
Title Continuous non-revisiting genetic algorithm with random search
space re-partitioning and one-gene-flip mutation

Author(s) Chow, CK; Yuen, SY

Citation

The 6th IEEE World Congress on Computational Intelligence
cum IEEE Congress on Evolutionary Computation (WCCI-CEC
2010), Barcelona, Spain, 18-23 July 2010. In IEEE Transactions
on Evolutionary Computation, 2010, p. 1-8

Issued Date 2010

URL http://hdl.handle.net/10722/196678

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38044542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract—In continuous non-revisiting genetic algorithm
(cNrGA), the solution set with different order leads to different
density estimation and hence different mutation step size. As a
result, the performance of cNrGA depends on the order of the
evaluated solutions. In this paper, we propose to remove this
dependence by a search space re-partitioning strategy. At each
iteration, the strategy re-shuffles the solutions into random
order. The re-ordered sequence is then used to construct a new
density tree, which leads to a new space partition sets.
Afterwards, instead of randomly picking a mutant within a
partition, a new adaptive one-gene-flip mutation is applied.
Motivated from the fact that the proposed adaptive mutation
concerns only small amount of partitions, we propose a new
density tree construction algorithm. This algorithm refuses to
partition the sub-regions which do not contain any individual to
be mutated, which simplifies the tree topology as well as speeds
up the construction time. The new cNrGA integrated with the
proposed re-partitioning strategy (cNrGA/RP/OGF) is
examined on 19 benchmark functions at dimensions ranging
from 2 to 40. The simulation results show that cNrGA/RP/OGF
is significantly superior to the original cNrGA at most of the test
functions. Its average performance is also better than those of
six benchmark EAs.

I. INTRODUCTION
ontinuous Non-Revisiting GA (cNrGA) [1] is an
extension of (discrete) NrGA [2] to continuous variables.

It uses a binary space partitioning (BSP) tree archive, namely
density tree, to record the positions of evaluated solutions as
well as to represent the density distribution of the solutions.
Each node of the tree represents a sub-region in a search
space. Suppose a parent node has two child nodes l and r. The
sub-regions represented by l and r are disjoint and their union
is the partition of the parent (i.e., the child nodes binary divide
the parent sub-region).

Definition 1: The partition of x

Suppose x is a solution in the search space S, i.e. x ∈ S, and
S is partitioned into the partition set H = ∪i hi by a density tree
T, we define the partition h ⊆ H as the ‘partition of x’ if x ∈ h
and h is represented by a leaf node of T.

Since the search space is partitioned according to the

Chi Kin Chow is with the department of Electronic Engineering, City

University of Hong Kong, Hong Kong SAR (E-mail:
chowchi@cityu.edu.hk).

Shiu Yin Yuen is with the department of Electronic Engineering, City
University of Hong Kong, Hong Kong SAR (E-mail:
kelviny.ee@cityu.edu.hk).

The work described in this paper was supported by a grant from the
Research Grants Council of the Hong Kong Special Administrative Region,
China [Project No. CityU 124409].

distribution of the evaluated solutions, the partition size is
small (large) if the corresponding evaluated solution is close
to (far from) its neighbor. Thus, the density of the evaluated
solution at x can be estimated from the partition size of x (i.e.
from the tree). cNrGA uses this density information to decide
the mutation step size, which implements an adaptive and
parameter-less mutation.

As new solutions are constantly generated and evaluated
during the evolution, the density of the evaluated solutions
changes from iteration to iteration. cNrGA responds to this
change by inserting a new partition to the original space
partitioning scheme. Obviously, different solution orders
generate different space partitioning schemes. Note that the
mutation step size in cNrGA is computed from the partition
size; thus the sequential estimation approach infers that the
step size does not only depend on the distribution of the
evaluated solutions; but also depends on the order of the
solutions. This introduces a subtle bias to the algorithm.

In this paper, we propose a new solution-density estimation
approach to remove the dependence on the order of the
solutions. At each iteration, the proposed approach
re-shuffles the evaluated solutions into a random order. Then
a new density tree is built from the re-ordered solution
sequence. After this, we apply a new one-gene-flip mutation
operator to obtain the mutation step size and to mutate an
individual. Comparing to the adaptive mutation in the original
cNrGA which randomly mutates within the partition, the
proposed mutation is less disruptive to the schemata, which
helps speed up the convergence. To maintain a fast
solution-density estimation, the density tree of the re-ordered
sequence is built by a modified tree construction method.
This modified method does not only speed up the
construction time but also simplifies the topology of the tree.

