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Abstract: This paper investigates a quasi-likelihood ratio (LR) test for the thresh-

olds in buffered autoregressive processes. Under the null hypothesis of no threshold,

the LR test statistic converges to a function of a centered Gaussian process. Un-

der local alternatives, this LR test has nontrivial asymptotic power. A bootstrap

method is proposed to obtain the critical value for the LR test. Simulation studies

and an example are given to assess the performance of the test. The proof here is

not standard and can be used in other non-linear time series models.

Key words and phrases: AR(p) model, bootstrap method, buffered AR(p) model,

likelihood ratio test, marked empirical process, threshold AR(p) model.

1. Introduction

After the seminal work of Tong (1978), threshold autoregressive (TAR) mod-

els have achieved great success in practice; see, e.g., Tong (1990) for earlier works

and Tong (2011) and the references therein for more recent ones. Generally

speaking, the TAR model says that the structure of an AR model shifts among

different regimes, i.e.,

yt = ϕ0 +

p∑
i=1

ϕiyt−i +
(
ψ0 +

p∑
i=1

ψiyt−i

)
Rt + εt, (1.1)

where Rt = I(yt−d ≤ r) is the regime indicator of yt, r is the threshold parame-

ter, d(≥ 1) is the delay parameter, and εt is an uncorrelated error sequence with

zero mean and variance σ2(> 0). There has been a lot of interest in detecting

thresholds in TAR models. Chan (1990, 1991) and Chan and Tong (1990) first

accomplished this by considering a likelihood ratio (LR) test. Tsay (1989) gave

some novel methods in this context; Hansen (1996) studied the Wald test and

Lagrange multiplier (LM) test for TAR models; Wong and Li (1997, 2000) stud-

ied the LM test for TAR-ARCH models; Li and Ling (2013) investigated the

portmanteau test for threshold double AR models; see also Tsay (1998), Hansen

(1999), Caner and Hansen (2001), Ling and Tong (2005), Li and Li (2008, 2011),

and Zhu and Ling (2012).

http://dx.doi.org/10.5705/ss.2012.311
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Under (1.1), the regime of yt shifts when the state of yt−d changes. In prac-

tice, the regime of yt may not shift immediately, and there could be a buffering

region in which the regime of yt depends on the regime of yt−d. Li et al. (2012)

first formulated this by assuming that Rt in (1.1) satisfies

Rt =


1 if yt−d ≤ rL,

0 if yt−d > rU ,

Rt−1 otherwise,

(1.2)

where rL and rU are two threshold parameters such that rL ≤ rU . They called

(1.1)−(1.2) the buffered AR (BAR) model, and the region in which yt−d lies

between rL and rU is called the buffering region. Also, they found that the

BAR model is the best selected model for the sunspot series in Tong (1990) and

the GNP series in Tiao and Tsay (1994); it may provide us with a new way to

understand non-linear time series. However, how to test for BAR models is still

unknown, and it is more challenging than testing for TAR models because the

regime of yt depends on past observations infinitely far away.

In this paper, we investigate a quasi-LR test for the thresholds in BAR

models. Under the null hypothesis of no threshold, the LR test statistic converges

to a function of a centered Gaussian process. Under local alternatives, this LR

test has nontrivial asymptotic power. Our result contains the one in Chan (1990)

as a special case, but its proof is not standard and different from the proof in

that paper. A bootstrap method is proposed to obtain the critical value for the

LR test. Simulation studies and an example are given to assess the performance

of this LR test.

This paper is organized as follows. Section 2 states our main result on the

LR test. Section 3 proposes a bootstrap procedure. The simulation results and

an example are given in Section 4. The proofs are provided in the Appendix,

which can be found in Zhu, Yu, and Li (2013). Throughout the paper, |A| =
(tr(A′A))1/2 is the Euclidean norm of a matrix A, ∥A∥s = (E|A|s)1/s is the

Ls-norm (s ≥ 1) of a random matrix, A′ is the transpose of matrix A, op(1)

(Op(1)) denotes a sequence of random numbers converging to zero (bounded)

in probability, →d denotes convergence in distribution, and ⇒ denotes weak

convergence. I(·) is an indicator function.

