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Abstract—In continuous non-revisiting genetic algorithm 
(cNrGA), the solution set with different order leads to different 
density estimation and hence different mutation step size. As a 
result, the performance of cNrGA depends on the order of the 
evaluated solutions. In this paper, we propose to remove this 
dependence by a search space re-partitioning strategy. At each 
iteration, the strategy re-shuffles the solutions into random 
order. The re-ordered sequence is then used to construct a new 
density tree, which leads to a new space partition sets. 
Afterwards, instead of randomly picking a mutant within a 
partition, a new adaptive one-gene-flip mutation is applied. 
Motivated from the fact that the proposed adaptive mutation 
concerns only small amount of partitions, we propose a new 
density tree construction algorithm. This algorithm refuses to 
partition the sub-regions which do not contain any individual to 
be mutated, which simplifies the tree topology as well as speeds 
up the construction time. The new cNrGA integrated with the 
proposed re-partitioning strategy (cNrGA/RP/OGF) is 
examined on 19 benchmark functions at dimensions ranging 
from 2 to 40. The simulation results show that cNrGA/RP/OGF 
is significantly superior to the original cNrGA at most of the test 
functions. Its average performance is also better than those of 
six benchmark EAs. 

I. INTRODUCTION 
ontinuous Non-Revisiting GA (cNrGA) [1] is an 
extension of (discrete) NrGA [2] to continuous variables. 

It uses a binary space partitioning (BSP) tree archive, namely 
density tree, to record the positions of evaluated solutions as 
well as to represent the density distribution of the solutions. 
Each node of the tree represents a sub-region in a search 
space. Suppose a parent node has two child nodes l and r. The 
sub-regions represented by l and r are disjoint and their union 
is the partition of the parent (i.e., the child nodes binary divide 
the parent sub-region). 
 
Definition 1: The partition of x 

Suppose x is a solution in the search space S, i.e. x ∈ S, and 
S is partitioned into the partition set H = ∪i hi by a density tree 
T, we define the partition h ⊆ H as the ‘partition of x’ if x ∈ h 
and h is represented by a leaf node of T.           

Since the search space is partitioned according to the 

 
Chi Kin Chow is with the department of Electronic Engineering, City 

University of Hong Kong, Hong Kong SAR (E-mail: 
chowchi@cityu.edu.hk).  

Shiu Yin Yuen is with the department of Electronic Engineering, City 
University of Hong Kong, Hong Kong SAR (E-mail: 
kelviny.ee@cityu.edu.hk). 

The work described in this paper was supported by a grant from the 
Research Grants Council of the Hong Kong Special Administrative Region, 
China [Project No. CityU 124409]. 

distribution of the evaluated solutions, the partition size is 
small (large) if the corresponding evaluated solution is close 
to (far from) its neighbor. Thus, the density of the evaluated 
solution at x can be estimated from the partition size of x (i.e.  
from the tree). cNrGA uses this density information to decide  
the mutation step size, which implements an adaptive and 
parameter-less mutation. 

As new solutions are constantly generated and evaluated 
during the evolution, the density of the evaluated solutions 
changes from iteration to iteration. cNrGA responds to this 
change by inserting a new partition to the original space 
partitioning scheme. Obviously, different solution orders 
generate different space partitioning schemes. Note that the 
mutation step size in cNrGA is computed from the partition 
size; thus the sequential estimation approach infers that the 
step size does not only depend on the distribution of the 
evaluated solutions; but also depends on the order of the 
solutions.  This introduces a subtle bias to the algorithm. 

In this paper, we propose a new solution-density estimation 
approach to remove the dependence on the order of the 
solutions. At each iteration, the proposed approach 
re-shuffles the evaluated solutions into a random order. Then 
a new density tree is built from the re-ordered solution 
sequence. After this, we apply a new one-gene-flip mutation 
operator to obtain the mutation step size and to mutate an 
individual. Comparing to the adaptive mutation in the original 
cNrGA which randomly mutates within the partition, the 
proposed mutation is less disruptive to the schemata, which 
helps speed up the convergence. To maintain a fast 
solution-density estimation, the density tree of the re-ordered 
sequence is built by a modified tree construction method. 
This modified method does not only speed up the 
construction time but also simplifies the topology of the tree. 

