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Phase-Shift Interleaving Control of Variable-Phase
Switched-Capacitor Converters

Sitthisak Kiratipongvoot, Siew-Chong Tan, Senior Member, IEEE, and Adrian Ioinovici, Fellow, IEEE

Abstract—This paper proposes a phase-shift interleaving con-
trol method for variable-phase switched-capacitor (SC) converters
that can perform voltage conversions with little electromagnetic
interference over a wide range of operating condition. This is
achieved by having multiple units of SC converter connected in
parallel and an N -state hysteresis unit selection control scheme
which works along the interleaving control to vary the number
of converters in operation. By having the capacitors of inactive
units connected to the output and the converters operating with
output interleaving operation, the output capacitor that is typi-
cally required in SC converters for maintaining a small voltage
ripple is made redundant in this configuration. A three-unit SC
converter of the proposed configuration is described in this pa-
per. Experimental results show that the proposed solution works
satisfactorily with good regulation, input and output interleaving
operations, and dynamic response for a wide operating range.

Index Terms—Interleaving, parallel, phase-shift control, power
converters, switched-capacitor (SC) converters.

I. INTRODUCTION

A TYPICAL switched-capacitor (SC) converter is a stan-
dalone converter made up of one or more circuit phases

of capacitors and switches that are controlled by pulsewidth-
modulation (PWM) control [1]–[23]. An SC converter with
PWM control, however, inherits the problem of having a large
pulsating input current, which leads to electromagnetic interfer-
ence (EMI) problems [21].

A possible method of alleviating the EMI issue in SC con-
verters is to reconfigure multiple units of SC converters as a
parallel converter (instead of a single standalone SC converter)
and to operate the units in interleaving operations applied at
both the input and output terminals [23]–[27]. This method
has the additional advantage of increasing the power rating of
the converter. However, they work perfectly in a steady-state
operation but fail to give the expected results from interleaving
when a variation appears in the input voltage or load.
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An adaptive solution combining the on-time control and the
switching frequency control, which ensures the output regula-
tion and the proper input/output interleaving of the SC converter
under a varying load and input voltage, is proposed in [28].
However, the method is only valid for a limited range of load
and input voltage conditions. For [28], the load range of the
converter is limited to 75%–100% of the full-load power.

In this paper, we propose a phase-shift interleaving control
method that incorporates an N -state hysteresis unit selection
scheme which varies the number of active SC converter units
in operation based on the level of the operating load and, at the
same time, adopts a variable frequency control to maintain the
input and output interleaving operations and voltage regulation.
The proposed method adopts a fundamentally different
control architecture from that of [28]. Additionally, it allows
the SC converter to be optimally configured such that all the
capacitors are always in a charging or discharging process
and never in a holding or idling state. This ensures the max-
imum transfer of energy from the input source to the load
by the SC converter using the least required capacitance.
Hence, the usage of capacitors in the SC converter will be
optimized with this control approach, thereby optimizing
the power density of the SC converter which is previously
not possible with the control method proposed in [28].

II. PROPOSED PHASE-SHIFT INTERLEAVING CONTROL

A. Topology

The variable-phase SC converter is made up of N number
of SC converter units (depending upon the load) connected in
parallel. As an illustration, a three-unit configuration is chosen
(see Fig. 1). Each unit comprises two phases of SC circuit as
discussed in [28]. The converter is designed for three ranges of
load, which can be classified as light, medium, and heavy load.

B. Operating States and Timing Diagrams

1) Light Load: Unit 1 is active and is operated to perform
both the charging and discharging operations. The remaining
two units are inactive and are switched for discharging oper-
ation with their flying capacitors connected to the output load
throughout the light-load condition. Fig. 2(a) shows the timing
diagram. There are two states. In State 1 (0 < t ≤ TS/2), C11

is operated in charging phase, and the remaining capacitors C12,
C21, C22, C31, and C32 are operated in discharging phase [see
Fig. 2(c)]. Here, rch and req are equivalent resistances of the
circuit. Stray inductance is neglected since they are relatively

0278-0046/$31.00 © 2012 IEEE
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Fig. 1. Three-unit configuration of the proposed SC converter.

Fig. 2. Operation at light-load condition. (a) Timing diagram. (b) Current and
voltage waveforms. (c) State 1. (d) State 2.

small. In State 2 (TS/2 < t ≤ TS), C12 is operated in charging
phase, and all other capacitors are operated in discharging phase
[see Fig. 2(d)]. The unit current, overall converter input current,
and output voltage are shown in Fig. 2(b), of which iin is the
total input current and iinx, where x = 1, 2, and 3, is the input

Fig. 3. Operation at medium-load condition. (a) Timing diagram. (b) Current
and voltage waveforms. (c) State 1. (d) State 2. (e) State 3. (f) State 4.

current of each SC unit. Here, the frequency of the input current
and the output voltage is two times the switching frequency
of each converter unit. Without output interleaving, the output
voltage ripple is minimized by the flying capacitors of the
inactive units.

