
Title A non-revisiting simulated annealing algorithm

Author(s) Yuen, SY; Chow, CK

Citation
The 2008 IEEE Congress on Evolutionary Computation (CEC
2008), Hong Kong, China, 1-6 June 2008. In IEEE Transactions
on Evolutionary Computation, 2008, p. 1886-1892

Issued Date 2008

URL http://hdl.handle.net/10722/196703

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38044506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Non-Revisiting Simulated Annealing Algorithm

Shiu Yin Yuen and Chi Kin Chow

www

Abstract – In this article, a non-revisiting simulated annealing
algorithm (NrSA) is proposed. NrSA is an integration of the
non-revisiting scheme and standard simulated annealing (SA).
It guarantees that every generated neighbor must not be visited
before. This property leads to reduction on the computation cost
on evaluating time consuming and expensive objective functions
such as surface registration, optimized design and energy
management of heating, ventilating and air conditioning
systems. Meanwhile, the prevention on function re-evaluation
also speeds up the convergence. Furthermore, due to the nature
of the non-revisiting scheme, the returned non-revisited
solutions from the scheme can be treated as self-adaptive
solutions, such that no parametric neighbor picking scheme is
involved in NrSA. Thus NrSA can be identified as a
parameter-less SA. The simulation results show that NrSA is
superior to adaptive SA (ASA) on both uni-modal and
multi-modal functions with dimension up to 40. We also
illustrate that the overhead and archive size of NrSA are
insignificant, so it is practical for real world applications.

I. INTRODUCTION

n simulated annealing (SA) [1], each point x in a search
space is analogous to a state of some physical system, and
the objective function f(x) to be minimized is analogous to

the internal energy of the system in that state. The goal of SA
is to bring the system, from an arbitrary initial state, to a state
with the minimum possible energy.

At each step, the SA heuristic considers some neighbor x'
of the current solution x, and probabilistically decides
between moving the system to solution x' or staying put in x.
The probabilities are chosen so that the system ultimately
tends to move to solution of lower energy. This probability is
governed by the acceptance function P(.):

1 if
()

exp(/ ()) if 0a a

E
P E

E T k E

0 (1)

where E = f(x’) – f(x), Ta(ka) is the acceptance temperature.
P(.) describes how the system is able to get out of the local
minima. This step is terminated when the solution is good
enough for the application, or a given computation budget has
been exhausted.

SA simulates the annealing process by a cooling schedule.
Initially ka = 0. After every Ng solution generation, ka ka +
1. One choice for the acceptance temperature is Ta(ka) =

() (0) ak
a a aT k T , where Ta(0) = f(x) at iteration 0 and is a

user defined parameter.

Shiu Yin Yuen and Chi Kin Chow are with the Department of Electronic
Engineering, City University of Hong Kong, Hong Kong SAR, China (e-mail:
{itkelvin, chowchi}@cityu.edu.hk).

The adaptive SA (ASA), an improved version of SA also
known as the very fast simulated reannealing [2]-[4],
provides significant improvement in convergence speed over
standard SA and maintains all the advantages of standard SA.
ASA introduced the reannealing concept, in which the
acceptance temperature self adjusts according to the fitness
history. In addition, it introduced an adaptation to the
neighbor picking scheme, to which the distance between the
neighbor solution and the current solution is controlled by an
adaptive temperature. The details of the reannealing and the
neighbor picking are summarized in the following:

Neighbor picking – After every Ng solution generation, ka

and {ki} and are updated as: ka ka + 1 and ki ki + 1 for all
i.
Suppose X = [Li, Ui] is a D-dimensional search space (i.e. i

 [1, D]) and x = [x1, x2, …, xD] X is the solution of the
current iteration, the neighbor of x, namely x’, is defined as:

xi’ = xi + qi(Ui – Li) and xi’ [Li, Ui] for i [1, D] (2)

where
2 1

1
sgn 0.5 () 1 1

()

in

i i i i
i i

q n T k
T k

 (3)

1

() (0)exp()D
i i i iT k T ck (4)

1

() (0)exp()D
a a a aT k T ck (5)

and ni is a uniformly distributed random variable in the range
[0, 1], c is temperature decay constant and Ti(0) is the initial
temperature of xi at iteration 0.