The rest of this paper is organized as follows: Section II 
presents a new adaptive mutation scheme that uses the space 
partitioning information provided by a randomly re-shuffled 
search history. Section III reports the improved cNrGA by 
this mutation. Section IV reports experimental results and 
section V gives the conclusion. 

II. ADAPTIVE MUTATION WITH SEARCH SPACE 
RE-PARTITIONING 

In this section, we present an adaptive mutation scheme for 
which the dependence on the order of the evaluated solutions 
is removed. The scheme starts by re-shuffling the order of the 
evaluated solutions. Afterwards, the corresponding density 
tree is re-built and is used to compute the mutation regions. 
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Different from the original cNrGA, a mutant is generated by a 
newly proposed algorithm called One-Gene-Flip mutation 
(OGF). In the following sub-section, we first present a 
simplified density tree construction which speeds up the tree 
construction process. Afterwards, we present the details of 
OGF. 

 

A. Simplified Density Tree Construction 
Note that for each newly generated solution, cNrGA 

considers only a portion of leaf nodes (i.e. the leaf nodes 
which contain the being mutated individuals) in density tree T 
to compute the mutation step size; whilst the remaining leaf 
nodes are unneeded. Thus, to simplify the tree topology, the 
sub-tree(s) of which all leaf nodes are unneeded should be 
pruned. Instead of first building the whole tree and then 
pruning those unneeded sub-tree(s), we propose an algorithm 
that avoids creating them during the tree construction, which 
simplifies the tree topology as well as shortens the 
construction time. Suppose z is an evaluated solution, the 
decision on either recording it into the tree or ignoring it from 
the tree construction depends on whether the partition of z 
contains the being mutated individual(s). If the partition does 
not contain any being mutated individual, the partitioning 
induced from z will not adjust the mutation regions of the 
being mutated individuals. It is worthwhile to ignore z to 
simplify the tree topology. In other words, each leaf node has 
to record its being mutated individual(s) for this tree 
simplification. We name this set of begin mutated individuals 
as the mutation set, which is formally defined below: 
 
Definition 2: The mutation set of x, L(x) 

Suppose x is a leaf node of density tree T and P is a set of 
individuals to be mutated, we define the individual set L ⊆ P 
as the ‘mutation set of x’ if every individual in L is inside the 
partition represented by x.              
 

Given a search space S; a set of individuals to be mutated P 
= {pi}i=1,2,…,μ and the evaluated solution set Z = {zi}i=1,2,…,N, 
the proposed adaptive mutation starts from randomly 
re-shuffling Z as {s1, s2, …, sN}. Meanwhile, the mutation 
region of pi is defined as follows: 

 
Definition 3: The mutation region of p, q 

The mutation region of p contains all possible mutants of 
p. Suppose p is an individual to be mutated, the mutation 
region q of p is defined as q = D

k 1=Π [V (k), U (k)] where V(k) 
and D(k) are the lower and upper bounds at the kth dimension 
respectively.  These bounds are dynamically determined by 
the binary partitioning process.   

 
All mutation regions {qi} i=1,2,…,μ  are initialized as the whole 
search space, i.e. qi := S for all i. Also, the density tree T is 
initialized to consist of  the root node only. Since the root 
node represents the entire search space, its mutation set is P. 
After the initialization, the re-shuffled solutions {si} are 

recorded one by one. Suppose si is currently recorded, we first 
search h(si): the partition of si. We denote by Curr_node as 
the leaf node in T which represents h(si). If the mutation set of 
Curr_node, i.e. L(Curr_node), is empty, the partitioning 
caused by si will not affect the mutation regions of {pi} and 
hence si needs not be inserted to T. On the other hand, if 
L(Curr_node) is not empty, T records si by inserting a leaf 
node under Curr_node. This node insertion is equivalent to 
sub-dividing h(si) into two partitions, and they are represented 
by the left child node l and the right child node r of 
Curr_node. Meanwhile, L(Curr_node) are also divided into 
two groups: the first group G1 contains the individuals which 
are inside h(l) whilst the second group G2 contains the 
individuals inside h(r), i.e. a ∈ h(l) for all a ∈ G1; b ∈ h(r) for 
all b ∈ G2 and L(Curr_node) = G1 ∪ G2. Obviously, the 
mutation set of l is assigned as G1 and the mutation set of r is 
assigned as G2. Also, the mutation regions of all individuals 
in L(l) are updated as h(l); and the mutation regions of all 
individuals in L(r) are updated as h(r). After considering 
every evaluated solution in Z according to their orders (either 
being recorded into the tree or being ignored during the tree 
construction), we obtain the mutation regions of the 
individual {pi}. Algorithm A1 shows the pseudo code for the 
simplified density tree construction algorithm. 
 
