi)g(αi) + Aµ̃g(αi)] +

d∑
j=1

qijg(αj) ≡ 0. (4.14)

Then,

ψA(u, αi) ≤
g(αi)e

−Ri(A)u

E[g(λT (u,A))1{T (u,A)<∞}|λ0 = αi]
. (4.15)

Proof. Plugging (4.13) into (4.12), it is easy to see that

LAV (u, αi)

= e−ru

[
αi[EerY − 1] +

1

2
A2σ2r2g(αi)− r[c(αi)g(αi) + Aµ̃g(αi)] +

d∑
j=1

qijg(αj)

]
,

which shows that Eq. (4.14) is equivalent to (4.12). Therefore

M(t, Ri(A), A) := g(λt)e
−Ri(A)X̃A

t (4.16)

is a F -martingale. By optional sampling theorem, we have

E
[
g(λ0)e

−Ri(A)u
]
= E [M(0, Ri(A), A)] = EM(T (u,A) ∧ n,Ri(A), A)

≥ E
[
M(T (u,A) ∧ n,Ri(A), A)1{T (u,A)≤n}

]
= E [M(T (u,A) ∧ n,Ri(A), A)|T (u,A) ≤ n]P(T (u,A) ≤ n). (4.17)
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Thus,

ψA
n (u, αi) = P(T (u,A) ≤ n|λ0 = αi) ≤

g(αi)e
−Ri(A)u

E[M(T (u,A) ∧ n,Ri(A), A)|T (u,A) ≤ n]
.

(4.18)

Let n→ ∞, note that X̃T (u,A) < 0 and thus e−Ri(A)X̃T (u,A) > 1, we have

ψA(u, αi) = P(T (u,A) <∞|λ0 = αi) ≤
g(λ0)e

−Ri(A)u

E [M(T (u,A), Ri(A), A)|T (u,A) <∞]

<
g(αi)e

−Ri(A)u

E[g(λT (u,A))1{T (u,A)<∞}|λ0 = αi]
. (4.19)

This completes the proof.

Let

C(αi, A) :=
g(αi)

E[g(λT (u,A))1{T (u,A)<∞}|λ0 = αi]
,

C(αi) := max
A∈AC

C(αi, A).

Since ψ̂(u, αi) = infA(·,·)∈A ψ
A(·,·)(u, i), we have

ψ̂(u, αi) ≤ C(αi, A)e
−Ri(A)u ≤ C(αi)e

−Ri(A)u. (4.20)

The purpose of this section is to find the “tightest” upper bound for ψ̂(u, αi). One should

note that the coefficient Ri(A) depend on the value of A and current state of intensity

process λt. To obtain the tightest upper bound, it is sufficient to find the maximum of

Ri(A) over all A. Denote by R∗
i the maximum of Ri(A) and A

∗
i is the maximizer of R∗

i .

Then we have

ψ̂(u, αi) ≤ ψA∗
i (u, αi) ≤ C(αi)e

−R∗
i u. (4.21)

Follow this procedure, we can determine a sequence of investment policies which minimize

the upper bound of ruin probability and the policies are varies w.r.t. the state of λt. The

following Lemma 4.2 defines the relationship between A∗
i and R

∗
i and provides the method

to find the expressions of A∗
i and R∗

i .

Lemma 4.2. For any fixed A, if
∑d

j=1 qijg(αj) < 0, then there always exists a positive

Ri(A) such that Eq. (4.14) holds and only A∗
i = µ̃

σ2R∗
i
minimizes the left hand side of

Eq.(4.14), which results in a maximum R∗
i .
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Proof Let

h(r, A) := αi[EerY − 1] +
1

2
A2σ2r2g(αi)− r[c(αi)g(αi) + Aµ̃g(αi)] +

d∑
j=1

qijg(αj)

h1(r) := αi

[
EerY − 1

]
− rc(αi)g(αi)

h2(r) := −

[
1

2
A2σ2r2g(αi)− Aµ̃rg(αi) +

d∑
j=1

qijg(αj)

]
. (4.22)

With the assumption, for any fixed A, h(0, A) =
∑d

j=1 qijg(αj) < 0 and ∂2h(r,A)
∂r2

=

αiE[Y 2erY ] + A2σ2g(αi) > 0. Thus there must exist a unique positive Ri(A) such that

Eq.(4.14) holds. It is easy to see that A = µ̃
σ2r

is the maximizer of h2(r) for all r. Note that

for any fixed A, root of Eq.(4.14) is the intersection of h1(r) and h2(r). Since h1(0) < 0

and d2h1(r)
dr2

> 0, it follows that A = µ̃
σ2r

yields the maximum r satisfying Eq.(4.14).