The rest of this paper is organized as follows: Section II
presents a new adaptive mutation scheme that uses the space
partitioning information provided by a randomly re-shuffled
search history. Section III reports the improved cNrGA by
this mutation. Section IV reports experimental results and
section V gives the conclusion.

II. ADAPTIVE MUTATION WITH SEARCH SPACE
RE-PARTITIONING

In this section, we present an adaptive mutation scheme for
which the dependence on the order of the evaluated solutions
is removed. The scheme starts by re-shuffling the order of the
evaluated solutions. Afterwards, the corresponding density
tree is re-built and is used to compute the mutation regions.

Continuous Non-revisiting Genetic Algorithm with Random Search
Space Re-partitioning and One-Gene-Flip Mutation

Chi Kin Chow and Shiu Yin Yuen

C

978-1-4244-8126-2/10/$26.00 ©2010 IEEE

Different from the original cNrGA, a mutant is generated by a
newly proposed algorithm called One-Gene-Flip mutation
(OGF). In the following sub-section, we first present a
simplified density tree construction which speeds up the tree
construction process. Afterwards, we present the details of
OGF.

A. Simplified Density Tree Construction
Note that for each newly generated solution, cNrGA

considers only a portion of leaf nodes (i.e. the leaf nodes
which contain the being mutated individuals) in density tree T
to compute the mutation step size; whilst the remaining leaf
nodes are unneeded. Thus, to simplify the tree topology, the
sub-tree(s) of which all leaf nodes are unneeded should be
pruned. Instead of first building the whole tree and then
pruning those unneeded sub-tree(s), we propose an algorithm
that avoids creating them during the tree construction, which
simplifies the tree topology as well as shortens the
construction time. Suppose z is an evaluated solution, the
decision on either recording it into the tree or ignoring it from
the tree construction depends on whether the partition of z
contains the being mutated individual(s). If the partition does
not contain any being mutated individual, the partitioning
induced from z will not adjust the mutation regions of the
being mutated individuals. It is worthwhile to ignore z to
simplify the tree topology. In other words, each leaf node has
to record its being mutated individual(s) for this tree
simplification. We name this set of begin mutated individuals
as the mutation set, which is formally defined below:

Definition 2: The mutation set of x, L(x)

Suppose x is a leaf node of density tree T and P is a set of
individuals to be mutated, we define the individual set L ⊆ P
as the ‘mutation set of x’ if every individual in L is inside the
partition represented by x.

Given a search space S; a set of individuals to be mutated P
= {pi}i=1,2,…,μ and the evaluated solution set Z = {zi}i=1,2,…,N,
the proposed adaptive mutation starts from randomly
re-shuffling Z as {s1, s2, …, sN}. Meanwhile, the mutation
region of pi is defined as follows:

Definition 3: The mutation region of p, q

The mutation region of p contains all possible mutants of
p. Suppose p is an individual to be mutated, the mutation
region q of p is defined as q = D

k 1=Π [V (k), U (k)] where V(k)
and D(k) are the lower and upper bounds at the kth dimension
respectively. These bounds are dynamically determined by
the binary partitioning process.

All mutation regions {qi} i=1,2,…,μ are initialized as the whole
search space, i.e. qi := S for all i. Also, the density tree T is
initialized to consist of the root node only. Since the root
node represents the entire search space, its mutation set is P.
After the initialization, the re-shuffled solutions {si} are

recorded one by one. Suppose si is currently recorded, we first
search h(si): the partition of si. We denote by Curr_node as
the leaf node in T which represents h(si). If the mutation set of
Curr_node, i.e. L(Curr_node), is empty, the partitioning
caused by si will not affect the mutation regions of {pi} and
hence si needs not be inserted to T. On the other hand, if
L(Curr_node) is not empty, T records si by inserting a leaf
node under Curr_node. This node insertion is equivalent to
sub-dividing h(si) into two partitions, and they are represented
by the left child node l and the right child node r of
Curr_node. Meanwhile, L(Curr_node) are also divided into
two groups: the first group G1 contains the individuals which
are inside h(l) whilst the second group G2 contains the
individuals inside h(r), i.e. a ∈ h(l) for all a ∈ G1; b ∈ h(r) for
all b ∈ G2 and L(Curr_node) = G1 ∪ G2. Obviously, the
mutation set of l is assigned as G1 and the mutation set of r is
assigned as G2. Also, the mutation regions of all individuals
in L(l) are updated as h(l); and the mutation regions of all
individuals in L(r) are updated as h(r). After considering
every evaluated solution in Z according to their orders (either
being recorded into the tree or being ignored during the tree
construction), we obtain the mutation regions of the
individual {pi}. Algorithm A1 shows the pseudo code for the
simplified density tree construction algorithm.

