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Applying Non-Revisiting Genetic Algorithm to Traveling Salesman
Problem

Shiu Yin Yuen and Chi Kin Chow

Abstract— In [1], we propose non-revisiting genetic algorithm
(NrGA) and apply it to a set of bench mark real valued test
functions. NrGA has the advantage that it is non-revisiting, i.e. a
visited point will not be visited again. This provides an
automatic mechanism for diversity maintenance which does not
suffer from premature convergence. Another advantage is that
it supports a parameter-less adaptive mutation mechanism. In
this paper, we show how NrGA can be adapted to a real world
combinatorial optimization problem — the famous traveling
salesman problem (TSP). Comparison with genetic algorithm
(GA) (with revisits and standard mutation) is made. It is shown
that NrGA gives superior performance compared to GA.
Moreover, it gives the same stable performance using different
types of mutation operators. Moreover, turning off GA’s
mutation operator but only use the NrGA inherent
parameter-less adaptive mutation gives the best performance.

I. INTRODUCTION

any stochastic optimization algorithms do not
memorize places that they have visited. Perhaps the

most famous exception is Tabu search [2], which
explicitly records recently visited solutions in a Tabu list.
These solutions are precluded from revisits unless an
aspiration criterion is satisfied. However, not all revisits are
recorded as solutions are discarded when the Tabu list is full.
Theoretically, by no-free-lunch (NFL) theorems [3], all
non-revisiting (stochastic or deterministic) algorithms have
the same average performance when the problem distribution
is uniform. A revisiting algorithm A searches the same
sequence of distinct points as a non-revisiting algorithm 4’
when revisited points in the sequence are taken out. This
implies that A’ is superior to 4 as the former has the same
performance but with fewer function evaluations than the
latter. Thus it is always beneficial to eliminate all the revisits.
Genetic algorithm (GA) is a famous stochastic
optimization algorithm. It mimics the evolutionary process of
a population of individuals over time. The hall mark of GA is
the provision of a population (multiple parallel search
capability), selection (survival of the fittest), crossover
(sexual reproduction) and mutation (random incremental
changes). GA is closely related to Evolutionary Strategies
(ES) and Evolutionary Programming (EP). In GA, crossover
is a key operator whilst mutation is usually a background
operator. Traditional GA uses binary coded strings called
chromosomes, but gray code, integer code and real code are
also a common coding. Though mutation is usually a
background operator, many authors suggest that an adaptive
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mutation schedule would enhance GA performance
significantly, see for example survey [4] and book [5]. In ES
and EP, self adaptive mutation is the key operator, and
traditional ES and EP are real coded [6]. However, the binary
coded or variant form of GA allows it to be applied to both
discrete/combinatorial or continuous/real problems. The
schools of GA, ES and EP are best viewed as different
dialects of the same fundamental evolutionary algorithm
(EA) [6].

It is confirmed by numerous experiments that diversity
maintenance through duplicate removal can enhance the
performance of GA significantly. Mauldin [7]'s uniqueness
operator only allows a new child to be inserted into the
population if its Hamming distance to all members of the
population is greater than a threshold. Davis [8] reports that a
binary coded GA which removes duplicates in the population
results in superior performance in a comparable number of
child evaluations. Recently, Friedrich et al. [9] show by
expected time complexity analysis that for an EA with a
population greater than 1, a uniform mutation and with no
crossover, the use of the above remove duplicate method
changes the time complexity of optimizing a plateau function
from exponential to polynomial. Crossover is omitted in the
above work because it is a difficult operator to analyze. This
result provides some theoretical support to the power of
duplicate removal. While the above researches compare each
child with each solution in the current population, for a
population with ¢ individuals, 0 comparisons need to be
made. To further enhance the efficiency, Ronald [10] reports
the use of hash table to reduce the number of comparisons to
O(1). However, these efforts only compare a child with the
current population. It does not guarantee no revisits - i.e. no
duplicates in the entire search. Povinelli and Feng [11] use a
small hash table to store all visited individuals. When the
table is full, it is discarded and a larger table is used. Kratica
[12] uses a small fixed size cache to store all visited
individuals. When the cache is full, an old entry is discarded
to make place for a new entry using the least-recently-used
strategy. He investigates experimentally the best cache size
for a plant location problem. These two results extend the use
of memory to beyond one generation. They report a
substantial improvement to GA by adding the hash table or
cache, but they do not store all the individuals and thus do not
guarantee no revisits.