This root is dependent on the current state of intensity process λt and denote it by R∗
i .

Consequently, the optimal investment constant policy is determined by A∗
i =

µ̃
σ2R∗

i
. This

completes the proof. �
Given that current state of λt is αi, by Lemma 3.2 we know that R∗

i is the solution

to following equation.

αi[EerY − 1]− rc(αi)g(αi)−
µ̃

2σ2
g(αi) +

d∑
j=1

qijg(αj). (4.23)

The following theorem summarizes previous discussions.

Theorem 4.3. The optimal piecewise constant policy for minimizing upper bound of ruin

probability are specified as

A∗(λt) = A∗
i , given that λt = αi, (4.24)

where A∗
i =

µ̃
σR∗

i
and R∗

i is determined by Eq.(4.23).

Remark 4. Denote by f(αi, r, A(·, ·)) the left hand side of Eq.(4.14) with replacing A by

A(·, ·), then

f(αi, R
∗
i , A(·, ·))

= f(αi, R
∗
i , A

∗
i )− (A(·, ·)− A∗

i )R
∗
i µ̃g(αi) +

1

2

[
(A(·, ·)2 − A∗2

i

]
σ2R∗2

i g(αi)

= f(αi, R
∗
i , A

∗
i )− (A(·, ·)− A∗

i )R
∗
i µ̃g(αi)

+
1

2

[
(A(·, ·)− A∗

i )
2 + 2A∗

i (A(·, ·)− A∗
i )
]
σ2R∗2

i g(αi). (4.25)
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Note that A∗
i =

µ̃
σ2R∗

i
and f(αi, R

∗
i , A

∗
i ) = 0, Eq. (4.25) can be reformulated as

f(αi, R
∗
i , A(·, ·)) = f(αi, R

∗
i , A

∗) +
1

2
(A(·, ·)− A∗

i )
2 =

1

2
(A(·, ·)− A∗

i )
2 > 0. (4.26)

This means that

M(t, R∗
i , A(·, ·)) := g(λt)e

−R∗
iX

A
t (4.27)

is a submartingale for any investment policy A(·, λt) ̸= A∗(λt) and we can not have

ψi(u,A(·, ·)) ≤ C(αi)e
−R∗

iA
∗
i . This indicates that the Eq. (4.19) only holds for the piece-

wise constant policy A∗(λt) and thus the optimal investment policy in A∗(·, ·) ∈ A can be

approximated by optimal piecewise constant policies A∗(·) ∈ AC when the initial value u

tends to infinity. However, the statements is not strict in mathematics. The rest of this

section gives the proof of such approximation when the claims have uniform exponential

moment in tail distribution. �

Definition 4.4. (c.f. Gaier et al.[12]) We say that ξ has a uniform exponential moment

in the tail distribution for r, if

sup
y≥0

E
[
e−r(y−ξ)

∣∣ξ > y
]
<∞. (4.28)

The proofs of following two Lemmas are similar to that of Theorem 4 and Lemma

5 of Gaier et al. [12] and we state it without proof.

Lemma 4.5. Assume that Y has a uniform exponential moment in the tail distribution

for R∗
i , then for each A(·, ·) ∈ A, the process M(t, R∗

i , A(·, ·)) is a uniformly integrable

submartingale.

Lemma 4.6. Assume that Y has a uniform exponential moment in the tail distribution

for R∗
i , then for each A(·, ·) ∈ A and u > 0, the stopping process

X̃
A(·,·)
t := X

A(·,·)
t∧T (u,A(·,·)) (4.29)

converges almost surely on {T (u,A(·, ·)) = ∞} to ∞ when t→ ∞. In other words, either

ruin occurs, or the insurer becomes infinitely rich. As a result, we know that

M̃(t, R∗
i , A(·, ·)) :=M(t ∧ T (u,A), R∗

i , A(·, ·)) (4.30)

converges to 0 as t→ ∞ on the set {T (u,A(·, ·)) = ∞}.
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Theorem 4.7. Assume that Y has a uniform exponential moment in the tail distribution

for R∗
i , then for each A(·, ·) ∈ A, λ0 = αi and R

∗
i we have

ψA(·,·)(u, αi) = P(T (u,A(·, ·)) <∞|λ0 = αi)