Algorithm A1: Simplified density tree construction 

Input: 1) the evaluated solution set Z = {zi}i=1,2,…,N, 2) the set 
of individuals to be mutated P = {pi}i=1,2,…,μ, 3) search space S 
 
1. Random re-shuffle the sequence of Z as {si}i=1,2,…,N  
2. qi = D

k 1=Π [Vi(k), Ui(k)] := S for all i ∈ [1, μ] 
3. Initialize density tree T to consist of root node only. 
4. L(root) := P 
5. For i = 1 to N 
6. Curr_node := BSPTreeSearch(si) 
7. If |L(Curr_node)| > 0 then 
8. Suppose y is the evaluated solution in the 

partition represented by Curr_node. 
9. Define the comparing dimension j: 

j =
],1[

maxarg
Dk∈

d(y,si| k) 

10. If si(j) < y(j) then 
11. Create left child node l that records si 
12. Create right child node r that records y 
13. Else 
14. Create left child node l that records y 
15. Create right child node r that records si 
16. EndIf 
17. L(l) := ∅ 
18. L(r) := ∅ 
19. For m = 1 to |L(Curr_node)|  
20. Let a be the mth element of L(Curr_node) 

and the mutation region of a is D
k 1=Π [V(k), 

U(k)] 



 
 

 

21. If a(j) < (si(j) + y(j)) / 2 then 
22. L(l) := L(l) ∪ a 
23. U(j) := (si(j) + y(j)) / 2 
24. Else 
25. L(r) := L(r) ∪ a 
26. V(j) := (si(j) + y(j)) / 2 
27. EndIf 
28. Next m 
29. EndIf 
30. Next i 
 
Output: the mutation region set {qi} 
 
Example: 

Suppose S = [0,1]2 is the search space; (s1, s2, s3, s4) are the 
set of all evaluated solutions after being randomly 
re-shuffled; and p1, p2 and p3 are the individuals to be 
mutated in the next generation. The distributions of {si} and 
of {pi} are shown in Fig. 1. The adaptive mutation on {pi} 
starts by initializing the density tree T  to consist of the root 
node only. Meanwhile, the parent set of the root node, 
L(root), is initialized as {p1, p2, p3}. 
 

 
Fig. 1 Distributions of the evaluated solutions {si} and of the solutions to be 
mutated {pi}. 
 

The first two evaluated solutions s1 and s2 divide S into two 
partitions. Fig. 2(a) shows the corresponding space 
partitioning. The dotted line represents the decision 
boundary. This space partitioning is equivalent to inserting 
two child nodes s1 and s2. Fig. 2(b) shows the topology of the 
corresponding T. Seen from Fig. 2(a), the partition of s2 
consists of all individuals to be mutated. Thus, the mutation 
set of s1, L(s1), is assigned as {p1} whilst the mutation set of 
s2, L(s2), is assigned as {p2, p3}. Meanwhile, the mutation 
regions of p1, p2 and p3 are identified as h(s1), h(s2) and h(s2) 
respectively. 

When s3 is considered, the space partitioning is updated to 
that shown in Fig. 2(c), and the topology of the corresponding 
T is shown in Fig. 2(d). Seen from Fig. 2(c), the updated 
partition of s2 does not contain any individual whilst the 
partition of s3 contains p2 and p3. The mutation set L(s2) does 
not change and the mutation set L(s3) remains empty. 

s4 is the next evaluated solution being considered. It is 
found that s4 is inside the partition of s2. As the mutation set of 
s2 is empty, we simply ignore s4 in the tree construction. Fig. 

2(e) and Fig. 2(f) show the space partitioning and the 
topology of T after considering s4. In Fig. 2(e), s4 is in 
light-gray, which indicates that s4 is not recorded by the 
density tree. When all evaluated solutions are considered, the 
individuals p1, p2 and p3 are mutated in the partitions h(s1), 
h(s3) and h(s3) respectively. Fig. 3 (a) and (b) show the space 
partitioning by the evaluated solutions in another two solution 
orders: {s1, s4, s2, s3} and {s1, s2, s4, s3} respectively. 
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Fig. 2 Illustration of the construction of randomly re-partitioned search 
space. 
 