Algorithm A1: Simplified density tree construction

Input: 1) the evaluated solution set Z = {zi}i=1,2,…,N, 2) the set
of individuals to be mutated P = {pi}i=1,2,…,μ, 3) search space S

1. Random re-shuffle the sequence of Z as {si}i=1,2,…,N
2. qi = D

k 1=Π [Vi(k), Ui(k)] := S for all i ∈ [1, μ]
3. Initialize density tree T to consist of root node only.
4. L(root) := P
5. For i = 1 to N
6. Curr_node := BSPTreeSearch(si)
7. If |L(Curr_node)| > 0 then
8. Suppose y is the evaluated solution in the

partition represented by Curr_node.
9. Define the comparing dimension j:

j =
],1[

maxarg
Dk∈

d(y,si| k)

10. If si(j) < y(j) then
11. Create left child node l that records si
12. Create right child node r that records y
13. Else
14. Create left child node l that records y
15. Create right child node r that records si
16. EndIf
17. L(l) := ∅
18. L(r) := ∅
19. For m = 1 to |L(Curr_node)|
20. Let a be the mth element of L(Curr_node)

and the mutation region of a is D
k 1=Π [V(k),

U(k)]

21. If a(j) < (si(j) + y(j)) / 2 then
22. L(l) := L(l) ∪ a
23. U(j) := (si(j) + y(j)) / 2
24. Else
25. L(r) := L(r) ∪ a
26. V(j) := (si(j) + y(j)) / 2
27. EndIf
28. Next m
29. EndIf
30. Next i

Output: the mutation region set {qi}

Example:

Suppose S = [0,1]2 is the search space; (s1, s2, s3, s4) are the
set of all evaluated solutions after being randomly
re-shuffled; and p1, p2 and p3 are the individuals to be
mutated in the next generation. The distributions of {si} and
of {pi} are shown in Fig. 1. The adaptive mutation on {pi}
starts by initializing the density tree T to consist of the root
node only. Meanwhile, the parent set of the root node,
L(root), is initialized as {p1, p2, p3}.

Fig. 1 Distributions of the evaluated solutions {si} and of the solutions to be
mutated {pi}.

The first two evaluated solutions s1 and s2 divide S into two
partitions. Fig. 2(a) shows the corresponding space
partitioning. The dotted line represents the decision
boundary. This space partitioning is equivalent to inserting
two child nodes s1 and s2. Fig. 2(b) shows the topology of the
corresponding T. Seen from Fig. 2(a), the partition of s2
consists of all individuals to be mutated. Thus, the mutation
set of s1, L(s1), is assigned as {p1} whilst the mutation set of
s2, L(s2), is assigned as {p2, p3}. Meanwhile, the mutation
regions of p1, p2 and p3 are identified as h(s1), h(s2) and h(s2)
respectively.

When s3 is considered, the space partitioning is updated to
that shown in Fig. 2(c), and the topology of the corresponding
T is shown in Fig. 2(d). Seen from Fig. 2(c), the updated
partition of s2 does not contain any individual whilst the
partition of s3 contains p2 and p3. The mutation set L(s2) does
not change and the mutation set L(s3) remains empty.

s4 is the next evaluated solution being considered. It is
found that s4 is inside the partition of s2. As the mutation set of
s2 is empty, we simply ignore s4 in the tree construction. Fig.

2(e) and Fig. 2(f) show the space partitioning and the
topology of T after considering s4. In Fig. 2(e), s4 is in
light-gray, which indicates that s4 is not recorded by the
density tree. When all evaluated solutions are considered, the
individuals p1, p2 and p3 are mutated in the partitions h(s1),
h(s3) and h(s3) respectively. Fig. 3 (a) and (b) show the space
partitioning by the evaluated solutions in another two solution
orders: {s1, s4, s2, s3} and {s1, s2, s4, s3} respectively.

(a) (b)

r

s1

s2 s3

(c) (d)

r

s1

s2 s3

(e) (f)
Fig. 2 Illustration of the construction of randomly re-partitioned search
space.

(a) (b)

Fig. 3 The space partitioning by another two individual sequences.