≥ g(αi)e
−R∗

i u

E[M(T (u,A(·, ·)), R∗, A(·, ·))|T (u,A(·, ·)) <∞]

≥ C
¯
e−R∗

i u, (4.31)

where

C
¯

=
1

supy≥0 E[e−R∗
i (y−Y )|Y > y]

> 0. (4.32)

In particular, we have

ψ̂(u, αi) ≥ C
¯
e−R∗

i u. (4.33)

Proof Using a similar argument to that in Eq.(4.19), we have

g(αi)e
−R∗

i u = M̃(0, R∗
i , A) ≤ E[M̃(T (u,A), R∗

i , A)]

= E[M̃(T (u,A), R∗
i , A)|T (u,A) <∞]P(T (u,A) <∞)

+E[M̃(T (u,A), R∗
i , A)|T (u,A) = ∞]P(T (u,A) = ∞)

= E[M̃(T (u,A), R∗
i , A)|T (u,A) <∞]P(T (u,A) <∞).

Note that investment can not cause ruin (c.f. Hipp and Plum [15]), thus ruin can only be

caused by claim. Suppose that XA
T (u,A)− = y > 0, then

E[M̃(T (u,A), R∗
i , A)|T (u,A) <∞] ≤ sup

y≥0
E[e−R∗

i (y−Y )|Y > y]. (4.34)

This completes the proof. �

Remark 5. What can we say from Eq.(4.21) and Theorem 4.7? One can find that the

Lundberg upper bound (4.21) does not hold for exponent R∗
i when A(·, ·) ̸= A∗, note that

R∗
i is defined as the supremum of Ri(A), Eq. (4.31) indicates that R∗

i is the maximal

adjustment coefficient (i.e. the minimal upper bound for ruin probability) we can obtain

over all A(·, ·) ∈ A. The optimal piecewise constant policy corresponding to adjustment

coefficient R∗
i is A∗ = µ̃

σ2R∗
i
. �
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Lemma 4.8. Assume that Y has a uniform exponential moment in the tail distribution

for R∗
i , let A(·, ·) be the determining function of Markovian control process At. If there

exists ϵ > 0 and uϵ ≥ 0 such that

|A(u, αi)− A∗
i | ≥ ϵ for u ≥ uϵ, (4.35)

then, there exists rϵ < R∗
i and Aϵ > 0 such that

ψA(·,·)(u, αi) ≥ Aϵe
−rϵu. (4.36)

Theorem 4.9. Let A∗(·, ·) be the determining function of optimal Markov control policy

of problem (4.8), then we have

lim
u→∞

A∗(u, αi) = A∗
i , for all i = 1, 2, · · · , d. (4.37)

Proof Assume that limu→∞A∗(u, αi) ̸= A∗
i , then there exists ϵ, uϵ > 0 such that

|A∗(u, αi)− A∗
i | ≥ ϵ for u ≥ uϵ. (4.38)

Therefore, by Lemma 4.8 we have

ψ̂(u, αi) = inf
A(·,·)∈A

ψA(·,·)(u, αi) ≥ Aϵe
−rϵu for some rϵ < R∗

i , (4.39)

which yields that

lim
u→∞

V (u, αi)

e−R∗
i u

= ∞, (4.40)

which is a contradiction to the fact that

ψ̂(u, αi) ≤ inf
A∈AC

ψA(u, αi) = ψA∗
i (u, αi) ≤ C(αi)e

−R∗
i u. (4.41)

Remark 6. One should note that the optimal piecewise constant policy is for the “dis-

counted” risk process (that is the force of interest is δ = 0). Otherwise, the result is

slightly different. If δ ̸= 0, by simple calculation, it is easy to see that the optimal

investment policy at time t is given by eδtA∗(λt), where A
∗(λt) is specified by Eq.(4.24).