 
(a) (b) 

Fig. 3 The space partitioning by another two individual sequences. 
 

B. One-Gene-Flip mutation for cNrGA 
One-Gene-Flip mutation (OGF), as its name suggests,  

extends the one-bit-flip mutation in the conventional genetic 



 
 

 

algorithm to handle continuous search space. Similar to  
one-bit-flip mutation, OGF mutates only one gene in the 
individual within the partition and this gene is randomly 
selected. OGF is a parameter-less adaptive mutation of 
cNrGA, in the sense that the mutation is done randomly 
within the bounds of the gene, which are in turn defined by 
the partition. Comparing to the adaptive mutation in the 
original cNrGA which randomly mutates within the partition, 
OGF is less disruptive to the schemata structure of the 
crossover. Suppose p is a D-dimensional individual to be 
mutated and D

k 1=Π [V(k), U(k)] is the mutation region of p, 

OGF starts from randomly selecting a dimension j ∈ 
{1,2,…,D}. Then p is mutated as p’ by replacing the jth 
element of p with a random number in the range [V(j), U(j)].  
The values of the genes in the rest of the dimensions are 
unchanged. 
 
Algorithm A2: One-Gene-Flip mutation for cNrGA 

Input: 1) the individuals to be mutated p, 2) the mutation 
region of p:= D

k 1=Π [V(k), U(k)] 
 
1. pi’ := pi 
2. Randomly pick a dimension j ∈ {1,2,…,D}. 
3. pi’(j) := Rand([V(j). U(j)]) 
 
Output: pi’ 
 

III. CNRGA WITH ADAPTIVE RE-PARTITIONING 
cNrGA with randomly re-partitioned density tree 

(cNrGA/RP/OGF) is a real-coded genetic algorithm. It 
improves the original cNrGA in the sense that the adaptive 
mutation in cNrGA/RP/OGF is less sensitive to the ordering 
sequence of the evaluated  solutions and is less disruptive to 
schemata structure induced by crossover. Fig. 5 shows the 
structure of cNrGA/RP/OGF. cNrGA/RP/OGF consists of a 
long-term memory and a short-term memory. The 
long-memory, namely Evaluated Solution List (ESL), is a list 
structure archive which records the set of all evaluated 
solutions. On the other hand, the density tree in 
cNrGA/RP/OGF is a short-term memory which represents the 
space partitioning scheme. Different from the original 
cNrGA, the density tree of cNrGA/RP/OGF will be re-built 
from scratch in every iteration. 

Similar to a simple GA, cNrGA/RP/OGF starts by  
initializing the population X consisting of μ individuals. This 
population then generates μ offspring individuals {pi} by a 
crossover operator. Afterwards, the adaptive mutation 
module uses the solutions stored in ESL to simultaneously 
reconstruct the density tree and obtain the mutation regions of 
{pi} (i.e. Algorithm A1). After performing OGF mutation on 
{pi}, according to Algorithm A2, the corresponding mutant 
set {pi’} are evaluated and are recorded by ESL. A (μ+μ) 
elitism selection is performed to choose the best μ individuals 

from {X, {pi’}}. The reproduction and the selection processes 
are repeated until the stopping criteria is satisfied. The circled 
numbers in Fig. 5 represent the order of the steps in a 
cNrGA/RP/OGF iteration. 

 

 
Fig. 4 Flow diagram of cNrGA/RP/OGF 
 

IV. EXPERIMENTAL RESULTS 

A. Test function set 
A real valued function set F = {f1(x), f2(x),…, f19(x)} 

consisting of 19 functions are employed to illustrate the 
performance of cNrGA/RP/OGF. The 19 test functions are as 
follows:  
 

1. Sphere function 
2. Schwefel’s problem 2.22 
3. Schwefel’s problem 1.2 
4. Schwefel’s problem 2.21 
5. Generalized Rosenbrock function 
6. Quartic function 
7. Generalized Rastrigin function 
8. Generalized Griewank function 
9. Generalized Schwefel’s problem 2.26 
10. Ackley function 
11. Shekel’s Foxholes function 
12. Six-Hump Camel-Back function 
13. Branin function 
14. Goldstein-Price function 
15. Rotated high conditioned elliptic function 
16. Rotated Griewank’s function 



 
 

 

17. Rotated Rastrigin’s function 
18. Rotated Weierstrass’s function 
19. Hybrid Composition function 
  

They are well known benchmark test functions. The first 14 
functions are taken from [3] whilst the remaining 5 are taken 
from [4]. For details of the test functions (i.e. the 
mathematical forms, the search space and the optima), please 
refers to [2]. 