B. One-Gene-Flip mutation for cNrGA
One-Gene-Flip mutation (OGF), as its name suggests,

extends the one-bit-flip mutation in the conventional genetic

algorithm to handle continuous search space. Similar to
one-bit-flip mutation, OGF mutates only one gene in the
individual within the partition and this gene is randomly
selected. OGF is a parameter-less adaptive mutation of
cNrGA, in the sense that the mutation is done randomly
within the bounds of the gene, which are in turn defined by
the partition. Comparing to the adaptive mutation in the
original cNrGA which randomly mutates within the partition,
OGF is less disruptive to the schemata structure of the
crossover. Suppose p is a D-dimensional individual to be
mutated and D

k 1=Π [V(k), U(k)] is the mutation region of p,

OGF starts from randomly selecting a dimension j ∈
{1,2,…,D}. Then p is mutated as p’ by replacing the jth
element of p with a random number in the range [V(j), U(j)].
The values of the genes in the rest of the dimensions are
unchanged.

Algorithm A2: One-Gene-Flip mutation for cNrGA

Input: 1) the individuals to be mutated p, 2) the mutation
region of p:= D

k 1=Π [V(k), U(k)]

1. pi’ := pi
2. Randomly pick a dimension j ∈ {1,2,…,D}.
3. pi’(j) := Rand([V(j). U(j)])

Output: pi’

III. CNRGA WITH ADAPTIVE RE-PARTITIONING
cNrGA with randomly re-partitioned density tree

(cNrGA/RP/OGF) is a real-coded genetic algorithm. It
improves the original cNrGA in the sense that the adaptive
mutation in cNrGA/RP/OGF is less sensitive to the ordering
sequence of the evaluated solutions and is less disruptive to
schemata structure induced by crossover. Fig. 5 shows the
structure of cNrGA/RP/OGF. cNrGA/RP/OGF consists of a
long-term memory and a short-term memory. The
long-memory, namely Evaluated Solution List (ESL), is a list
structure archive which records the set of all evaluated
solutions. On the other hand, the density tree in
cNrGA/RP/OGF is a short-term memory which represents the
space partitioning scheme. Different from the original
cNrGA, the density tree of cNrGA/RP/OGF will be re-built
from scratch in every iteration.

Similar to a simple GA, cNrGA/RP/OGF starts by
initializing the population X consisting of μ individuals. This
population then generates μ offspring individuals {pi} by a
crossover operator. Afterwards, the adaptive mutation
module uses the solutions stored in ESL to simultaneously
reconstruct the density tree and obtain the mutation regions of
{pi} (i.e. Algorithm A1). After performing OGF mutation on
{pi}, according to Algorithm A2, the corresponding mutant
set {pi’} are evaluated and are recorded by ESL. A (μ+μ)
elitism selection is performed to choose the best μ individuals

from {X, {pi’}}. The reproduction and the selection processes
are repeated until the stopping criteria is satisfied. The circled
numbers in Fig. 5 represent the order of the steps in a
cNrGA/RP/OGF iteration.

Fig. 4 Flow diagram of cNrGA/RP/OGF

IV. EXPERIMENTAL RESULTS

A. Test function set
A real valued function set F = {f1(x), f2(x),…, f19(x)}

consisting of 19 functions are employed to illustrate the
performance of cNrGA/RP/OGF. The 19 test functions are as
follows:

1. Sphere function
2. Schwefel’s problem 2.22
3. Schwefel’s problem 1.2
4. Schwefel’s problem 2.21
5. Generalized Rosenbrock function
6. Quartic function
7. Generalized Rastrigin function
8. Generalized Griewank function
9. Generalized Schwefel’s problem 2.26
10. Ackley function
11. Shekel’s Foxholes function
12. Six-Hump Camel-Back function
13. Branin function
14. Goldstein-Price function
15. Rotated high conditioned elliptic function
16. Rotated Griewank’s function

17. Rotated Rastrigin’s function
18. Rotated Weierstrass’s function
19. Hybrid Composition function

They are well known benchmark test functions. The first 14
functions are taken from [3] whilst the remaining 5 are taken
from [4]. For details of the test functions (i.e. the
mathematical forms, the search space and the optima), please
refers to [2].

The first six functions are uni-modal functions; the
remaining thirteen are multi-modal functions designed with a
considerable amount of local minima. Meanwhile, the
dimensions of the first ten and the last five functions are
adjustable while the dimensions of f11 – f14 are fixed at two.
Simulations are carried out to find the global minimum of
each function.

B. Test algorithms
In this section, we compare the performance of

cNrGA/RP/OGF with those of cNrGA and six benchmark
evolutionary algorithms. The search spaces of all test
algorithms are continuous. The designs and settings of
cNrGA/RP/OGF and the algorithms for comparison are
summarized below.