2. Likelihood Ratio Test

Let ϕ = (ϕ0, . . . , ϕp)
′, ψ = (ψ0, . . . , ψp)

′, λ = (ϕ′, ψ′)′, γ = (rL, rU ), and

xt = (1, yt−1, . . . , yt−p)
′. Then, model (1.1)−(1.2) is

yt = xt(γ)
′λ+ εt, (2.1)
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where xt(γ) = (x′t, ht(γ)
′)′, ht(γ) = xtRt(γ), and Rt(γ) is defined as in (1.2).

Here, we assume that all the roots of the characteristic equation ϕ(x) = xp −
ϕ1x

p−1−· · ·−ϕp lie inside the unit circle, and both p and d are known. We further
assume that d ≤ p if p ≥ 1, because we can set p = d with ϕp+1 = · · · = ϕd = 0
and ψp+1 = · · · = ψd = 0 in (2.1) when d > p ≥ 1.

Suppose that {y0, . . . , yN} are N + 1 consecutive observations from model
(2.1) with the true parameters λ0 and γ0, where λ0=(ϕ′0, ψ

′
0)

′, ϕ0=(ϕ00, . . . , ϕp0)
′,

ψ0 = (ψ00, . . . , ψp0)
′, and γ0 = (rL0, rU0). We consider the hypotheses{

H0 : ψ0 = 0,

H1 : ψ0 ̸= 0 for some γ.
(2.2)

Model (2.1) is an AR(p) model under H0 and it is a buffered AR(p) (BAR(p))
model under H1. When rL = rU (i.e., the buffering region is absent), (2.2) is
for testing the threshold in the threshold AR(p) (TAR(p)) model, for which the
likelihood ratio (LR) test was studied by Chan (1990, 1991) when εt ∼ N(0, 1)
is a sequence of i.i.d. random variables. When rL ̸= rU , since

Rt(γ) = I(yt−d ≤ rL)

+

∞∑
j=1

I(yt−j−d ≤ rL)

j∏
i=1

I(rL < yt−i+1−d ≤ rU ) a.s., (2.3)

we see that Rt(γ) depends on all past observations. The Rt(γ) in Chan (1990)
only depends on yt−d, so the test there is not a LR test and may be less powerful.
We consider an alternative LR test for (2.2).

Let Y = (yp, . . . , yN )′ and Zγ = (X,Xγ) =
(
xp(γ), xp+1(γ), . . . , xN (γ)

)′
,

where X = (xp, xp+1, . . . , xN )′ and Xγ =
(
hp(γ), hp+1(γ), . . . , hN (γ)

)′
. Let n =

N − p + 1 be the effective number of observations. Following Chan (1990), we
know that for any fixed value of γ the LR test statistic is

LRn(γ) =
n
[
σ2n − σ2n(γ)

]
σ2n

,

where

σ2n =
1

n
{Y ′Y − (Y ′X)(X ′X)−1(X ′Y )}, (2.4)

σ2n(γ) =
1

n
{Y ′Y − (Y ′Zγ)(Z

′
γZγ)

−1(Z ′
γY )}. (2.5)

Since the exact value of γ is unknown under H0, it is natural to construct
the LR test by using the maximum of LRn(γ) over the range of γ, see Davies
(1977, 1987). Thus, our LR test statistic is

LRn = sup
γ∈Γ

LRn(γ),
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where Γ ≡ {(rL, rU ); a ≤ rL ≤ rU ≤ b} and [a, b] is a predetermined inter-
val. Here, we truncate the full range of γ, since LRn may diverge to infinity in
probability as n→ ∞, see Andrews (1993a).

LetKγδ = E[xt(γ)xt(δ)
′]. For the asymptotic theory of LRn, we need certain

technical assumptions.