Reannealing – After every Na acceptance solutions, {Ti} and
the acceptance temperature Ta are adjusted according to the
local information f(x):

(0) ()a aT T ka
(6)

() ()a aT k f x (7)

(0)1
ln

()

D

a
a

a a

T
k

c T k
 (8)

[1,]
max

() ()
j

j D
i i i i

i

g
T k T k

g
(9)

(0)1
ln

()

D

i
i

i i

T
k

c T k
(10)

where
,

() ()
 ;

0 otherwisei i j

j if f
g six s x (11)

I

1886

978-1-4244-1823-7/08/$25.00 c©2008 IEEE

and is the step size of f(.).
Though it is claimed in [5] that ASA has good self

adaptation ability and its performance is not critically
influenced by the specific chosen values of Ng, Na and c, this
claim is only true for the class of Gaussian-Markovian
systems and there is no theoretical proof to support that ASA
is still robust on other class of systems. In fact, the simulation
results in Section IV show that the best fitness found by the
ASA is sensitive to the choice of c. One reason is that the
parameter c controls the similarity between the current
solution and its neighbor (i.e. the search strategy of ASA). To
be a truly adaptive SA, the neighbor picking procedure must
be parameter free. In this article, we propose adopting the
non-revisiting scheme suggested by Yuen and Chow [6] to
standard SA, which results in a non-revisiting and
parameter-less SA – Non-revisiting SA (NrSA). Since all
neighbors picked from the search space are guaranteed to be
non-revisiting in previous iterations, faster convergence
speed is expected. Moreover, NrSA reduces computation cost
for a variety of applications [7]-[10]. Furthermore, as the
non-revisiting scheme outputs a non-revisiting solution
which is closest to the original revisited solution, it acts as a
parameter-less neighbor picking scheme that overcomes the
selection problem of c in ASA.

This paper is organized as follows: Section II reports a
novel SA of which no revisited neighbor solution is generated.
Section III presents the simulation setup. Section IV reports
the simulations results. A conclusion is drawn in Section V.

II. NON-REVISITING SIMULATED ANNEALING

A. Non-Revisiting Scheme

The non-revisiting scheme is proposed by Yuen and Chow
in [6]. It is originally applied to genetic algorithm (GA).

Definition 1: Revisits
Suppose Q is a set of evaluated solutions, the solution x is a
revisit if x Q.

The non-revisiting scheme stores all visited solutions {si}
by a tree-structure archive, namely binary space partitioning
(BSP) tree. The search space is partitioned into a set of
regions H. The regions are non-overlapping, i.e. hi hj =
for all hi, hj H and i j, and each {hi} consists of one
evaluated solution. In view of the BSP tree, a node represents
a region h H and the tree grows along with the iterations.
Since the tree construction depends on the sequence of
generated solutions, the BSP tree is a random tree and its
topology is different from trial to trial.

The scheme is analogous to a black box function (fig. 1).
The input x of that function can be any point in the search
space. If x is a revisit, the function outputs a solution n such
that 1) n x, 2) x, n hx H and 3) n is the nearest neighbor
of x. Otherwise, n is assigned as x.

Fig. 1 Communication between SA and the BSP tree.

B. Adaptive neighbor picking of NrSA

Suppose x is the current solution, the neighbor solution of
x; n = [n1, …, nD]; is initialized as:

sgn() () / if

otherwise
i i i

i
i

x U L d i j
n

x
 (12)

where j [1, D] is a random integer variable, [-1, 1] is a
uniformly distributed random variable and d is the axis
resolution (details can be found in [1]). Afterwards, n is
passed to the non-revisiting scheme. A non-revisiting
solution is returned by the scheme if n is a revisit.

Definition 2: Nearest neighbor
In NrSA, the search space S is in the form of a grid; every
solution occupies a unique cell in S. Solution n S is a
nearest neighbor of solution x S if the cell of n is adjacent to
the cell of x. For a D-dimensional function, every solution,
except those at the boundary of the search space, has 2D
nearest neighbors.