From another angle, premature convergence is an
undesirable phenomenon often reported in the literature as to
cause poor performance of GA. It refers to the state when all
of the population consists of a single type of individual that is
sub-optimal. It is generally agreed by the GA community that
to prevent premature convergence, an appropriate diversity in
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the population has to be maintained. The reason is that once
the entire population converges to a single kind of individual,
crossover will be useless and GA reduces to parallel mutation
climbing. Numerous operators that modify the selection,
crossover or mutation to diversify the population have been
proposed. Two well known examples are fitness sharing [13]
and island model [14].

From yet another angle, it is known from studies [4, 5] that
an adaptive mutation rate is beneficial for the GA/ES/EP to
find the global optimum more efficiently. Three types of
parameter controls are distinguished in [4]: A time evolution
equation is used in deterministic control. Feedback from the
search process is used in adaptive control. The parameters
themselves are coded as part of the solutions and evolve in
self adaptive control. However, all inevitably involve
introducing more control parameters and the determination of
the suitable values requires parameter tuning either at the GA
level or meta-GA level. The tuning is itself a difficult problem
[5].

In [1], we proposed a novel search method known as
non-revisiting genetic algorithm (NrGA), which guarantees
no revisits during the GA execution. It has four key strengths:
(1) The NrGA takes advantage of the “free lunch” result that a
non-revisiting algorithm is superior to a revisiting algorithm.
(2) It automatically assures of diversity maintenance through
duplicate removal. (3) It has by nature no premature
convergence problem. (4) It naturally deduces an adaptive
mutation operator that is parameter-less.

The basic idea is summarized below. For full details of the
algorithm and pseudo code, please refer to [1].

MNew salution s

GA "| BSPTree

-
-

Adaptively
mutated solution
&

Fig. 1 Communication between GA and the BSP tree

NrGA may be conceptualized as a GA that interacts with a
binary space partitioning (BSP) tree archive (fig. 1). A GA
can be visualized as generating a sequence of solutions sq =
(s(1), s(2), ...). The function of the BSP tree is to serve as an
archive Ar that stores the visited solutions. Ifthe solution s(z)
has been visited before, it returns an adaptively mutated
solution s that is unvisited.

BSP has been used in computer graphics and
computational geometry as a more general and efficient
method than Oct-tree and K-d tree [15],[21]. Here it is used as
an efficient data structure to enable fast query of whether a
solution has been visited. The results of GA are used to
gradually build up a random BSP tree which binary partitions
the search space successively.

Initially, the tree has only the root node, which represents
the entire search space. Each new solution s generated by GA
will add one node to the tree that stores the solution 5. (If s is
found to be a revisit, an adaptive mutated new solution s’ will
be stored.) The position where the node will be added
depends on the existing structure of the tree. For each new
solution s, a depth first search is initiated on the binary tree.

2218

To illustrate the binary partitioning concept, suppose both the
left and right nodes exist. Let the left node be the visited
solution s(L) and the right node be the visited solution s(R).
Define the comparing dimension cd as the dimension 7 in s(L)
and s(R) that has the largest difference, i.e.

(M

cd =arg max‘s(L),. —s(R),

where s(L), is the value at the i"™ dimension of s(L). In this
paper, the Euclidean metric is used. Other metric, such as the
Hamming metric, may also be used.

s will go to the left branch if it is closer or equidistant to
s(L) at the comparing dimension, i.e.

|s, —s(L), 2

<ls; = s(R),

and vice versa. In this way, s(L) and s(R) binary partitions the
search space into two “subspaces” (more precisely,
hyper-rectangular boxes).