Test algorithm 1 – Continuous non-revisiting genetic

algorithm [1] (cNrGA)
Test algorithm 2 – Continuous non-revisiting genetic

algorithm with randomly re-partitioned
BSP tree (cNrGA/RP/OGF).

Test algorithm 3 – CMA-ES [5].
Test algorithm 4 – Differential Evolution [6] (DE).
Test algorithm 5 – Opposition-Based Differential Evolution

[7] (ODE)
Test algorithm 6 – Dissipative particle swarm optimization

[8] (DPSO)
Test algorithm 7 – PSO with Spatial Particle Extension [9]

(SEPSO)

For cNrGA/RP/OGF and cNrGA, the crossover operator is

chosen to be uniform crossover where the crossover rate rx is
chosen as 0.5. This is the recommended setting in [10, pg.
48].

For PSO-class test algorithms, the values of c1, c2 are set to
2. The inertia w is linearly decreasing from 1 to 0. Suppose X
= ∏i=1,…,D[Vi, Ui] is the search space of a D-dimensional
objective function, the maximum velocity Vmax is set to 0.1R
where R = max(Ui – Vi). The parameters used in DPSO and
SEPSO are assigned to be the same as suggested in the
original works: the parameters Cv and Cm of DPSO are chosen
to be 0.001 and 0.002 respectively. For SEPSO, a simple
velocity line bouncing with bouncing factor -1 is used. These
parameter settings are recommended in the original works
[9].

For DE and ODE, the crossover rate and the differential
amplification factor are set to 0.95 and 0.5 respectively.
These values have been used in literature [11]. The mutation
strategy is DE/rand/1/bin (classic version of DE) [11]. The
jumping rate constant of ODE is chosen to be 0.3 [7].

C. Simulation settings
For cNrGA/RP/OGF, cNrGA, DE and ODE, the

population sizes are set to 100. (100+100) selection is used.
For CMA-ES, the population size λ is chosen by the
suggested setting in [5] (i.e. λ = 4 + ⎣3lnD⎦). For DPSO and
SEPSO, the swarm sizes are set to 100 and 100 offspring are
reproduced at each generation. All test functions with the
exception of f11 – f14, which are two-dimensional, are tested
with dimension 40. To provide a fair comparison of the test
algorithms, the total number of function evaluations of all
algorithms is kept a constant: For functions f1 – f10,
cNrGA/RP/OGF, cNrGA, DPSO, SEPSO, DE and ODE are
terminated after 400 generations. CMA-ES is terminated after
40,000 function evaluations, i.e., the total number of fitness
evaluations of all the algorithms is fixed at 40,000. Similarly,
for functions f11 – f14, the total number of fitness evaluations is
fixed at 1,000. The swarm sizes of DPSO and PSOMS are set
to 50. The population sizes of cNrGA/RP/OGF, cNrGA, DE
and ODE are set to 50 also. CMA-ES is terminated after 1,000
function evaluations.

Since the test algorithms are stochastic, their performances
on each test function are evaluated based on statistics
obtained from 100 independent runs. All simulations are done
on a PC with 3.2GHz CPU and 1GB memory. The test
algorithms: cNrGA/RP/OGF, cNrGA, DPSO, SEPSO and
ODE are implemented in C language. CMA-ES uses source
code in [5] and MATLAB version 6.1. DE uses source code in
[12] and MATLAB version 6.1.

D. Simulation results
The detailed simulation results are reported in Table 2 –

Table 6. Fig. 5 presents a summary of the results. The shaded
cells in the figure indicate that the corresponding test
algorithm is the best algorithm on a particular test function at
a particular function dimension. The values inside the table
cells for cNrGA/RP/OGF indicate the ranks of
cNrGA/RP/OGF on a particular test function when it is not
the best algorithm.

Seen from the figure, cNrGA/RP/OGF is superior to
cNrGA. It performs better than cNrGA in all 19 test cases
(using t tests, 17 of them are with 99.95% significance; 2 out
of them is with 95% significance and the remaining one is
with 75% significance). In addition, the performance
improvement of cNrGA/RP/OGF is significant. For some of
the test functions, the improvements by cNrGA/RP/OGF are
even in the order of 102 or higher. For example, the averaged
optimal fitness of f1 found by cNrGA/RP/OGF and cNrGA
are 0.0158 and 2.498376; the averaged optimal fitness found
of f18 by cNrGA/RP/OGF and cNrGA are 0.002 and 1.804

(i.e. the optimal values of f1 and f18 are 0). These results
significantly show the contributions of the proposed
re-partitioning scheme and One-Gene-Flip mutation.