Suppose R S is a revisit set (revisit zone in S), B R is a
subset of R such that every b B must has at least one nearest
neighbor p which is not a revisit, i.e. p R. The distance
between x and n must be larger than |x – b0| where

argmin | |
B

0 b
b x b (13)

Thus, the search strategy of NrSA (the distance between n
and x) depends on the size of the revisit zone R that x belongs
to. Since the size of R infers the degree of the optimal basin,
NrSA adaptively switches between escaping from local
optima and fine searching solution. Fig. 2 illustrates an
example of the neighbor picking scheme of NrSA. The circles
indicate the solution generated from eq. (13) (labeled with x)
and the solution returned by the non-revisiting scheme
(labeled with n).

Fig. 2 An example of neighbor picking scheme of NrSA

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 1887

In the beginning of the search, the number of evaluated
solutions (the size of R) is small; n is mostly a nearest
neighbor of x, in which NrSA acts as a random local search.
As more solutions are evaluated, the size of R increases; the
solution generated from eq. (13) is often a revisit. Thus, the
non-revisiting scheme introduces a large jump to n, in order
to perform a global search.

The neighbor adaptiveness of NrSA on the ith dimension
can be represented by the standard deviation of {|xi – ni|}. Fig.
3 shows the adaptiveness of NrSA against iterations on
optimizing a 6-dimensional Rastrigin’s function (the
adaptiveness is indicated as SN and the details of the
Rastrigin’s function can be found in Table 3). Fig. 4 shows
the fitness of n against iterations. Seen from fig. 3, the
standard deviations vary along the iterations and they start
rising mainly at the 900th, 1600th, 2400th, 2800th and 3400th

iteration. Meanwhile, seen from fig. 4, the fitness of n
increase at those occasions. This observation empirically
illustrates that NrSA adaptively pick neighbor solutions
according to the fitness of n.

Fig. 3 The actual neighborhood standard deviations of NrSA in a simulation.

Fig. 4 The fitness of neighbor solutions in a simulation.

C. Mechanism of NrSA

In general, standard SA (SSA) and its variants (i.e. ASA) is
possible to be modified as NrSA since the non-revisiting
scheme is independent of SA’s mechanism; SSA is used in
this article. Fig. 5 shows the pseudo code for NrSA. The
procedures of NrSA are similar to those of SSA except for the
following three extra steps in each iteration:

1. The neighbor solution of x is generated from eq. (12).
2. n is passed to the BSP tree. A non-revisiting n is returned

by the tree if the original n is a revisit.
3. When n is evaluated, it is regarded as a revisit. Thus, the

BSP tree should be updated in order to include n into the
revisit pool.

Initialize current solution x
Evaluate x f(x)
Initial the iteration index: k 0
while k < kmax and f(x) > fmin

Guess n by eq. (12)
Compute n in accordance with the non-revisiting
scheme.
Evaluate n f(n)
Record the sample [n, f(n)] in the BSP tree
if P(f(n) - f(x)) > rand then x n
k k + 1

loop

Fig. 5 The pseudo code for Nr SA.

III. SIMULATION SETUP

A. Test function set

In this article, a real valued function set F = [f1(x), f2(x),…,
f14(x)] consisting of 14 functions are employed to illustrate
the performance of NrSA. The details (i.e. X – search space,
D – function dimension, x0 – optimal solution, y0 – optimal
fitness) of the functions are listed in Table I. The first six
functions are simple unimodal functions whereas the
remaining eight functions are multimodal functions designed
with a considerable amount of local minima. Meanwhile, the
dimensions of the first ten functions are adjustable while the
dimensions of the remaining four functions are fixed at two.
All functions with the exceptions of f9, f11, f12 and f13, have the
global minimum at the origin or very close to the origin.
Simulations are carried out to find the global minimum of
each function.

B. Setup of test algorithms

To evaluate the impact of the proposed non-revisiting
scheme, we compare the optimal fitness found by NrSA with
adaptive SA (ASA). For NrSA, the axis resolutions d of the
first 10 functions are chosen as 100 whereas the values of d
are 2,000 for the remaining four. Moreover, the cooling
schedule of NrSA is the same as the standard SA: is set to
0.9 in this article. For ASA, the parameters Na, Ng, c and are

1888 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

chosen as 20, 500, 3 and 0.001 respectively. (this parameters
follow those in [11]) {Ti(0)} for all i and Ta(0) are initialized
as the fitness of the initial x.