The first six functions are uni-modal functions; the 
remaining thirteen are multi-modal functions designed with a 
considerable amount of local minima. Meanwhile, the 
dimensions of the first ten and the last five functions are 
adjustable while the dimensions of f11 – f14 are fixed at two. 
Simulations are carried out to find the global minimum of 
each function. 
 

B. Test algorithms 
In this section, we compare the performance of 

cNrGA/RP/OGF with those of cNrGA and six benchmark 
evolutionary algorithms. The search spaces of all test 
algorithms are continuous. The designs and settings of 
cNrGA/RP/OGF and the algorithms for comparison are 
summarized below. 

 
Test algorithm 1 – Continuous non-revisiting genetic 

algorithm [1] (cNrGA) 
Test algorithm 2 – Continuous non-revisiting genetic 

algorithm with randomly re-partitioned 
BSP tree (cNrGA/RP/OGF).  

Test algorithm 3 – CMA-ES [5]. 
Test algorithm 4 – Differential Evolution [6] (DE). 
Test algorithm 5 – Opposition-Based Differential Evolution 

[7] (ODE) 
Test algorithm 6 – Dissipative particle swarm optimization 

[8] (DPSO) 
Test algorithm 7 – PSO with Spatial Particle Extension [9] 

(SEPSO) 
 
 
For cNrGA/RP/OGF and cNrGA, the crossover operator is 

chosen to be uniform crossover where the crossover rate rx is 
chosen as 0.5. This is the recommended setting in [10, pg. 
48]. 

For PSO-class test algorithms, the values of c1, c2 are set to 
2. The inertia w is linearly decreasing from 1 to 0. Suppose X 
= ∏i=1,…,D[Vi, Ui] is the search space of a D-dimensional 
objective function, the maximum velocity Vmax is set to 0.1R 
where R = max(Ui – Vi). The parameters used in DPSO and 
SEPSO are assigned to be the same as suggested in the 
original works: the parameters Cv and Cm of DPSO are chosen 
to be 0.001 and 0.002 respectively. For SEPSO, a simple 
velocity line bouncing with bouncing factor -1 is used. These 
parameter settings are recommended in the original works 
[9]. 

For DE and ODE, the crossover rate and the differential 
amplification factor are set to 0.95 and 0.5 respectively. 
These values have been used in literature [11]. The mutation 
strategy is DE/rand/1/bin (classic version of DE) [11]. The 
jumping rate constant of ODE is chosen to be 0.3 [7]. 
 

C. Simulation settings 
For cNrGA/RP/OGF, cNrGA, DE and ODE, the 

population sizes are set to 100. (100+100) selection is used. 
For CMA-ES, the population size λ is chosen by the 
suggested setting in [5] (i.e. λ = 4 + ⎣3lnD⎦). For DPSO and 
SEPSO, the swarm sizes are set to 100 and 100 offspring are 
reproduced at each generation. All test functions with the 
exception of f11 – f14, which are two-dimensional, are tested 
with dimension 40. To provide a fair comparison of the test 
algorithms, the total number of function evaluations of all 
algorithms is kept a constant: For functions f1 – f10, 
cNrGA/RP/OGF, cNrGA, DPSO, SEPSO, DE and ODE are 
terminated after 400 generations. CMA-ES is terminated after 
40,000 function evaluations, i.e., the total number of fitness 
evaluations of all the algorithms is fixed at 40,000.  Similarly, 
for functions f11 – f14, the total number of fitness evaluations is 
fixed at 1,000. The swarm sizes of DPSO and PSOMS are set 
to 50. The population sizes of cNrGA/RP/OGF, cNrGA, DE 
and ODE are set to 50 also. CMA-ES is terminated after 1,000 
function evaluations. 

Since the test algorithms are stochastic, their performances 
on each test function are evaluated based on statistics 
obtained from 100 independent runs. All simulations are done 
on a PC with 3.2GHz CPU and 1GB memory. The test 
algorithms: cNrGA/RP/OGF, cNrGA, DPSO, SEPSO and 
ODE are implemented in C language. CMA-ES uses source 
code in [5] and MATLAB version 6.1. DE uses source code in 
[12] and MATLAB version 6.1. 
 