2) Medium Load: There are two active units operated with
interleaving charging and discharging operations with a time
delay of TS/4. The other unit is inactive and is operated in
the discharging operation. Fig. 3(a) shows the timing diagram,
and Fig. 3(b) shows the unit current, input current, and output
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Fig. 4. Operation at heavy-load condition. (a) Timing diagram. (b) Current
and voltage waveforms.

voltage waveforms. There are four operating states. In State 1
(0 < t ≤ TS/4), C11 and C22 are in the charging phase, and
the remaining flying capacitors are in the discharging phase
[see Fig. 3(c)]. In State 2 (TS/4 < t ≤ 2TS/4), C11 and C21

are in the charging phase, and all other flying capacitors are in
the discharging phase. In State 3 (2TS/4 < t ≤ 3TS/4), only
C12 and C21 are in the charging phase [see Fig. 3(e)]. In State 4
(3TS/4 < t ≤ TS), only C12 and C22 are in the charging phase.
The input current is the summation of the currents of Units 1
and 2. The frequency of the input current and output voltage is
four times the switching frequency of each SC converter unit.
Here, the output ripple is minimized by the output interleaving
operation of the two active units and also the flying capacitors
of the remaining inactive unit.

3) Heavy Load: All three converter units are actively oper-
ated with interleaved charging and discharging operations with
a time delay TS/6. The timing diagram is shown in Fig. 4(a).
Fig. 4(b) shows the unit current, input current, and output
voltage waveforms. The frequency of the input current and
output voltage is six times the switching frequency of each SC
converter unit. Here, the output ripple is minimized solely by
the output interleaving operation.

C. Control Methodology

1) Hysteresis Unit Selection Scheme: The state selection
diagram is shown in Fig. 5(a). There are three modes and
four transition points. The unit selection scheme is shown in
Fig. 5(b). When the output current of the converter operating
with one active unit is increased (A1U(increase)) to iac,12, the
operating mode switches to two active units. When the out-
put current of the converter operating with two active units
is increased (A2U(increase)) to iac,23, the operating mode is
changed to three active units. Now, when the output current
of the converter operating with three active units is reduced
(A3U(reduced)) to iac,32, the operating mode is changed back
to two active units and so on.

2) Feedback Control: Fig. 6 shows an overview of the pro-
posed control. There are two feedback signals, namely, the
output voltage and the output current. The proportional–integral

Fig. 5. Unit selection scheme of the proposed control. (a) State diagram.
(b) Unit selection scheme.

Fig. 6. Closed-loop control block diagram.

compensator amplifies the difference between the output and
the reference voltages, which is fed into the voltage-controlled
oscillator to generate a frequency fVCO. This is decoded into
four signals by the oscillator decoder. The charging signals have
a switching frequency fS = fVCO/12, a duty ratio Don = 0.5,
and an interleaving time delay TD = 1/(2nfS) for the case of
having more than one active unit. The sensed output current
signal is required for unit selection. It is fed into the low-pass
filter with gain compensation and is compared with the current
reference of the voltage comparator. These output signals are
fed into the gate drives. Discharging signals are inverse of the
charging signals.

III. THEORETICAL PROOFS

As discharging time constant τdis is much larger than the
discharging time duration Tdis = Ton/n, the relationship of
each capacitor with its ripple voltage can be approximated as

vC(max) − vC(min) =
TonVO

nrLC
(1)

where C = C11 = C12 = C21 = . . . = C32; vC(max) and
vC(min) are the maximum and minimum voltages of C,
respectively; n is the number of active units; Ton is the
charging time of one active unit of the converter; VO is the
average output voltage; and rL is the load.

Fig. 7(a) shows the discharging circuit of one active-
unit mode, and Fig. 7(b) shows its equivalent circuit. The
minimum voltage of the equivalent discharging capacitor
vCdis(min) is simply the minimum voltage of capacitor vC(min).
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Fig. 7. (a) Discharging circuit of one active-unit mode and (b) its equivalent
circuit.