Assumption 1. yt is strictly stationary, ergodic and absolutely regular with
mixing coefficients β(m) = O(m−A) for some A > v/(v − 1) and r > v > 1;
E|yt|4r <∞, E|εt|4r <∞, and Kγγ is positive definite.

Assumption 2. yt has a bounded and continuous density function.

Assumption 3. There exists an A0 > 1 such that 2A0rv/(r − v) < A.

Assumptions 1−2 are from Hansen (1996), where the weak convergence of the
empirical process was derived by using the method in Doukhan, Massart, and Rio
(1995). When

∑p
i=1 |ϕi| < 1 and

∑p
i=1 |ϕi+ψi| < 1, Li et al. (2012) showed that

model (2.1) is strictly stationary and ergodic. When A > v/(v − 1), a sufficient
condition for Assumption 3 is that v < 3r/(2r + 1), which is stronger than
v < r as required in Assumption 1. Particularly, when εt is a sequence of i.i.d.
random variables with a bounded and continuous density function, β(m) decays
exponentially under H0 as shown in Pham and Tran (1985). Thus, Assumptions
1−3 hold in this case.

We state two key lemmas, under which a uniform expansion of LRn(γ) can
be derived.

Lemma 1. If Assumptions 1−3 hold, then

(i) sup
γ∈Γ

∣∣∣∣∣∣
{
X ′

γXγ

n
−
X ′

γX

n

(
X ′X

n

)−1 X ′Xγ

n

}−1

− (Σγ − ΣγΣ
−1Σγ)

−1

∣∣∣∣∣∣ = op(1);

(ii) under H0,

sup
γ∈Γ

∣∣∣∣Tγ − (− ΣγΣ
−1, I

) 1√
n
Z ′
γε

∣∣∣∣ = op(1),

where ε=(εp, . . . , εN )′, Tγ=n
−1/2

{
X ′

γ −X ′
γX(X ′X)−1X ′}Y , Σ = E(xtx

′
t),

and Σγ = E[xtx
′
tRt(γ)].

Proof. See the Appendix in Zhu, Yu, and Li (2013).

Lemma 2. If Assumptions 1−3 hold, then

1√
n
Z ′
γε⇒ σGγ

as n→ ∞, where Gγ is a Gaussian process with zero mean function and covari-
ance Kγδ.
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Proof. See the Appendix in Zhu, Yu, and Li (2013).

Note that

1√
n
Z ′
γε =

1√
n

N∑
t=p

(x′t, x
′
tRt(γ))

′εt.

We call {n−1/2Z ′
γε} a marked empirical process, as in Stute (1997), where each

yt−i−d in Rt(γ) is a marker. In view of (2.3), {n−1/2Z ′
γε} involves infinitely many

markers, as Ling and Tong (2005) studied the LR test for TMA models. Their

method seems hard to implement here. Compared with Chan (1990) and Ling

and Tong (2005), the proofs of Lemmas 1−2 in the Appendix are not standard;

they may be useful in other non-linear time series models.

Theorem 1. If Assumptions 1−3 hold, then under H0,

LRn →d sup
γ∈Γ

G′
γΩγGγ

as n→ ∞, where Ωγ =
(
−ΣγΣ

−1, I
)′ (

Σγ − ΣγΣ
−1Σγ

)−1 (−ΣγΣ
−1, I

)
.

Proof. By (2.4)−(2.5) and a direct calculation,

n
[
σ2n − σ2n(γ)

]
= T ′

γ

{
X ′

γXγ

n
−
X ′

γX

n

(
X ′X

n

)−1 X ′Xγ

n

}−1

Tγ . (2.6)

By Lemmas 1−2, the conclusion follows directly from the argument for Theorem

2.3 in Chan (1990).

Remark 1. Note that

G′
γΩγGγ = ξ′γ

(
Σγ − ΣγΣ

−1Σγ

)−1
ξγ ,

where ξγ =
(
−ΣγΣ

−1, I
)
Gγ . Then, by a direct calculation, we can show that,

for each γ ∈ Γ, G′
γΩγGγ follows a χ2 distribution. That is, for fixed γ, the test

statistic LRn(γ) is asymptotically pivotal under H0.