D. Simulation results 
The detailed simulation results are reported in Table 2 – 

Table 6. Fig. 5 presents a summary of the results. The shaded 
cells in the figure indicate that the corresponding test 
algorithm is the best algorithm on a particular test function at 
a particular function dimension. The values inside the table 
cells for cNrGA/RP/OGF indicate the ranks of 
cNrGA/RP/OGF on a particular test function when it is not 
the best algorithm. 

Seen from the figure, cNrGA/RP/OGF is superior to 
cNrGA. It performs better than cNrGA in all 19 test cases 
(using t tests, 17 of them are with 99.95% significance; 2 out 
of them is with 95% significance and the remaining one is 
with 75% significance). In addition, the performance 
improvement of cNrGA/RP/OGF is significant. For some of 
the test functions, the improvements by cNrGA/RP/OGF are 
even in the order of 102 or higher. For example, the averaged 
optimal fitness of f1 found by cNrGA/RP/OGF and cNrGA 
are 0.0158 and 2.498376; the averaged optimal fitness found 
of f18 by cNrGA/RP/OGF and cNrGA are 0.002 and 1.804 



 
 

 

(i.e. the optimal values of f1 and f18 are 0). These results 
significantly show the contributions of the proposed 
re-partitioning scheme and One-Gene-Flip mutation. 

In the comparison with all 7 test EAs, cNrGA/RP/OGF 
ranks or jointly ranks 1st in 7 and is 2nd in 3 out of 19 test 
cases. It is the second best test algorithm in terms of the 
number of 1st

 ranked test cases – CMA-ES ranks first with 10. 
However, to measure the performance of a test algorithm, one 
should simultaneously consider (1) the test cases in which it 
dominates the others and (2) the test cases in which it is 
dominated by the others. cNrGA/RP/OGF ranks between 1st 
and 3rd in 16 out of 19 test cases whilst CMA-ES ranks 
between 1st and 3rd in 11 out of 19 test cases . More 
importantly, cNrGA/RP/OGF never ranks lower than 5 but 
CMA-ES ranks 6 in 2 test cases and ranks 7th (the last) in 1 
test case. Therefore though the frequency of 1st ranked test 
cases of CMA-ES is much more (cf. 10 vs. 7), it has the risk 
of having poor ranks in some cases, i.e. it is less stable than 
cNrGA/RP/OGF. 

Table 1 lists the averaged ranks of the seven test algorithms 
over 19 test cases. The averaged rank of cNrGA/RP/OGF is 
2.236, which is the lowest amongst the 7 test algorithms; 
cNrGA/RP/OGF performs the best when both accuracy and 
stability are considered.  

The detailed simulation results (mean and standard 
deviation) are listed in Table 2 - Table 4. It lists the average 
and the standard deviation (inside brackets) of the optimal 
fitness for 100 trials. A value in boldface indicates that the 
corresponding algorithm is the best amongst the algorithms 
on a particular test function. 

V. CONCLUSION 
In this paper, we contribute to the continuous 

non-revisiting genetic algorithm (cNrGA) in the following 
ways: 
 
1. We point out that, in cNrGA, the solution-density is 

estimated by a sequential approach; as cNrGA computes 
mutation step size according to the density, the 
performance of cNrGA depends on the order of the 
evaluated solutions. This introduces a subtle bias to the 
algorithm. 

2. To balance between removing the dependence and 
preserving a fast estimation, we propose to randomly 
re-shuffle the order of the evaluated solutions at every 
iteration. Afterwards, we use the re-ordered solution 
sequence to construct the density tree for the adaptive 
mutation. 

3. We propose an algorithm that constructs density tree 
whose topology is optimized for the adaptive mutation at 
the current generation. 

4. We propose a new adaptive mutation algorithm called 
One-Gene-Flip mutation. Comparing to the mutation in 
the original cNrGA, it is less disruptive to the schemata, 
which helps speed up the convergence. 