The maximum voltage of Cdis in terms of vC(max) and
vC(min) after the energy redistribution process between parallel
capacitors is

vCdis(max) =
vC(max)

(2N − n)
+

(2N − n− 1)vC(min)

(2N − n)
. (2)

Equation (2) can be derived by considering (1) as

vCdis(max) =
TonVO

(2N − n)nrLC
+ vC(min). (3)

Additionally, the average voltage of Cdis is

vCdis(max) + vCdis(min)

2
=

reqVO

(2N − n)rL
+

(rsen + rL)VO

rL
(4)

where rsen is the output current sensing resistance. Substituting
(3) into (4), we have

vC(min)=
reqVO

(2N−n)rL
+
(rsen+rL)VO

rL
− TonVO

2(2N−n)nrLC
.

(5)

Finally, the dc conversion ratio of the variable-phase SC con-
verter can be derived as

VO

vi
=

2nrLC

α1 + α2
(6)

where α1 = Ton[coth(Ton/2rchC) + 1− (1/(2N − n))] and
α2 = [(2nrC/(2N − n))] + 2(rsen + rL)C. The derivation is
given in Appendix A.

A. Output Ripple

As given in Appendix B, the output ripple can be derived
from the discharging characteristic as

VO(rip) =
TonVO

[req + (2N − n)(rsen + rL)]nC
. (7)

B. Boundary Condition of the Proposed Control Solution

The range of the input voltage that can sustain the interleav-
ing condition can be found by solving (6) for 0 ≤ Ton ≤ 4τch
(refer to Appendix C) as⎧⎨
⎩

vi ≥ [req+(2N−n)(rsen+rL)]VO

(2N−n)rL
+ rchVO

nrL

vi ≤ [req+(2N−n)(rsen+rL)−( 2
n )rch]VO

(2N−n)rL
+ 4.0746rchVO

nrL
.

(8)

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Prototype

The schematic and a photograph of the experimental proto-
type of the proposed control and the variable-phase SC con-
verter are shown in Figs. 8 and 9, respectively. Table I gives
the specifications of the converter. The values of the transition
points iact21, iact12, iact32, and iact23 are found by first obtain-
ing the output current IO range of the SC converter for different
n values under open-loop control. With these ranges found,
their overlapped regions between different n values can be
determined. The transition points are arbitrarily chosen within
the overlapped regions such that, for the specified operating
mode, the voltage ripple of the converter is always within its
specified value.

B. Closed-Loop Performance

Fig. 10(a)–(c) shows the total input current of the SC con-
verter and the current of each unit when it operates with an
output current at 4 A (light-load mode with one active unit), at
7.3 A (medium-load mode with two active units), and at 10.1 A
(heavy-load mode with three active units), respectively. The
switching frequency of each unit is 75.3 kHz (Ton = 6.64 μs).

Fig. 11(a)–(c) shows the total input current, phase cur-
rent, capacitor voltage, and output voltage ripple when Ton is
3.98 μs. This demonstrates that, regardless of the turn-on time
[as compared to Fig. 10(a)–(c)], perfect interleaving at different
loads and active modes is always achieved. The maximum
output voltage ripple is within 10% of nominal voltage for the
entire load range, which is within the predesigned specification.
The ripple can be reduced by a larger flying capacitance value.

Fig. 12(a) shows the plots of the measured output voltage
versus the output current of this prototype and that presented in
[28]. With the proposed control, the converter has a much wider
load range and a better load regulation of around 1% over the
entire range. From Fig. 12(b), the power efficiency, however,
is lower with this control as compared to that in [28] since the
latter utilizes all four units in parallel in the power conversion
which leads to a lower equivalent resistance and hence less
losses.

C. Dynamic Performance

Fig. 13(a)–(c) shows the transient response of the prototype.
For step-load change between 2.5 and 6.0 A [Fig. 13(a)],
the settling time is around 500 μs for both step-up and step-
down conditions. For step-load change between 2.5 and 10.0 A
[Fig. 13(b)], the settling time is around 500 μs (step down) and
4 ms (step up). For change between 6.0 and 10.0 A [Fig. 13(c)],
the settling time is around 1 (step down) and 4 ms (step up).
Notice that, during the load disturbance, the SC converter still
operates in perfect interleaving condition.

V. FURTHER DISCUSSION: GENERIC APPLICATION

The discussion by far is based on a unity transformation
gain dual-phase SC converter in which the voltage conversion
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Fig. 8. Schematic of the experimental prototype. (a) Multiphase SC converter with driving circuit. (b) Control circuit.