Remark 2. Although Theorem 1 has Theorem 2.3(ii) of Chan (1990) as a special

case, there has some difference between our LR test and that in Chan (1990).

First, the denominator of LRn(γ) is different from that in Chan (1990), but the

two are asymptotically equivalent; see also Ling and Tong (2005). Second, since

our Γ is larger than that in Chan (1990), our LR test needs more computational

efforts.

Remark 3. As Chan (1990), we only obtained the result under the condition

that V ar(εt) = σ2. The case that the threshold effect is in the variance of εt
needs further study.
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Next, we study the asymptotical local power of LRn by considering the local

alternative hypothesis

H1n : ψ0 =
h√
n

for a constant vector h ∈ Rp+1.

Theorem 2. If Assumptions 1−3 hold, then under H1n,

LRn →d sup
γ∈Γ

{
G′

γΩγGγ + h′µγγ0h
}
,

as n→ ∞, where Mγγ0 = E[xtx
′
tRt(γ)Rt(γ0)] and

µγγ0 =
1

σ2
(
Mγγ0 − ΣγΣ

−1Σγ

)′ (
Σγ − ΣγΣ

−1Σγ

)−1 (
Mγγ0 − ΣγΣ

−1Σγ

)
.

Proof. Note that Y = Xϕ0 +Xγ0h/
√
n+ ε under H1n. Thus,

Tγ =
1√
n

{
X

′
γ −X

′
γX(X ′X)−1X ′

}
ε+

1

n

{
X

′
γ −X

′
γX(X ′X)−1X ′

}
Xγ0h

=
1√
n

(
− (X ′

γX)(X ′X)−1, I
)
Z ′
γε+

1

n

{
X

′
γ −X

′
γX(X ′X)−1X ′

}
Xγ0h.

By (2.6) and Lemmas 1−2, the conclusion follows directly from the argument for

Theorem 2.3 in Chan (1990).

In practice, the values of a and b can be set to empirical quantiles of {yt}Nt=0

as in Chan (1991) and Andrews (1993b), although how to choose the optimal

a, b remains unclear. In this case, we can always find a smallest n0 ≥ p such

that yn0−d stays outside the region [a, b], where the integer n0 depends on data

sample {y0, . . . , yN}. This means that we can observe Rn0(γ), and then further

calculate {Rt(γ)}Nt=n0+1 iteratively as

Rt(γ) = I(yt−d ≤ rL) +Rt−1I(rL < yt−d ≤ rU ).

For the remaining observations {yt}n0−1
t=0 whose regions are not well identified,

we set their regions to be 0. Thus, we can only use R̃t(γ) rather than Rt(γ) in

practice, where

R̃t(γ) =

{
0 for t = 0, . . . , n0 − 1,

Rt(γ) for t = n0, . . . , N.
(2.7)

Let L̃Rn be defined in the same way as LRn with Rt(γ) being replaced by R̃t(γ).

The following corollary shows that L̃Rn and LRn have the same asymptotic

property.
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Corollary 1. If Assumptions 1−3 hold, then (i) under H0,

L̃Rn →d sup
γ∈Γ

G′
γΩγGγ as n→ ∞;

(ii) under H1n,

L̃Rn →d sup
γ∈Γ

{
G′

γΩγGγ + h′µγγ0h
}

as n→ ∞.

Proof. See the Appendix in Zhu, Yu, and Li (2013).