 

The cNrGA that employs the idea of solution reordering  
and one-gene-flip mutation (cNrGA/RP/OGF) is examined 
on 19 benchmark test functions. Its performance is compared 
with those of the original cNrGA as well as six bench mark 
evolutionary algorithms (EAs). The experimental results 
show that: 

 
1. cNrGA/RP/OGF is significantly superior to the original 

cNrGA in all 19 test cases, which empirically illustrates 
that (i) the idea of search space re-partitioing and 
one-gene-flip mutation can improve the performance of 
the original cNrGA. 

2. The averaged rank of cNrGA/RP/OGF over the 19 test 
cases is 2.263, which is the lowest amongst the 7 test EAs. 
Meanwhile, the variation of the ranks of cNrGA/RP/OGF 
is also the smallest, i.e. its rank is from 1st to 5th. On the 
other hand, though the frequency of 1st rank test cases 
obtained by CMA-ES is larger than that of 
cNrGA/RP/OGF, it ranks 6th in 2 test cases and ranks 7th 
(the last) in 1 test case. Thus cNrGA/RP/OGF outperforms 
the six EAs when considering both accuracy and stability. 

 
 This paper has introduced two new mechanisms to the 
original cNrGA, namely, solution re-ordering and 
one-gene-flip mutation.  The new algorithm, cNrGA/RP/OGF 
is shown to improve the cNrGA significantly.  Future work 
should analyze the relative contributions of each mechanism.   
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 Uni-modal Multi-modal 
 Function f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 
cNrGA/RP/OGF 3 2 5 3 3 3 1 3 1 2 1 1 1 1 3 1 4 3 2 
cNrGA 5 5 6 6 6 4 2 5 2 4 2 2 2 2 5 4 5 5 5 
CMA-ES 1 1 1 1 1 1 4 1 5 7 6 4 3 6 4 5 3 1 1 
DE 4 4 7 7 4 7 3 4 3 3 7 7 7 7 2 2 2 4 7 
ODE 2 3 2 2 2 2 5 2 6 1 5 6 5 5 1 3 1 2 4 
DPSO 7 6 3 4 5 5 7 6 7 5 3 5 6 4 7 6 7 6 6 
SEPSO 6 7 4 5 7 6 6 7 4 6 4 3 4 3 6 7 6 7 3 

Fig. 5  Indicators of the best test algorithm in the experiments: The cell with grey color represents that the corresponding test algorithm outperforms the others 
for a particular function and a particular function dimension. 
 
 
 
 
 

TABLE 1 THE AVERAGED RANK OVER 19 TEST CASES 
Test algorithm cNrGA/RP/OGF cNrGA CMA-ES DE ODE DPSO SEPSO 
Averaged rank 2.263 4.105 2.842 4.789 3.105 5.526 5.315 
 
 
 
 
 
 

TABLE 2 AVERAGE, STANDARD DEVIATION AND CONFIDENCE LEVEL OF THE BEST FITNESS VALUES FOUND BY THE EIGHT TEST ALGORITHMS:F1 – F7 

Fitness function f1 f2 f3 f4 f5 f6 f7

D 40 40 40 40 40 40 40
cNrGA/RP/OGF average 0.0158 0.2799 10301.949 8.292 841.296 13.073 10.332 

std. dev. (0.0044) (0.0775) (2634.58) (0.9004) (1144.01) (0.4923) (2.9946) 
cNrGA average 2.498376 4.864231 15137.309 52.476 38713.864 13.220 44.366 

std. dev. (2.3019) (2.0009) (4415.30) (6.1540) (59449.6) (0.6872) (8.1339) 
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95% 95% 99.95% 

CMA-ES average 0 0 0.000 0.000 0.000 0.266 76.174 
std. dev. (0) (0) (0) (0) (0) (0.0963) (17.1046) 
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95% 99.95% 99.95% 

DE average 0.167 1.1491 45895.908 60.773 2023.166 16.338 57.394 
std. dev. (0.0279) (0.1101) (4761.74) (3.8266) (405.62) (0.6334) (5.3769) 
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95% 99.95% 99.95% 

ODE average 0.001 0.3459 409.988 0.153 42.288 12.433 170.719 
std. dev. (0.0009) (0.1754) (230.1221) (0.4848) (13.7948) (0.5279) (55.5588) 
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95% 99.95% 99.95% 

DPSO average 6.9563 19.4899 3986.092 13.299 31765.025 14.624 201.557 
std. dev. (1.2491) (5.3605) (35.7403) (1.4465) (110.437) (0.8821) (4.6532) 
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95% 99.95% 99.95% 