In the comparison with all 7 test EAs, cNrGA/RP/OGF
ranks or jointly ranks 1st in 7 and is 2nd in 3 out of 19 test
cases. It is the second best test algorithm in terms of the
number of 1st

 ranked test cases – CMA-ES ranks first with 10.
However, to measure the performance of a test algorithm, one
should simultaneously consider (1) the test cases in which it
dominates the others and (2) the test cases in which it is
dominated by the others. cNrGA/RP/OGF ranks between 1st
and 3rd in 16 out of 19 test cases whilst CMA-ES ranks
between 1st and 3rd in 11 out of 19 test cases . More
importantly, cNrGA/RP/OGF never ranks lower than 5 but
CMA-ES ranks 6 in 2 test cases and ranks 7th (the last) in 1
test case. Therefore though the frequency of 1st ranked test
cases of CMA-ES is much more (cf. 10 vs. 7), it has the risk
of having poor ranks in some cases, i.e. it is less stable than
cNrGA/RP/OGF.

Table 1 lists the averaged ranks of the seven test algorithms
over 19 test cases. The averaged rank of cNrGA/RP/OGF is
2.236, which is the lowest amongst the 7 test algorithms;
cNrGA/RP/OGF performs the best when both accuracy and
stability are considered.

The detailed simulation results (mean and standard
deviation) are listed in Table 2 - Table 4. It lists the average
and the standard deviation (inside brackets) of the optimal
fitness for 100 trials. A value in boldface indicates that the
corresponding algorithm is the best amongst the algorithms
on a particular test function.

V. CONCLUSION
In this paper, we contribute to the continuous

non-revisiting genetic algorithm (cNrGA) in the following
ways:

1. We point out that, in cNrGA, the solution-density is

estimated by a sequential approach; as cNrGA computes
mutation step size according to the density, the
performance of cNrGA depends on the order of the
evaluated solutions. This introduces a subtle bias to the
algorithm.

2. To balance between removing the dependence and
preserving a fast estimation, we propose to randomly
re-shuffle the order of the evaluated solutions at every
iteration. Afterwards, we use the re-ordered solution
sequence to construct the density tree for the adaptive
mutation.

3. We propose an algorithm that constructs density tree
whose topology is optimized for the adaptive mutation at
the current generation.

4. We propose a new adaptive mutation algorithm called
One-Gene-Flip mutation. Comparing to the mutation in
the original cNrGA, it is less disruptive to the schemata,
which helps speed up the convergence.

The cNrGA that employs the idea of solution reordering
and one-gene-flip mutation (cNrGA/RP/OGF) is examined
on 19 benchmark test functions. Its performance is compared
with those of the original cNrGA as well as six bench mark
evolutionary algorithms (EAs). The experimental results
show that:

1. cNrGA/RP/OGF is significantly superior to the original

cNrGA in all 19 test cases, which empirically illustrates
that (i) the idea of search space re-partitioing and
one-gene-flip mutation can improve the performance of
the original cNrGA.

2. The averaged rank of cNrGA/RP/OGF over the 19 test
cases is 2.263, which is the lowest amongst the 7 test EAs.
Meanwhile, the variation of the ranks of cNrGA/RP/OGF
is also the smallest, i.e. its rank is from 1st to 5th. On the
other hand, though the frequency of 1st rank test cases
obtained by CMA-ES is larger than that of
cNrGA/RP/OGF, it ranks 6th in 2 test cases and ranks 7th
(the last) in 1 test case. Thus cNrGA/RP/OGF outperforms
the six EAs when considering both accuracy and stability.

 This paper has introduced two new mechanisms to the
original cNrGA, namely, solution re-ordering and
one-gene-flip mutation. The new algorithm, cNrGA/RP/OGF
is shown to improve the cNrGA significantly. Future work
should analyze the relative contributions of each mechanism.

REFERENCES
[1] S. Y. Yuen and C. K. Chow, “Continuous non-revisiting genetic

algorithm,” in Proc. IEEE Congr. Evol. Comput., 2009, pp. 1896 –
1903, 2009.

[2] S. Y. Yuen and C. K. Chow, “A Genetic algorithm that adaptively
mutates and never revisits,” IEEE Trans. Evol. Comput., vol. 13, no. 2,
pp. 454-472, Apr. 2009.