C. Simulation settings

To provide a fair comparison between the NrSA and the
ASA, they are terminated after 40,000 generations in all
simulations, i.e. kmax = 40,000. All test functions with the
exceptions of f11, f12, f13 and f14, which is two-dimensional,
were tested with dimensions 30 and 40. Since the test
algorithms are stochastic, their performance on each test
function are concluded by 100 independent runs. All
simulations are performed on a PC with 3.2GHz CPU and
1GB memory. The algorithms are implemented in C
language.

IV. SIMULATION RESULTS

Initially, we observed the performance, of NrSA in
comparison with ASA in terms of accuracy (quality of the
averaged optimal fitness) for 100 trials. To be a practical
solution to real world problems, the processing time and the
archive size of the BSP tree of NrSA should be within a
reasonable range. Thus, the overhead of NrSA related to ASA
and the worst case archive size are also observed. Finally, the
superiority of the adaptive neighborhood of NrSA over those
of ASA is observed for all the functions in dimension of 40.
The averaged and the standard deviation (inside brackets) of
the optimal fitness for 100 trials are presented in Table II. In
Table III, the averaged processing time of NrSA and ASA are
presented. Table IV lists the averaged archive sizes for 100
trials. Table V lists the best fitness values found by ASA
under different neighborhood standard deviations.

A. Accuracy

Table II lists the average and the standard deviation (inside
brackets) of the optimal fitness for 100 trials. The algorithm
with bold average fitness value represented that it performs
the best among all algorithms. It is clear from the table that
NrSA is superior to ASA for the unimodal functions f1 – f6. It
is due to the more robust neighbor picking scheme. NrSA has
improved the accuracy significantly when compared with
ASA on optimizing multimodal functions: f7 – f12. One reason
is that the non-revisiting scheme memorizes all visited local
optima, which helps to escape from the local basins. The
results of f13 and f14 obtained from NrSA are competitive with
ASA. In general, a consistent performance of NrSA has been
observed for all benchmarks considered in this investigation.

B. Processing time

During the search process, an algorithm spends its
computation effort on either solution generation or function
evaluation. Different algorithms use different strategies to
guess a solution, so the corresponding processing time is
different. For NrSA, the access to the BSP tree is time

consuming and a longer processing time of NrSA compared
with other algorithms are expected. As a practical solution to
real world applications, the processing time of NrSA should
be within an acceptable range. In this section, the
computation load of an algorithm, in term of processing time,
is studied.

Table III lists the processing time of NrSA and ASA.
Though high overhead rates of NrSA are obtained, the
maximum overhead amongst all simulation is only 5.0
seconds on using 40,000 fitness evaluations to optimize a
40-dimension function. Furthermore, it is important to point
out that, for real world applications such as surface
registration [7], optimized design and energy management of
heating, ventilating and air conditioning systems [8]-[10],
function evaluations are much more time consuming and
expensive than solution generation. Thus, the overhead rate
of the NrSA is insignificant.

C. Archive size

The variations of the archive size of the BSP tree for 100
trials are observed. The results are listed in Table IV. The
archive size is presented as the number of BSP tree nodes. In
general, the archive size increases along with the function
dimension. One reason is that the increment on function
dimension leads to a significant growth on the size of search
space, which reduces the chance of tree node pruning. Apart
from the increment of function dimension, the nature of an
objective function also affects the archive size. The fitness
landscape of the Schwefel’s problem 2.21 composes of
piecewisely flat regions. These regions mislead the solution
replacement strategy and NrSA acts more likely a random
search. Thus, the chance of tree pruning is reduced. For the
Quaric function, the random element introduces many small
oscillations (local optimum) into the fitness landscape. In
addition, these local optima can hardly be merged to reduce
the archive size as they are sparsely distributed on the
landscape. The upper bound of the archive size in this test is
40,001. By comparing using a PC that is commonly
configured with 1GMB memory, these 40,001 units are just
0.096% of the memory (assuming that each BSP tree node is
represented by 24 bytes).