SEPSO average 6.8806 21.4078 6057.789 16.994 41826.011 15.630 181.948 
std. dev. (1.5195) (5.7894) (41.8452) (1.663) (141.3864) (1.0337) (4.8482) 
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95% 99.95% 99.95% 

 
 
 
 
 
 
 
 



 
 

 

 
 

TABLE 3 AVERAGE, STANDARD DEVIATION AND CONFIDENCE LEVEL OF THE BEST FITNESS VALUES FOUND BY THE EIGHT TEST ALGORITHMS: F8 – F14 
Fitness function f8 f9 f10 f11 f12 f13 f14

D 40 40 40 40 40 40 40
cNrGA/RP/OGF average 0.965 -18324.08 0.314 0.998 -1.03162 0.3979 3.000 

std. dev. (0.0323) (7.9151) (0.06) (0.00001) (0) (0) (0) 
cNrGA average 3.468 -16885.37 5.805 1.030 -1.03160 0.39792 3.049 

std. dev. (2.122) (343.189) (1.4714) (0.24037) (0) (0) (0.2557) 
C (t-test) 99.95% 99.95% 99.95% 90% 99.95% 99.95% 95% 

CMA-ES average 0.001 -7187.400 21.495 13.522 -1.024 0.398 7.320 
std. dev. (0.0031) (184.1) (0.1658) (5.3565) (0.0816) (0) (16.6041) 
C (t-test) 99.95% 99.95% 99.95% 99.95% 80% < 50% 99% 

DE average 1.154 -15568.75 3.047 13.974 -0.670 1.522 14.839 
std. dev. (0.0259) (256.12) (0.2579) (21.6527) (0.3211) (1.348) (10.4039) 
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95% 99.95% 99.95% 

ODE average 0.243 -6559.977 0.118 2.449 -1.021 0.425 3.521 
std. dev. (0.1488) (839.019) (0.1698) (1.4992) (0.0109) (0.0277) (0.4767) 
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95% 99.95% 99.95% 

DPSO average 7.005 -6196.144 6.942 1.491 -1.023 1.441 3.143 
std. dev. (1.1996) (27.7505) (0.8013) (0.84) (0.1171) (1.6188) (0.6474) 
C (t-test) 99.95% 99.95% 99.95% 99.95% 75% 99.95% 97.5% 

SEPSO average 7.433 -9108.410 7.749 2.247 -1.025 0.410 3.062 
std. dev. (1.2926) (30.4254) (0.9357) (1.1537) (0.104) (0.1366) (0.2934) 
C (t-test) 99.95% 99.95% 99.95% 99.95% < 50% 80% 97.5% 

 
 
 
 
 

TABLE 4 AVERAGE, STANDARD DEVIATION AND CONFIDENCE LEVEL OF THE BEST FITNESS VALUES FOUND BY THE EIGHT TEST ALGORITHMS: F15 – F19 
Fitness function f8 f9 f10 f11 f12 

D 40 40 40 40 40 
cNrGA/RP/OGF average 37739.775 0.968 27711.047 0.002 145.617 

std. dev. (21876.767) (0.2116) (2001.1961) (0.0004) (62.4854) 
cNrGA average 8643721.585 10.009 150157.060 1.804 196.013 

std. dev. (7718188.14) (2.185494) (30256.914) (1.299734) (35.577081) 
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95% 

CMA-ES average 116566.807 10.575 6698.980 0.000 0.000 
std. dev. (76286.018) (18.654) (324.05) (0) (0) 
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95% 

DE average 37580.665 3.392 2454.875 0.028 425.763 
std. dev. (6525.303) (0.2111) (77.024) (0.0059) (42.4568) 
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95% 

ODE average 254.327 4.209 2003.177 0.001 164.558 
std. dev. (302.6105) (0.8853) (163.5926) (0.0005) (38.622) 
C (t-test) 99.95% 99.95% 99.95% 99.95% 99% 

DPSO average 15086214.98 19.525 11335533.32 7.013 278.654 
std. dev. (2359.020) (1.3333) (1009.9892) (1.8273) (10.7637) 
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95% 

SEPSO average 13793165.09 20.951 365663.074 7.460 155.882 
std. dev. (2260.6129) (1.5315) (398.9803) (1.886) (6.205) 
C (t-test) 99.95% 99.95% 99.95% 99.95% 90% 

 
 