Fig. 9. Photograph of the experimental prototype.

gain is ideally VO/vi = G. Here, the proposed idea is ex-
tended to the more “practical” types of an N -SC converter that
has an M step-down (i.e., M < 1) or step-up (i.e., M > 1)
conversion gain. The overall voltage conversion gain of these
SC converters is VO/vi = G ·M . Readers are referred to [28]
for the step-up/step-down SC converter topology, interleaving
configuration, and parameter conversion table. Fig. 14(a) and

TABLE I
SPECIFICATIONS OF THE EXPERIMENTAL PROTOTYPE

(b) shows the equivalent circuit of a general SC converter after
the application of the proposed control.

Here, the general steady-state charging equation is

vCch(max) − vCch(min) = viε− vCch(min)ε (9)
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Fig. 10. Waveforms of the input current and per-unit currents of the prototype. (a) At io = 4 A (one active unit). (b) At io = 7.3 A (two active units).
(c) At io = 10.1 A (three active units).

Fig. 11. Waveforms of the total input current, phase current, capacitor voltage, and output voltage of the prototype. (a) At io = 4.60 A (one active unit).
(b) At io = 8.27 A (two active units). (c) At io = 11.38 A (three active units).

Fig. 12. Plots of (a) the load regulation and (b) the power efficiency of this prototype and that presented in [28]. (a) Load regulation. (b) Power efficiency.

Fig. 13. Waveforms of total input current, output current, and output voltage with step-load change. (a) Load change between 2.5 and 6.0 A. (b) Load change
between 2.5 and 10.0 A. (c) Load change between 6.0 and 10.0 A.
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Fig. 14. (a) Equivalent charging circuit and (b) equivalent discharging circuit
of a general SC converter with the proposed control.

where ε = 1− e[−Ton/rchCch]. The ripple voltage of Cch is

vCch(max) − vCch(min) =
1

M

[
TonVO

nrLCeq

]
. (10)

The minimum voltage of Cch can be derived in terms of the
discharging circuit parameters as

vCch(min) =
[req + (2N − n)(rsen + rL)]VO

M(2N − n)rL

− TonVO

2M(2N − n)nrLCeq
. (11)

Using the approach described in Appendix A, the dc conversion
ratio can be derived as

VO

vi
=

2MnrLCeq

Tonγ +
2nreqCeq

(2N−n) + 2(rsen + rL)nCeq

(12)

where γ = coth(Ton/2rchCch) + 1− (1/(2N − n)). Follow-
ing Appendix B, the output ripple is derived as

VO(rip) =
TonVO

[req + (2N − n)(rsen + rL]nCeq
. (13)

VI. DESIGN PROCEDURE

A. Design Specifications

Define vi, VO, maximum output current IO, and maximum
switching frequency fS(max).

B. Find Transformation Gain M of Converter

The overall input-to-output voltage conversion gain is

Y = G ·M =

∣∣∣∣VO

vi

∣∣∣∣ (14)

and the type of the SC converter units and the transformation
gain M is found from

M =

⎧⎨
⎩

1

� 1
Y � , if Y ≤ 0.5 (step-down converter)

1 , if 0.5 < Y <; 1 (unity-gain converter)
�Y �, if Y ≥ 1 (step-up converter).

(15)

C. Determine rch

With appropriate switches selected based on power rating
and converter type, rds(on) is known. Since capacitor equivalent

series resistance is much smaller than rds(on), the charging
resistance of each unit is mainly dependent on rds(on). The
charging resistance is

rch =

⎧⎨
⎩

(
1 + 1

M

)
rds(on) for step-down converter

rds(on) for unity-gain converter
2rds(on)

M for step-up converter.
(16)

D. Find Total Number of SC Units N

The total number of units is calculated from

N =

⌈
M2rchIO

Mvi − VO

⌉
. (17)

E. Find Load Range for Different n Values

From (8), the output current range is

(Mvi − VO)
2rchM2

n (coth(2) + λ1) + β1

≤ IO ≤ (Mvi − VO)
rchM2

n + β1

(18)

where

req =

⎧⎨
⎩

2Mrds(on) for step-down converter
rds(on) for unity-gain converter
(1 +M)rds(on) for step-up converter

(19)

λ1 = (2N − n− 1)/(2N − n), and β1 = req/(2N − n). For
n = 1, 2, . . . , N , find the ranges.

F. Choose Capacitor Value

Equation (13) can be modified as

CfS(min) ≥
50M[

req +
(2N−1)VO

IO(min),1

]
%VO(rip)

(20)

where fS(min) is the minimum frequency for ensuring that
output voltage ripple is within a desired percentage %VO(rip).
Here, IO(min),1 is the lower value of inequality (18) for n = 1.
With a selected minimum switching frequency, C can be
chosen.