In general, each node of the binary tree has at most two
child nodes. If the left, right, or both nodes are absent, a
branching occurs to create one such node that stores the
solution s.

Along the search, revisit is checked. s is a revisit if a node
s() is found such that |s — s()| = 0. This check is called a revisit
check. Assuming the tree is balanced, only O(logN)
comparisons is needed to determine whether a revisit has
occurred, where N is the number of solutions generated by
GA so far. Conceptually, it partitions the search space based
on the probability distribution of solutions generated by GA.

It is easy to check the size of the subspace R under each
node. This allows for either branching or pruning. These two
mechanisms provide for the parameter-less adaptive
mutation.

The mechanism is as follows: Nodes are marked either
open or closed. Initially, all the nodes are open. When a
revisit occurs, an open node s() is encountered that is the same
as the solution s. Two actions may occur: 1) (Branching): If
the subspace R under the node has not all been visited, a
branching occurs to create an unvisited solution s’e R
randomly chosen from R. 2) (Pruning): If R has all been
revisited, the node is marked closed. This initiates a depth
first order backtracking from the node to find the nearest
neighbor region of R: R’. The unvisited solution s’e R’ is
randomly chosen from R’.(Note that this operation is slightly
different from that presented in [1], which finds the nearest
neighbor in R’). If more than one nearest neighbor exists, one
is chosen randomly. Along the way, if it is found that whole
subspaces have been visited, the sub-tree is pruned and the
nodes of the sub-tree is marked closed.

The adaptive mutation operator will adjust its mutation
step size automatically according to its position in the tree.
Interestingly, the more visited is a branch, the smaller will be
the step size and vice versa. This is reasonable because the
more visited is the branch, the more the GA —itself a complex
heuristic stochastic process - reasons as promising to exploit
the underlying subspace, hence the smaller mutation and vice
versa. Moreover, the operator will automatically increase its
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mutation rate if it is too small, and there is a physical meaning
to the adjective "small" in the GA - the mutation must be big
enough to find at least the nearest unvisited neighbor. These
two mechanisms naturally constitute a parameter-less
adaptive mutation operator.

Note that the algorithm automatically guarantees that each
individual in a current population is different from each other
without the need to introduce any special operator. Thus it
does not suffer from the premature convergence problem.

In [1], we report the experimental comparison with a real
coded GA (with revisit and standard mutation) on 6 popular
bench mark test functions. NrGA outperforms GA
significantly in both a) the quality of the solutions found
using the same number of fitness evaluations; and b) the
probability of success of achieving a target fitness, allowing a
larger maximum number of fitness evaluations.

So far NrGA has been tested in simulated bench mark
functions only. It would be interesting to apply NrGA to a
real world problem to understand its practical merits and
performance. In this paper, we apply NrGA to a real world
combinatorial optimization problem — the traveling salesman
problem (TSP). The paper is organized as follows. Section 2
introduces the design of NrGA tailored made for TSP.
Section 3 reports the experimental results. Section 4 gives the
conclusion.

II. NrGA DESIGN FOR TSP

TSP is a famous NP hard problem. GA has been applied to
TSP. The best performing GA to date for TSP uses GA
hybridized with a local search [16]. In this paper, we use GA
or NrGA alone without the local search as we wish to
investigate the relative performance of GA and NrGA. In this
section, we propose a method to apply NrGA to TSP.

Definition: A valid tour of an n-city TSP instance
A tour T = [,,..., t,] of an n-city TSP instance is said to be
avalid tour if 1) £; € [1, n] and 2) £; # ¢; for all i #. €

i denotes the i™ stop in the tour and ¢, is the city number of

the i™ city visited. The problem is to find a valid tour T that
has the minimum distance. The search space is of size n!. A
full search quickly becomes impossible when n grows large.

For GA and NrGA, a chromosome is represented as a valid
tour T, i.e. integer coding is used. The GAs designed for TSP
(see survey in [16] for example) make sure that the initial
population will only generate valid tours. Moreover,
crossover and mutation operators are specifically designed by
researchers [6, 18-20] so that a valid tour always returns a
valid tour.