3. Bootstrapped Critical Value

In this section, we use a bootstrap method to obtain the critical value for

our LR test; see also Hansen (1996) and Li and Li (2008, 2011). First, we let

ε̂t = yt − xt(γ)
′λn(γ) (3.1)

with

λn(γ) ≡ argmin
λ∈Λ

N∑
t=p

ε2t (λ, γ) =
[
Z ′
γZγ

]−1 [
Z ′
γY
]
,

where Λ is a compact parametric space of λ, and εt(λ, γ) = yt − xt(γ)
′λ. Next,

we set

L̂Rn(γ) =
Ẑ

′
n(γ)(X1n(γ), I)

′[X2n(γ)]
−1(X1n(γ), I)Ẑn(γ)

σ2n
, (3.2)

where ε̂ = (ε̂pvp, . . . , ε̂NvN )′, {vt}Nt=p is a sequence of i.i.d. N(0, 1) random

variables, and

Ẑn(γ) =
1√
n
Z

′
γ ε̂, X1n(γ) = −

X
′
γX

n

(
X

′
X

n

)−1

,

X2n(γ) =
X

′
γXγ

n
−
X

′
γX

n

(
X

′
X

n

)−1
X

′
Xγ

n
.

Define

L̂Rn ≡ sup
γ∈Γ

L̂Rn(γ). (3.3)

The asymptotic theory of L̂Rn is stated in the following theorem:

Theorem 3. If Assumptions 1−3 hold, then under H0 or H1n,

L̂Rn|y0, . . . , yN →d sup
γ∈Γ

G′
γΩγGγ in probablity as n→ ∞.
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Proof. See the Appendix in Zhu, Yu, and Li (2013).

Remark 4. In practice, L̂Rn is calculated with Rt(γ) being replaced by R̃t(γ).

However, by using the argument for Corollary 1, we can show that it does not

affect the asymptotic property of L̂Rn.

Note that the conditional limiting distribution in Theorem 3 is the same

as the null distribution in Theorem 1. Then, conditional on the data sample

{y0, . . . , yN} and for given significance level α, we use a bootstrap procedure to

obtain our critical value:

(i) generate i.i.d. N(0,1) samples {vt}Nt=p, and calculate L̂Rn via (3.1)−(3.3);

(ii) repeat step (i) J times to get {L̂R(1)
n , . . . , L̂R

(J)
n };

(iii) choose cJn,α as the α-th upper percentile of {L̂R(1)
n , . . . , L̂R

(J)
n }.

We choose cJn,α as the critical value for our LR test and shorten cJn,α to cn for

brevity. In the end, we give a critical corollary as follows:

Corollary 2. If Assumptions 1−3 hold, then (i) under H0,

lim
n→∞

lim
J→∞

P
(
LRn ≥ cJn,α

)
= α;

(ii) under H1n,

lim
h→∞

lim
n→∞

lim
J→∞

P
(
LRn ≥ cJn,α

)
= 1.

Proof. See the Appendix in Zhu, Yu, and Li (2013).

Corollary 3.1 guarantees that our bootstrapped critical value cJn,α is asymp-

totically valid, and our LR test has power to detect H1n. The method can also

produce the critical value for the LR test in Chan (1990) by setting γL ≡ γU .

Since L̂Rn(γ) is a step-function, the amount of computation on cJn,α depends only

on the effective sample size n and the bootstrapped sample size J . This reduces

the computational burden significantly.

4. Simulation and One Real Example

In this section, we first compare the performance of our LR test (LRn) and

Chan’s (1990) LR test (LR∗
n) in the finite sample. We generate 1,000 replications

of sample size n = 200 from the BAR model

yt = yt−1 − 0.09yt−2 + (ψ1yt−1 + ψ2yt−2)Rt(γ) + εt, (4.1)

where Rt(γ) is defined as in (1.2) with d = 1, εt is N(0, 1), and y0 = y1 = R1(γ) =

0. We choose γ = (0, 0), (0, 0.5), (0, 1.5) or (0, 2), and use the significance level
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Table 1. Rejection rates.