[3] X. Yao, Y. Liu, and G. M. Lin, “Evolutionary programming made
faster,” IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 82–102, Apr.
1999.

[4] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger
and S. Tiwari, "Problem Definitions and Evaluation Criteria for the
CEC 2005 Special Session on Real-Parameter Optimization",
Technical Report, Nanyang Technological University, Singapore, May
2005 and KanGAL Report #2005005, IIT Kanpur, India.

[5] N. Hansen, “The CMA evolutionary strategy: A tutorial”, Technical
Report, code version: 31 Aug. 2007. Link:
www.bionik.tu-berlin.de/user/niko/cmatutorial.pdf

[6] R. Storn and K. Price, “Differential evolution—A simple and efficient
adaptive scheme for global optimization over continuous spaces,”
Berkeley, CA, Tech. Rep. TR-95-012, 1995.

[7] S. Rahnamayan, H. R. Tizhoosh and M. M. A. Salama,
“Opposition-Based Differential Evolution,” IEEE Trans. Evol.
Comput., vol. 12, no. 1, pp. 64 – 79, Feb. 2008.

[8] X. F. Xie, W. J. Zhang, Z. L. Yang, “A dissipative particle swarm
optimization,” in Proc. IEEE Congr. Evol. Comput.,2002, pp. 1666 –
1670.

[9] T. Krink, J. S. Vesterstrom, J. Riget, “Particle swarm optimization with
spatial particle extension,” in Proc. IEEE Congr. Evol. Comput., 2002,
pp. 1474 – 1497.

[10] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing,
Springer 2003.

[11] ——, “Differential evolution - A simple and efficient heuristic for
global optimization over continuous spaces,” Journal of Global
Optimization 11, Norwell, MA: Kluwer, 1997, pp. 341–359.

[12] Differential evolution source code link:
http://www.icsi.berkeley.edu/~storn/code.html

 Uni-modal Multi-modal
 Function f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19
cNrGA/RP/OGF 3 2 5 3 3 3 1 3 1 2 1 1 1 1 3 1 4 3 2
cNrGA 5 5 6 6 6 4 2 5 2 4 2 2 2 2 5 4 5 5 5
CMA-ES 1 1 1 1 1 1 4 1 5 7 6 4 3 6 4 5 3 1 1
DE 4 4 7 7 4 7 3 4 3 3 7 7 7 7 2 2 2 4 7
ODE 2 3 2 2 2 2 5 2 6 1 5 6 5 5 1 3 1 2 4
DPSO 7 6 3 4 5 5 7 6 7 5 3 5 6 4 7 6 7 6 6
SEPSO 6 7 4 5 7 6 6 7 4 6 4 3 4 3 6 7 6 7 3

Fig. 5 Indicators of the best test algorithm in the experiments: The cell with grey color represents that the corresponding test algorithm outperforms the others
for a particular function and a particular function dimension.

TABLE 1 THE AVERAGED RANK OVER 19 TEST CASES
Test algorithm cNrGA/RP/OGF cNrGA CMA-ES DE ODE DPSO SEPSO
Averaged rank 2.263 4.105 2.842 4.789 3.105 5.526 5.315

TABLE 2 AVERAGE, STANDARD DEVIATION AND CONFIDENCE LEVEL OF THE BEST FITNESS VALUES FOUND BY THE EIGHT TEST ALGORITHMS:F1 – F7

Fitness function f1 f2 f3 f4 f5 f6 f7

D 40 40 40 40 40 40 40
cNrGA/RP/OGF average 0.0158 0.2799 10301.949 8.292 841.296 13.073 10.332

std. dev. (0.0044) (0.0775) (2634.58) (0.9004) (1144.01) (0.4923) (2.9946)
cNrGA average 2.498376 4.864231 15137.309 52.476 38713.864 13.220 44.366

std. dev. (2.3019) (2.0009) (4415.30) (6.1540) (59449.6) (0.6872) (8.1339)
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95% 95% 99.95%

CMA-ES average 0 0 0.000 0.000 0.000 0.266 76.174
std. dev. (0) (0) (0) (0) (0) (0.0963) (17.1046)
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95% 99.95% 99.95%

DE average 0.167 1.1491 45895.908 60.773 2023.166 16.338 57.394
std. dev. (0.0279) (0.1101) (4761.74) (3.8266) (405.62) (0.6334) (5.3769)
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95% 99.95% 99.95%

ODE average 0.001 0.3459 409.988 0.153 42.288 12.433 170.719
std. dev. (0.0009) (0.1754) (230.1221) (0.4848) (13.7948) (0.5279) (55.5588)
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95% 99.95% 99.95%