When applying NrGA to real valued function optimization
[1], the size of the subspace under a node is R =I1[L;, U;] C
R". L, and U, are the lower and upper bounds of the values
at the /" dimension. A closed node indicates that the subtree
under it has been visited. For a visit to an open node, iff
#(R)=1, then the node constitutes a single point in the

search space. It is marked closed and a backtracking is
initiated.
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In the context of TSP, L, and U, are the lower and upper

bounds of city number at the i stop. By nature of the binary
space partitioning, R will contain at least one valid tour.
However, in TSP, even if #(R)>1, it may still mean that

there is only a single valid tour. Fortunately, we only need to
devise a scheme to make the binary decision of whether R
represents either (a) a unique valid tour or (b) more than one
valid tour. The former will initiate the backtracking and/or
pruning whereas the latter will initiate branching to create a
new node.

A simple four uniqueness verification algorithm is
introduced for the above function:

Algorithm Al (tour uniqueness verification):

Input: 1) R=TI[L, U] cR"
1. Define an n X n matrix M = {m;;} of binary elements where
1 ifjelL,U,]
] B

otherwise
2. fori=1ton
if Zmu =1
Jj=1

find & for which m; ;=1
call (3,k) a 1-1 mapping
assign m;; =0 for all j # k
end if
next i
3. repeat step 2 until in the current cycle, no new 1-1
mapping is discovered
4. if all stop-city are 1-1 map, output 0, otherwise output /.

Output: 1) 0 —a unique valid tour; 2) / —more than one valid
tour

The idea is to check whether a stop i can be found that
must be mapped to a city k. If so, city k£ cannot map to stops
other than i. The check is then repeated. If there is a unique
tour, an assignment should eventually be found such that all
stops are 1-1 mapped to cities.

Lemma: If only a unique valid tour exists, algorithm A1l will
always output 0 - a unique valid tour.

Proof:

Given a unique valid tour T, rename city number such that
city number is identical to stop number. Suppose M; is the
output of algorithm Al, remove all rows and columns that
have 1-1 mappings to produce submatrix M,. Since binary
space partitioning will always maintain one and only one
block of 1” in each row, m;.;) Or m;g+y). Since my;# my; for all
i#j, otherwise exchange i and j will give another valid tour,
the ‘17 entry must be m;;+;. But this cannot be satisfied for
i=n. Therefore given a unique valid tour T, it cannot happen
that in its reduced form, M, contains more than one ‘1’ in
each row, no matter how small is M,. The lemma is proved
by contradiction. []

Corollary: Given more than one valid tour, some i and j, i#,
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must exist such that m;=m;=m;=m;=1. We can exchange i
and;.

If a solution x is a revisit, it has to mutate to a non-revisited
position. According to [1], the mutated x: y, is randomly
selected from the range R where x belongs to. Unlike the real
function optimization, some points in the search space of TSP
are invalid tours. Thus, a TSP specific adaptive mutation is
introduced.

Algorithm A2 (adaptive mutation):

Input: 1) R=TI[L;, U] c R"and 2) arevisit x € R

1. Compute the reduced M of R by steps 1 - 3 of algorithm
Al.

2. Randomly select a pair of stops (a and b) subject to a # b
and m,, =m,. =1

3. Generate a valid tour y = [y, v2, ..., y,] where

x, ifk=a

v, =3x, ifk=b )

x, otherwise

Output: the mutated x =y

The corollary above assures that one can always find feasible
mutation.
Example:

The TSP instance has three cities. The search space X is
[1,3] which has 3! = 6 possibilities. Suppose GA randomly
generates sq = (S(1), S(2), S3), S(4)) = (s1 =[1,2,3], s, =
[3,1,2], s3=[3,2,1], s4 =[3,2,1]). Note that s, is a revisit.