ψ γ LR∗
n

ψ1 ψ2 rL rU LRn LR∗
1n LR∗

2n

0.0 0.0 — — 4.9 4.9 3.4
0.1 -0.09 0.0 0.0 7.7 7.7 3.8

0.0 0.5 7.5 7.4 3.7
0.0 1.5 7.6 6.5 3.2
0.0 2.0 7.5 7.0 5.4

0.3 -0.27 0.0 0.0 31.9 34.2 14.3
0.0 0.5 30.6 30.3 16.5
0.0 1.5 33.4 29.6 15.4
0.0 2.0 32.0 27.1 15.6

0.5 -0.45 0.0 0.0 64.7 69.1 54.0
0.0 0.5 76.0 79.6 55.2
0.0 1.5 76.1 75.5 56.0
0.0 2.0 75.2 72.6 53.9

0.7 -0.63 0.0 0.0 95.8 97.1 86.4
0.0 0.5 89.4 90.1 89.5
0.0 1.5 96.0 96.0 87.8
0.0 2.0 95.9 95.9 89.9

α = 0.05. Since the pair of characteristic roots is (0.1, 0.9) in the regime of

Rt(γ) = 0, we choose (ψ1, ψ2) = (0, 0), (0.1,−0.09), (0.3,−0.27), (0.5,−0.45) or

(0.7,−0.63) such that the pair of characteristic roots in the regime of Rt(γ) = 1

is (0.1, 0, 9), (0.2, 0.9), (0.4, 0.9), (0.6, 0.9) or (0.8, 0.9), respectively. For each

replication, the value of a and b for the interval [a, b] are set as the empirical 10th

and 90th quantiles of the data sample, the critical value for LRn is calculated

by the bootstrap method in Section 3 with J =1,000, and the critical value for

LR∗
n is either calculated in the same way as the one for LRn or taken as 15.18

according to Table 2 in Chan (1991).

Table 1 lists the rejection rates of LRn and LR∗
n with different values of ψ

and γ. The results for LR∗
n based on the bootstrapped critical value and Chan’s

(1991) critical value are denoted by LR∗
1n and LR∗

2n, respectively. The sizes

of these tests correspond to the case (ψ1, ψ2) = (0, 0). From Table 1, we find

that the sizes of LRn and LR∗
1n are close to their nominal levels, but the size of

LR∗
2n is conservative. Although the power of all tests becomes larger as the two

regimes for Rt(γ) = 0 and Rt(γ) = 1 are more distinguishing, the power of LR∗
2n

is less than that of LRn or LR∗
1n in all cases. This suggests that the bootstrapped

critical values may be more precise than the critical values in Chan (1991) for the

LR∗
n test. When the distance between rL and rU is small, LRn is less powerful

than LR∗
1n, and this power advantage grows as the distance between rL and rU

becomes large. As we expected, this is because LRn (or LR∗
n) is the LR test
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Figure 1. 100 times log-return of quarterly U.S. real GNP (in 1982 dollars)
from the first quarter of 1947 to the first quarter of 1991.

when rL and rU are far from (or closed to) each other. The simulation results

show that LRn performs well, especially when the buffering region is wide.

Next, we study the quarterly U.S. real GNP (in 1982 dollars) from the first

quarter of 1947 to the first quarter of 1991. The 100 times log-return, denoted

by {yt}, has a total of 176 observations; see Figure 1. We apply our test LRn

and the LR test LR∗
n in Chan (1990) to this data set. The results with different

values of p and d are reported in Table 2. From Table 2, we find that a marginal

threshold effect can be detected at the 5% significance level in either the BAR or

TAR model with p = d = 2. Our finding is consistent with those in Potter (1995)

and Hansen (1996), in which they also detected a marginal threshold effect in

the TAR model by using the sup-LM test. Hence, we fit {yt} by the following

two specifications:



yt =


1.2211 + 0.1597yt−1 + 0.4017yt−2 + εt if Rt = 1

(0.1979) (0.1236) (0.1656)

0.0704 + 0.3754yt−1 + 0.3031yt−2 + εt if Rt = 0

(0.1245) (0.0856) (0.0954)

,

where

Rt =


1 if yt−2 ≤ −0.617

0 if yt−2 > 1.237

Rt−1 otherwise;

(4.2)
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Table 2. Results of tests applied to data set {yt}†.