D. Stability of NrSA

In this experiment, we define the stability of an algorithm
in terms of quality of the averages and the standard deviation
of the optimal fitness under different parameter values (d for
the NrSA and c for the ASA). For the first ten test functions,
the value of d is varied from 60 to 100. For the remaining four
functions, the value of d is varied from 1800 to 2200. The
value of c is varied from 1 to 10. The dimensions are fixed at
40 for the first ten test functions. Table IV lists the result for
100 trials.

The results indicate that the effect of d on the optimal
fitness is insignificant for all test functions. On the other hand,
the choice of c is a critical factor for these functions. In
conclusion, it is clear from the results that the averaged

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 1889

optimal fitness is only slightly dependent on the axis
resolution for all the test functions. Therefore, a proper
selection of the axis resolution is not a key factor for most
problems (at least for the 14 benchmark functions), and the
use of the proposed scheme can be identified as a good
strategy to overcome the difficulties of selecting a proper
mutation parameter.

V. CONCLUSIONS

For many real world applications such as surface
registration, optimized design and energy management of
heating, ventilating and air conditioning systems, the cost of
function evaluations, in terms of computation, is very high.
To tackle these problems, we propose a novel SA, the
non-revisiting SA (NrSA), in which every generated
neighbor solution is novel – it has not been visited before. The
NrSA is an integration of the non-revisiting scheme proposed
by Yuen and Chow [6] with a standard SA. Due to the nature
of the non-revisiting scheme, the returned non-revisited
solution from the scheme can be interpreted as a parameter
free self-adaptive neighbor picking, and no parametric
neighbor picking scheme is required. The NrSA is examined
on 14 benchmark unimodal or multimodal functions with
dimensions from 30 to 40. The performance of NrSA is
illustrated by comparing four quantities: accuracy, processing
time, archive size and stability with adaptive SA (ASA). The
simulation results show that 1) the best fitness found by NrSA
is better than that of ASA; 2) the overhead of NrSA is small; it
is practical in real world applications; 3) the archive size,
processing time and memory requirement is low even on
optimizing a 40-dimensional objective function and 4) a
proper selection of the axis resolution is not a key factor for

NrSA.

ACKNOWLEDGMENT

The work described in this article was supported by a grant
from CityU (7001859).

REFERENCES

[1] S. Kirkpatrick and C. D. Gelatt and M. P. Vecchi, Optimization by
Simulated Annealing, Science, Vol 220, no. 4598, pp. 671-680, 1983.

[2] L. Ingber and B. Rosen, “Genetic algorithms and very fast simulated
reannealing: a comparison,” Mathematical and Computer Modelling,
vo1.16, no.11, pp.87-100, 1992.

[3] L. Ingber, “Simulated annealing: practice versus theory,” Mathematical
and Computer Modelling, vol.18, no.11, pp.29-57, 1993.

[4] L. Ingber, “Adaptive simulated annealing (ASA): lessons learned,” J.
Control and Cybernetics, vol. 25, no.1, pp.33-54, 1996.

[5] L. Ingber, “Very fast simulated re-annealing,” Mathl. Comput.
Modelling, vol.12, pp. 967 – 973, 1989.

[6] S. Y. Yuen and C. K. Chow, “A Non-revisiting Genetic Algorithm”, in
Proc. of IEEE CEC Conf., pp. 4583 – 4590, 2007.

[7] C. K. Chow, H. T. Tsui and T. Lee, “Surface registration using a
dynamic genetic algorithm," Pattern Recognition, vol. 37, no. 1, pp.
105-117, 2004.

[8] K. F. Fong, V. I. Hanby and T.T. Chow, “HVAC system optimization
for energy management by evolutionary programming,” Energy and
Buildings, vol. 38, pp. 220- 231, 2006.

[9] K. F. Fong, T. T. Chow and V.I. Hanby, “Development of optimal
design of solar water heating system by using evolutionary algorithm,”
Journal of Solar Energy Engineering, vol. 129, no. 4, pp. 499-501,
2007.

[10] K. F. Fong, “Optimized design and energy management of heating,
ventilating and air conditioning systems by evolutionary algorithm,”
PhD thesis, De Montfort University, UK, 2006.