Initially, the archive is empty. It consists only of the root
node (fig. 2a). s; is inserted as an open child node of the root
(fig. 2b). s, is next generated by GA. Since there is only one
node, the search visits node s;. A revisit check of s, with s, is
conducted. Since [s; — 81| > 0, s, is not a revisit. Hence it is
inserted as another open child of the root (fig. 2c¢). The
comparing dimension cd is / because |3-1| > |1-2| =|2-3|. As a
result, this insertion is equivalent to partitioning X into two
sub-spaces: X; = [1,2]x[1,3]* and X; = [3]x[1,3]* where s, €
X;and s; € X,. A tour uniqueness verification is done for X;

110
and X,: For X, the corresponding M;=|1 1 1| has more
111

0
than one valid tour. For X>: M, = | 1

0 1
1 1. Clearly, the first
111

0
stop can only be city 3. Hence M, is reduced to | 1
1
No more reduction can be made. Hence M, also has more
than one valid tour. s; is next generated by GA. Since |s3; -

52.1| < [s3.1- 51,1, it goes down the right branch. A revisit check
of s; with s, is conducted. Since [s3 — $,| > 0, s3 is not a revisit

0 1
1 0].
1 0
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and it is inserted as an open node under s, (fig. 2d). After this
insertion, X, is further divided into two non-overlapping
sub-spaces: [3,3] x [1,1] X [2,2] and [3,3] x [2,2] x [1,1].
According to the tour uniqueness verification, each of these
sub-spaces has one valid tour, in which all possible valid tours
in X, are visited. Thus, s; is pruned and s, is marked as a
closed node (gray -filled circle in fig. 2e). s4 is next generated
by GA. By similar reasoning, it would select the right branch
to s,. Since s; is closed, s4 is a revisit and an adaptive mutation
should be performed. The mutation begins by backtracking.
According to Case 2 of step 4 of the algorithm A/ in [1], the
mutated s4: s4° should be within X; and s4’ is generated by the
algorithm 42 for R = X; and x = s;. In the adaptive mutation,
110

the reduced M of X;is |1 1 1. The stop pair is randomly
111

chosen as 1 and 2. Thus, s,’ is computed as [2,1,3] and added
under s, (fig. 2f).

O root root

(a) (b)
root raot
5 S Sy S
Sa
(¢ (d)
root root
Sy So Sy 3o
Sz
(e) ®

Fig. 2 An example of the BSP tree operations.

III. EXPERIMENTAL RESULTS

A. Experiment Design

In this section, five symmetric TSP instances containing
24, 29, 48, 70 and 130 cities are employed to illustrate the
performance of the NrGA on solving TSPs. All TSP instances
in this section are taken from the TSPLIB [17]:

TSP instance 1: Groetschel 24-city problem (7;: Gr24)

TSP instance 2: Bavaria 29-city problem in geographical
distances (75: Bayg29)

TSP instance 3: Groetschel 48-city problem (75 Gr48)

TSP instance 4: Smith and Thompson 70-city problem (7:
ST70)

TSP instance 5: Churritz 130-city problem (75 Ch130)
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Table I lists the actual optimal distances D, of these five
TSP instances {7;}.

TABLE 1
OPTIMAL DISTANCES OF THE TSP INSTANCES
T; Gr24 Bayg29 Gr48 ST70 Ch130
D, 1272 1610 5046 675 6110

The accuracy of GA is represented by the corresponding
optimal fitness found in a fixed number of generations. The
accuracy of NrGA is compared with GA. The performance of
NrGA and GA are concluded by 100 independent runs. The
experiments are repeated with different combinations of
crossover and mutation operators commonly used in GA for
TSP [6, 18-20]: The Order Based Crossover (XO) operator is
employed. Since the effect of mutation is to be studied, four
TSP specific mutation operators are employed. They are 1)
Exchanging Neighbor Mutation (EN); 2) Exchange Mutation
(EX); 3) Simple Inversion Mutation (SI); 4) Displacement
Mutation (DP).