BAR model TAR model

p d LRn c0.1 c0.05 c0.01
§ LR∗

n c∗0.1 c∗0.05 c∗0.01
§

1 1 4.29 13.66 16.51 23.29 4.29 9.69 11.79 18.58
2 1 9.08 17.97 22.07 30.76 5.83 14.57 17.75 24.92
2 2 21.08‡ 18.53 21.36 29.58 13.69‡ 12.47 14.52 18.82
3 1 7.18 20.88 23.93 31.63 6.46 15.60 19.10 26.02
3 2 18.15 21.34 24.62 31.70 13.84 14.59 16.70 21.92
3 3 14.38 20.07 23.67 32.50 8.16 17.02 20.83 30.15

†The value of a and b are set to be the 10th and 90th quantiles of {yt}.
‡ The p-values for LRn and LR∗

n are 0.053 and 0.064, respectively.
§ cα (or c∗α) is obtained by the bootstrap method in Section 3 with J =1,000.



yt =


−0.4515 + 0.3924yt−1 − 0.8379yt−2 + εt if Rt = 1

(0.2620) (0.1400) (0.2628)

0.3971 + 0.3241yt−1 + 0.1822yt−2 + εt if Rt = 0

(0.1503) (0.0845) (0.1129)

,

where

Rt =

{
1 if yt−2 ≤ −0.008

0 otherwise.

(4.3)

Models (4.2) and (4.3) are estimated by the least squares method (standard errors

are in parentheses, and estimated values of σ2ε are 0.85 and 0.90, respectively).

For model (4.2), the first 20 autocorrelations or partial autocorrelations of the

residuals {ε̂t} or {ε̂2t } are not significant at the 5% level; see Figure 2. Similar

results hold for model (4.3), and they are not reported here. This suggests that

both models are adequate to fit {yt}. The values of log-likelihood for models

(4.2) and (4.3) are -233.1 and -237.3, respectively, and hence a BAR(2) model is

more suitable than TAR(2) model to fit {yt}.
Models (4.2) and (4.3) basically tell us different stories. Following Tiao and

Tsay (1994), if we treat a negative growth in GNP as ‘contraction’ and a positive

growth as ‘expansion’, model (4.2) shows that the region of yt does not shift

unless we have experienced a big ‘contraction’ or ‘expansion’ two years before,

while model (4.3) indicates that the region of yt almost fully relies on the kind of

economic status that we have at that time. Society or government may not have

a large or quick response to a moderate growth in GNP, and hence the region

of yt is most likely unchanged in this case. Thus, based on these facts, it is fair

to conclude that a BAR(2) model is more reasonable than TAR(2) model to fit

{yt}.
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Figure 2. (a) the autocorrelations for {ε̂t}; (b) the partial autocorrelations
for {ε̂t}; (c) the autocorrelations for {ε̂2t}; and (d) the partial autocorrela-
tions for {ε̂2t}.

In the end, it is also of interest to fit {yt} by a three-regime TAR model:

yt=



−0.4969 + 0.3735yt−1 − 0.8500yt−2 + εt if yt−2 ≤ −0.288

(0.3649) (0.1399) (0.3193)

−3.3614 + 1.1691yt−1 − 15.872yt−2 + εt if− 0.288<yt−2≤−0.058

(1.2807) (1.0193) (4.3454)

0.3837 + 0.3233yt−1 + 0.1908yt−2 + εt if yt−2 > −0.058

(0.1439) (0.0818) (0.1083)

. (4.4)

Model (4.4) is estimated by the least squares method (standard errors in paren-

theses, and the estimated value of σ2ε is 0.84). Model (4.4) may also be adequate

to fit {yt} by looking at the first 20 autocorrelations and partial autocorrelations

of the residuals {ε̂t} and {ε̂2t }. However, the number of effective observations

for these regimes from lower to upper are 25, 10, and 139, respectively. Thus,
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although the value of log-likelihood for model (4.4) is -231.6, greater than that

for model (4.2), a model with two regimes for {yt} seems more likely. We prefer

to fit {yt} by a BAR(2) model in view of this point.
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