DPSO average 6.9563 19.4899 3986.092 13.299 31765.025 14.624 201.557
std. dev. (1.2491) (5.3605) (35.7403) (1.4465) (110.437) (0.8821) (4.6532)
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95% 99.95% 99.95%

SEPSO average 6.8806 21.4078 6057.789 16.994 41826.011 15.630 181.948
std. dev. (1.5195) (5.7894) (41.8452) (1.663) (141.3864) (1.0337) (4.8482)
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95% 99.95% 99.95%

TABLE 3 AVERAGE, STANDARD DEVIATION AND CONFIDENCE LEVEL OF THE BEST FITNESS VALUES FOUND BY THE EIGHT TEST ALGORITHMS: F8 – F14
Fitness function f8 f9 f10 f11 f12 f13 f14

D 40 40 40 40 40 40 40
cNrGA/RP/OGF average 0.965 -18324.08 0.314 0.998 -1.03162 0.3979 3.000

std. dev. (0.0323) (7.9151) (0.06) (0.00001) (0) (0) (0)
cNrGA average 3.468 -16885.37 5.805 1.030 -1.03160 0.39792 3.049

std. dev. (2.122) (343.189) (1.4714) (0.24037) (0) (0) (0.2557)
C (t-test) 99.95% 99.95% 99.95% 90% 99.95% 99.95% 95%

CMA-ES average 0.001 -7187.400 21.495 13.522 -1.024 0.398 7.320
std. dev. (0.0031) (184.1) (0.1658) (5.3565) (0.0816) (0) (16.6041)
C (t-test) 99.95% 99.95% 99.95% 99.95% 80% < 50% 99%

DE average 1.154 -15568.75 3.047 13.974 -0.670 1.522 14.839
std. dev. (0.0259) (256.12) (0.2579) (21.6527) (0.3211) (1.348) (10.4039)
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95% 99.95% 99.95%

ODE average 0.243 -6559.977 0.118 2.449 -1.021 0.425 3.521
std. dev. (0.1488) (839.019) (0.1698) (1.4992) (0.0109) (0.0277) (0.4767)
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95% 99.95% 99.95%

DPSO average 7.005 -6196.144 6.942 1.491 -1.023 1.441 3.143
std. dev. (1.1996) (27.7505) (0.8013) (0.84) (0.1171) (1.6188) (0.6474)
C (t-test) 99.95% 99.95% 99.95% 99.95% 75% 99.95% 97.5%

SEPSO average 7.433 -9108.410 7.749 2.247 -1.025 0.410 3.062
std. dev. (1.2926) (30.4254) (0.9357) (1.1537) (0.104) (0.1366) (0.2934)
C (t-test) 99.95% 99.95% 99.95% 99.95% < 50% 80% 97.5%

TABLE 4 AVERAGE, STANDARD DEVIATION AND CONFIDENCE LEVEL OF THE BEST FITNESS VALUES FOUND BY THE EIGHT TEST ALGORITHMS: F15 – F19
Fitness function f8 f9 f10 f11 f12

D 40 40 40 40 40
cNrGA/RP/OGF average 37739.775 0.968 27711.047 0.002 145.617

std. dev. (21876.767) (0.2116) (2001.1961) (0.0004) (62.4854)
cNrGA average 8643721.585 10.009 150157.060 1.804 196.013

std. dev. (7718188.14) (2.185494) (30256.914) (1.299734) (35.577081)
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95%

CMA-ES average 116566.807 10.575 6698.980 0.000 0.000
std. dev. (76286.018) (18.654) (324.05) (0) (0)
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95%

DE average 37580.665 3.392 2454.875 0.028 425.763
std. dev. (6525.303) (0.2111) (77.024) (0.0059) (42.4568)
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95%

ODE average 254.327 4.209 2003.177 0.001 164.558
std. dev. (302.6105) (0.8853) (163.5926) (0.0005) (38.622)
C (t-test) 99.95% 99.95% 99.95% 99.95% 99%

DPSO average 15086214.98 19.525 11335533.32 7.013 278.654
std. dev. (2359.020) (1.3333) (1009.9892) (1.8273) (10.7637)
C (t-test) 99.95% 99.95% 99.95% 99.95% 99.95%

SEPSO average 13793165.09 20.951 365663.074 7.460 155.882
std. dev. (2260.6129) (1.5315) (398.9803) (1.886) (6.205)
C (t-test) 99.95% 99.95% 99.95% 99.95% 90%