Remark 7. What is the message of our result from practical point of view? When the

initial surplus of an insurer is very large, for the optimal investment problem, minimizing
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ruin probability is a very conservative approach, especially in the sense of asymptotical

optimality. Another remarkable fact, which follows from our analysis, is that, by incor-

porating additional risks (investment return from risky asset) we can decrease the ruin

probability. And such decrease is quite substantial and leads to a different exponential

decay for the ruin probability. Thus, when an insurer tries to invest in risky asset, even

under a very conservative risk measure (e.g. ruin probability), optimal policy is still

important. �
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Appendix

For notation simplicity, we only present the bound for ruin probability ψ(u) and the idea

can be extended to ψ(u, αi) easily. Note that ruin only occurs when a claim arrives,

thus we can consider the so-called “skeleton-process” of process (3.2) in studying ruin

probability. Denote the “discounted skeleton risk process” of process (3.2) by

Mn := e−δLnXLn = e−δLn

[
XLn−1e

δ(Ln−Ln−1) +

∫ Ln

Ln−1

eLn−δrc(λr)dr − Yn

]
= Mn−1 + e−δLn−1

[∫ Ln

Ln−1

e−δ(r−Ln−1)c(λr)dr − Yne
−δ(Ln−Ln−1)

]
(A.1)

with the convention that L0 = 0. Obviously,

F̄ (x) =

(∫∞
t

eRydF (y)

eRtF̄ (t)

)−1

e−Rx

∫ ∞

x

eRydF (y) ≤ ϱe−Rx

∫ ∞

x

eRydF (y), (A.2)

where ϱ−1 = inft≥0

∫∞
t e−RudF (u)

eRtF̄ (t)
. Consider whether the first claim causes ruin or not, we

have the following recursive formula.

ψn(u) = P(T ≤ Ln) = P

(
n∪

k=1

{Mk < 0}|M0 = u

)

= P

(
n∪

k=1

Mk < 0|M1 < 0

)
P(M1 < 0) + P

(
n∪

k=1

{Mk < 0} |M1 > 0

)
P(M1 > 0)

= P
(
Y1 > ueδL1 +

∫ L1

0

eδ(L1−r)c(λr)dr

)
+ E

[
P

(
n∪

k=2

{Mk < 0}
∣∣∣M1 = u+

∫ L1

0

e−δrc(λr)dr − Y1e
−δL1

)]

×P
(
Y1 < ueδL1 +

∫ L1

0

eδ(L1−r)c(λr)dr

)
= E

[
F̄

(
ueδL1 +

∫ L1

0

eδ(L1−r)c(λr)dr

)
+

∫ ueδL1+
∫ L1
0 eδ(L1−r)c(λr)dr

0

ψn−1

(
ueδL1 +

∫ L1

0

eδ(L1−r)c(λr)dr − y

)
dF (y)

]
.(A.3)
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For n = 1, by inequality (A.2), it follows that

ψ1(u) = E
[
F̄ (ueδL1 +

∫ L1

0

eδ(L1−r)c(λr)dr)

]
≤ E

[
ϱe−R[ueδL1+

∫ L1
0 eδ(L1−r)c(λr)dr]

∫ ∞

ueδL1+
∫ L1
0 eδ(L1−r)c(λr)dr

eRydF (y)

]
(A.4)

≤ ϱe−RuEe−R[u(eδL1−1)+
∫ L1
0 eδ(L1−r)c(λr)dr−Y ] (A.5)

= ϱe−RuE
[
e−R(XL1

−X0)
]
= ϱe−Ru. (A.6)

By an inductive method, we suppose that for n = k and u > 0

ψk(u) ≤ ϱe−Ru, (A.7)

then for n = k + 1,

ψk+1(u) = E
[
F̄ (ueδL1 +

∫ L1

0

eδ(L1−r)c(λr)dr)

+

∫ ueδL1+
∫ L1
0 eδ(L1−r)c(λr)dr

0

ψk

(
ueδL1 +

∫ L1

0

eδ(L1−r)c(λr)dr − y

)
dF (y)

]

≤ E

[
ϱe−R[ueδL1+

∫ L1
0 eδ(L1−r)c(λr)dr]

∫ ∞

ueδL1+
∫ L1
0 eδ(L1−r)c(λr)dr

eRydF (y)

+

∫ ueδL1+
∫ L1
0 eδ(L1−r)c(λr)dr

0

ϱe−R(ueδL1+
∫ L1
0 eδ(L1−r)c(λr)dr−y)dF (y)

]

= ϱe−RuE
[
exp

{
−R

[
u(eδL1 − 1) +

∫ L1

0

eδ(L1−r)c(λr)dr − Y

]}]
= ϱe−RuE

[
e−R(X1−X0)

]
= ϱe−Ru. (A.8)

The second step of previous equation comes from (A.4). Let k → ∞ and note that

limk→∞ ψk(u) = ψ(u), this completes the proof. �
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