Note that the above mutation operators are applied to GA.
The NrGA constitutes its separate parameter-less adaptive
mutation operator (AM). Thus, for each TSP instance, NrGA
is performed five times:

1) NrGA with EN and AM (EN + AM)

2) NrGA with EX and AM (EX+AM)

3) NrGA with STand AM  (SI+AM)

4) NrGA with DP and AM  (DP + AM)

5) NrGA with AM only (AM)

On the other hand, GA is repeated four times for each TSP
instance:

1) GA with EN (EN)

2) GA with EX (EX)

3) GA with SI (SI)

4) GA with DP (DP)

The population size is chosen to be 200. The crossover
probability is 1.0. (200+200) selection is used. Since the last
two TSP instances have more cities, the NrGA is run for 300
generations for the first three TSP instances and 1000
generations for the last two TSP instances. Since NrGA
involves the management of the BSP tree, it invokes an
overhead. It would be unfair to compare GA and NrGA over a
fixed number of generations. For a fair comparison, the
amount of time needed to run NrGA is recorded. GA is
allowed to run the same amount of time.

B. Qualitative Characteristics

Table II lists the best fitness found by NrGA and GA. The
bolded value indicates that the corresponding mutation
operator outperforms the others in a particular TSP instances.
The odd rows represent the results of NrGA and the even
rows represent the results of GA. Seen from the table, AM is
superior to other eight mutation operators in the five TSP
instances. Meanwhile, for each mutation operator, the result
of NrGA is better than that of GA. For example, considering
the EN operator at Gr24, the optimal fitness found by NrGA
(EN+AM) is 1325.74 whilst the optimal fitness found by GA
(EN) is 1948.22. For the SI operator at ST70, the optimal
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fitness found by NrGA (SI+AM) is 1025.24 whilst the
optimal fitness found by GA (SI) is 1882.04. In addition, it is
observed that the results at the odd rows (found by NrGA) are
consistent. For example, the range of optimal fitness of Gr24
is from 1289.77 to 1337.02. On the other hand, the range of
optimal fitness of Gr24 found by GA is from 1378.06 to
1948.22. Figures 6 - 10 (in coloured curves) show the
convergence curves of NrGA and GA on solving the Gr24,
Bayg29, Gr48, ST70 and Chi30 TSP instances respectively.
NrGA outperforms GA for all discussed operators. The most
significant accuracy improvement of NrGA over GA can be
observed from the cases of AM. Furthermore, the results infer
that choice of the combination of genetic operators affects to
a large extent the performance of the GA. The differences of
the best distances found with different operator combination
can be very large, i.e. 200 for Bayg29 and 6000 for Gr48. On
the other hand, the influence of the operator combination is
minor in NrGA.

Figure 11(a) shows the convergence curves of GA with
(EN, EX, SI, DP) and NrGA with AM against iterations for
Gr24. Seen from the figure, all curves except AM are
premature converging after the 150 iteration while the
improvement by AM lasts for 300 iterations. Note that the
optimal fitness is 1272 and the AM curve is converging to it.

We define the diversity v of an iteration as the averaged
standard deviation of the currently generated offspring:

1
V= BZZI O, (4)
where
1o 2 1 <
0-12 = ;z,el(xi,i _'ut) and M= ;z,:l Xji (5)

and n is the number of offspring. Figure 11(b) shows the
diversities of GA with (EN, EX, SI, DP) and NrGA with AM
for Gr24 against iterations. Seen from the figure, AM has the
highest diversities. In particular, the diversity of EN is worse.
It drops to 0 by the 50" iteration. This shows that the
diversity maintenance is best in NrGA. It constantly explores
the search space; so a continuous improvement is expected.

TABLE II
THE BEST FITNESS VALUES FOUND BY NRGA AND GA

Gr24 Bayg29 Gr48 ST70 Chi30
EN+AM 1325.74 1718.45 6395.96 977.59 12581.37
EN 1948.22 2688.38 12678.19  2313.10 32525.70
EX+AM 1325.47 1712.08 6577.50 986.92 13280.53
EX 1378.06 1815.29 7256.56 1123.09 14802.98
SI+AM 1337.02 1746.37 6922.64 1025.24 13345.62
SI 1638.88 2253.78 10202.51  1882.04 25696.49
DP+AM 1289.77 1640.98 5529.04 771.87 8765.99
DP 1415.81 1822.35 6124.03 873.88 8979.69
AM 1276.87 1624.57 5086.72 710.12 8064.71

C. Archive Size

Table III lists the statistics of the archive sizes of NrGA
with the five mutation operators. The upper bound of the
archive size in this test is S, = 301 X 200 = 60,200 for the
first three TSP instances and 200,200 for the last two
instances. In our experiment, the S, of the five TSP
instances are 59,545, 59,925, 60,081, 200,008 and 200,093.