[11] S. Chen, R. H. Istepanian and B. L. Luk, “Signal processing
applications using adaptive simulated annealing,” in Proceedings of the
1999 Congress on Evolutionary Computation, vol. 2, pp. 842 – 849,
1999.

TABLE I
THE DETIAILS OF THE FOURTEEN TEST FUNCTIONS

X D x0 y0

f1: Spherical model
2

1

D

i
i

x [-100, 100]D [30, 40] [0,…,0] 0

f2: Schwefel’s problem 2.22

1 1

DD

i i
i i

x x [-10, 10]D [30, 40] [0,…,0] 0

f3: Schwefel’s problem 1.2 2

1 1

D i

j
i j

x [-100, 100]D [30, 40] [0,…,0] 0

f4: Schwefel’s problem 2.21
[1,]

max i
i D

x [-100, 100]D [30, 40] [0,…,0] 0

f5: Rosenbrock’s function 1
2 2 2

1
1

100() (1)
D

i i i
i

x x x [-29, 31]D [30, 40] [0,…,0] 0

f6: Quaric function
4

1

([
D

i

ix random 0,1]) [-1.28, 1.25]D [30, 40] [0,…,0] 0

f7: Rastrigin’s function
2

1

10cos(2) 10
D

i i
i

x x [-5.12, 5.12]D [30, 40] [0,…,0] 0

f8: Griewank function
2

1 1

1
cos 1

4000

DD
i

i
i i

x
x

i
[-600, 600]D [30, 40] [0,…,0] 0

f9: Schwefel’s problem 2.26

1

sin
D

i i
i

x x [-500, 500]D [30, 40]
[420.9687,
420.9687]

-418.9829D

1890 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

f10: Ackley
2

1 1

1 1
20exp 0.2 exp cos 2 20

D D

i i

i i

x x e
D D

[-32, 32]D [30, 40] [0,…,0] 0

f11: Shekel’s Foxholes 1

25

2
61

,

1

1 1

500
()j

i i j

i

j x a

323232163232323232

3216032321601632
}{ , jia

[-98,34] 2 [-32,…,-32] 1

f12: Six-Hump Camel-Back

2 4 6 2

1 1 1 1 2 2

1
4 2.1 4 4

3

4

2x x x x x x x

[-4.91017,

5.0893]

[-5.7126,

4.2874]

2

[0.08983,-0.7126]

,

[-0.08983,0.7126]

-1.0316285

f13: Branin

2 2

2 1 1 12

5 5 1
(6) 10(1)cos 10

4 8
x x x x

[-8.142,

6.858]

[-12.275,

2.725]

2

[-3.142,12.275],

[3.142,2.275],

[9.425,2.425]

0.398

f14: Goldstein-Price g(x) h(x) where

2 2

1 2 1 1 2 1 2 2() 1 (1) (19 14 3 14 6 3)2g x x x x x x x xx

2 2

1 2 1 1 2 1 2 2() 30 (2 3) (18 32 12 48 36 27)h x x x x x x xx
2x

[-2,2] [-3,1] 2 [0,-1] 3

TABLE II

THE AVERAGED BEST FITNESS FOUND BY THE NRSA AND THE ASA

function D NrSA ASA function D NrSA ASA

30 0.000 (0.000) 111.435 (13.905) 30 120.451 (43.570) 333.066 (42.391)
f1

40 0.000 (0.000) 219.766 (19.723)
f7

40 219.993 (43.917) 474.940 (41.731)

30 0.000 (0.000) 3579 (271) 30 0.078 (0.112) 5.010 (0.566)
f2

40 0.000 (0.000) 2.63 105 (2.61 103)
f8

40 0.123 (0.159) 8.864 (0.869)

30 1.600 (2.332) 1282.4 (249.4) 30 -10154 (440.5) -5703 (637.2)
f3

40 2.120 (2.430) 3654.9 (838.3)
f9

40 -12382 (601.4) -7102 (896.9)

30 7.060 (1.182) 9.021 (1.024) 30 19.220 (2.010) 10.004 (6.178)
f4

40 14.880 (3.374) 13.353 (1.740)
f10

40 19.175 (0.107) 20.386 (1.175)