By comparing using a PC that is commonly configured with
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256MB memory, the size of the BSP tree consisting of
200,093 nodes are just 1.87% of the memory.

TABLE III

THE STATISTICS OF THE ARCHIVE SIZES
Min. Max. Mean Stdev.
EN + AM 41897 55315 49033 2949
EX + AM 55293 59806 58393 906
Gr24 SI+ AM 50555 59156 56602 1720
DP + AM 54795 59545 58191 883
AM 42476 55616 49082 3052
EN + AM 49180 58477 55092 2321
EX + AM 57705 59908 59492 370
Bayg29  SI+ AM 53278 59606 58671 830
DP + AM 57925 59925 59365 385
AM 47259 58267 54347 2592
EN + AM 59044 59960 59784 136
EX + AM 59982 60081 60040 19
Gr48 SI+ AM 59685 60027 59967 63
DP + AM 59977 60076 60040 21
AM 58855 59950 59801 138
EN + AM 189751 199606 198142 1910
EX + AM 199410 200008 199875 107
ST70 SI+ AM 198694 199879 199590 231
DP + AM 197607 199964 199653 337
AM 189113 199609 198204 1833
EN + AM 199984 200031 200010 11
EX + AM 200067 200091 200081 5
Chi30 SI+ AM 200047 200077 200062 7
DP + AM 200068 200093 200083 5
AM 199979 200022 200002 13

IV. CONCLUSIONS

The Non-revisiting genetic algorithm (NrGA) has its
root in a corollary of the no free lunch theorems: There is a
strictly positive gain of converting any revisiting algorithm to
a non-revisiting one. In this paper, we apply the idea to a NP
hard problem — the traveling salesman problem (TSP), as it
would be interesting to gauge the performance gain of a
non-revisiting stratagem on a NP class problem, especially
since many NP hard problems of disparate nature is known to
be related to each other.

A novel way to adapt NrGA to the TSP setting is reported
and a comparison is performed between NrGA and GA for 5
popular bench marks in the TSP library. Since NrGA has
overhead in accessing and modifying the binary space
partitioning (BSP) archive, the raw computation time is used
for a fair comparison.

It is found that 1) firstly, there is a significant improvement
in the quality of the tour when NrGA is used; 2) Secondly, no
matter what TSP mutation operator is used in GA, after
adding the Nr feature, the performance improves and the
nearly a constant gain is observed. 3) Thirdly, if one disuses
the TSP mutation operator of GA and merely use the NrGA’s
unique parameter-less adaptive mutation operator, the
performance improvement is the largest. This suggests that
NrGA adaptive mutation operator is itself a novel good and
stable mutation operator for TSP. 4) Finally, for TSP
problems, experimental results corroborate that NrGA suffer
no premature convergence problem whereas GA suffers from
it.

Though some pruning occurs, it is found that the BSP
archive still requires a significant amount of memory usage
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for TSP problems. Thus the limitation of the NrGA is that it is
restricted by the memory available — which is the number of
fitness evaluations that the GA is allowed. For normal GA
setting, this is usually not a problem.

Since our goal is to compare GA with revisits and GA
without revisits, we have not incorporated local search in the
GA. The current wisdom in TSP research is that GA + local
improvement heuristic gives the best performance. It would
be interesting to use the memetic (NrGA + local improvement
heuristic) to solve large bench mark problems in the future.
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Figure 6. Averaged convergence curves of Gr24 under different mutation operators: (a) NrGA and (b) standard GA.
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