30 520.4 (907.2) 2082.5 (656.6) f11 2 4.283 (4.291) 158.022 (229.2)
f5

40 437.1 (772.7) 5656.9 (1891.8) f12 2 -0.900 (0.299) -0.852 (0.338)

30 10.531 (0.747) 25.733 (4.893) f13 2 1.289 (3.857) 0.398 (0.0)
f6

40 15.585 (1.291) 59.232 (8.552) f14 2 37.830 (86.677) 34.861 (86.601)

TABLE III

THE AVERAGED PROCESSING TIME (IN SEC.) OF THE NRSA AND THE ASA

function D NrSA ASA function D NrSA ASA

30 4.630 (0.688) 0.620 (0.485) 30 1.490 (0.500) 0.670 (0.470)
f1

40 7.170 (1.304) 0.820 (0.384)
f7

40 2.050 (0.328) 0.890 (0.313)

30 3.940 (0.785) 0.410 (0.492) 30 3.520 (0.793) 0.670 (0.470)
f2

40 5.880 (1.151) 0.540 (0.498)
f8

40 4.950 (1.169) 0.890 (0.313)

30 1.880 (0.407) 0.900 (0.300) 30 1.340 (0.474) 0.480 (0.500)
f3

40 2.100 (0.300) 1.320 (0.466)
f9

40 1.990 (0.436) 0.630 (0.483)

30 0.610 (0.488) 0.410 (0.492) 30 1.260 (0.439) 0.680 (0.466)
f4

40 0.730 (0.444) 0.540 (0.498)
f10

40 1.620 (0.485) 0.890 (0.313)

30 2.400 (0.529) 1.100 (0.300) f11 2 1.780 (0.976) 0.410 (0.492)
f5

40 2.990 (0.360) 1.460 (0.498) f12 2 3.040 (0.937) 0.080 (0.271)

30 1.270 (0.444) 0.660 (0.474) f13 2 3.260 (1.419) 0.070 (0.255)
f6

40 1.490 (0.500) 0.870 (0.336) f14 2 3.240 (1.209) 0.070 (0.255)

TABLE VI

THE AVERAGED ARCHIVE SIZE OF THE NRSA

function D mean stdev. function D mean stdev. function D mean stdev.

f1 30 6314 (182) f5 30 8433 (1779) f9 30 26222 (2627)

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 1891

40 9155 (320) 40 12624 (2391) 40 30550 (1793)
30 7914 (3529) 30 36864 (2667) 30 35992 (2066)

f2 40 11965 (6591)
f6 40 39444 (442)

f10 40 37009 (1274)
30 20617 (2370) 30 31025 (4665) f11 2 12481 (8568)

f3 40 36439 (3054)
f7 40 36617 (1676) f12 2 7407 (1954)

30 40001 (0) 30 11550 (3195) f13 2 5907 (2134)
f4 40 40001 (0)

f8 40 16306 (5315) f14 2 4611 (1358)

TABLE VII
THE STABILIES OF THE NRSA AND THE ASA

function mean stdev. function mean stdev. function mean stdev.

NrSA 0.000 (0.000) NrSA 70.11 (10.58) NrSA 6.28 (5.49)
f1 ASA 598.2 (117.82)

f6 ASA 19.23 (2.71)
f11 ASA 226.5 (60.37)

NrSA 0.000 (0.000) NrSA 265.3 (56.71) NrSA -0.71 (0.325)
f2 ASA 6.71 105 (3.4 103)

f7 ASA 783.1 (137.4)
f12 ASA -0.4.31 (0.247)

NrSA 3.27 (4.36) NrSA 0.875 (0.631) NrSA 1.98 (4.23)
f3 ASA 58734.2 (1364.3)

f8 ASA 15.64 (5.69)
f13 ASA 1.387 (0.617)

NrSA 16.84 (2.11) NrSA -12087 (632.4) NrSA 40.37 (89.72)
f4 ASA 26.87 (11.7)

f9 ASA -5310 (2891.6)
f14 ASA 45.87 (89.16)

NrSA 512.8 (623.7) NrSA 24.37 (0.257)
f5 ASA 6317.6 (998.7)

f10 ASA 48.31 (18.97)

1892 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