G. Define Transition Points

The transition points must be designed within the over-
lapped region of the output currents of incremental n units.
For example, if the output current at n = 1 is in the range of
IO(min),1 ≤ IO ≤ IO(max),1 and that at n = 2 is in the range
of IO(min),2 ≤ IO ≤ IO(max),2, where IO(max),1 > IO(min),2,
the overlapped region will be ΔI12 = IO(max),1 − IO(min),2.
The transition point for switching from n = 1 to n = 2 can be
derived as

iact,12 = IO(max),1 −ΨΔI12 (21)

and the transition point for switching from n = 2 to n = 1 can
be derived as

iact,21 = ΨΔI12 + IO(min),2 (22)

where Ψ is a scaling factor in the range of 0 < Ψ < 0.5.
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VII. CONCLUSION

A phase-shift interleaving control with N -state hysteresis
unit selection scheme has been proposed to widen the range
of operating condition of variable-phase SC converters while
maintaining a continuous input current. In the proposed con-
figuration, a relatively low output voltage ripple is achieved
regardless of the frequency, by using a high equivalent output
capacitance (Cout = (2N − 1)C) when the load is light and
by using a smaller equivalent output capacitance (Cout = NC)
when the load is heavy, along with the output interleaving op-
eration. The experimental results confirm the theoretical proof:
The proposed control gives good regulation, nonpulsatory in-
put current, small output voltage ripple, and good dynamic
response for a wide operating range.

APPENDIX A
DERIVATION OF DC CONVERSION RATIO

According to the charging condition, the steady-state ripple
equation of the flying capacitor is

vC(max) − vC(min) =
(
vi − vC(min)

) [
1− e

−Ton
rchC

]
. (23)

Substituting (1) and (5) into (23) gives

2(2N − n)nrLC
vi

VO

= Ton

[
2(2N − n)

1− e
−Ton
rchC

− 1

]

+(2 [req + (2N − n)(rsen + rL)]nC) . (24)

The term 2(2N − n)/(1− e−Ton/rchC) can be derived as

2(2N − n)

1− e
−Ton
rchC

= (2N − n)

[
coth

(
Ton

2rchC

)
+ 1

]
. (25)

Substituting (25) into (24) and dividing it by 2N − n gives

VO

vi
=

2nrLC

α1 + α2
(26)

where α1 = Ton[coth(Ton/2rchC) + 1− (1/(2N − n))] and
α2 = [2nrC/(2N − n)] + 2(rsen + rL)C.

APPENDIX B
DERIVATION OF OUTPUT VOLTAGE RIPPLE

The equation describing the output charge of Cdis flowing to
the load is

Cdis

(
vCdis(max) − vCdis(min)

)
=

TdisVO

rL
. (27)

Since Cdis=(2N−n)C, vCdis(max)−vCdis(min)=λ6(vOmax−
vOmin) (by voltage divider law) where λ6=(req+(2N−
n)(rsen+rL))/(2N−n)rL, and by substituting Tdis=Ton/n
into (27), we have

(2N − n)Cλ6(vOmax − vOmin) =
TonVO

nrL
. (28)

The output voltage ripple VO(rip) = vOmax − vOmin is

VO(rip) =
TonVO

[req + (2N − n)(rsen + rL)]nC
. (29)

APPENDIX C
DERIVATION OF BOUNDARY CONDITION

Equation (6) can be rewritten as

vi =
Ton

2nrLC

[
coth

(
Ton

2rchC

)
+ 1− 1

2N − n

]
VO

+
req + (2N − n)(rL + rsen)

(2N − n)rL
VO. (30)

A. Lower Boundary Limit

Substituting Ton = 0 into (30) gives

vi ≥ lim
Ton→0

[
Ton

2nrLC
coth

(
Ton

2rchC

)]
VO

+
req + (2N − n)(rL + rsen)

(2N − n)rL
VO. (31)

The term lim
Ton→0

[(Ton/2nrLC) coth(Ton/2rchC)] can be

solved using L’Hôpital’s rule as

lim
Ton→0

[
Ton

2nrLC
coth

(
Ton

2rchC

)]

= lim
Ton→0

⎡
⎣ d

dTon

(
Ton

2nrLC

)
d

dTon

(
tanh

(
Ton

2rchC

))
⎤
⎦

=
rch
nrL

. (32)

The substitution of (32) into (31) gives

vi ≥
[req + (2N − n)(rsen + rL)]VO

(2N − n)rL
+

rchVO

nrL
(33)

which describes the lower limit of the input voltage.

B. Upper Boundary Limit

The substitution of Ton = 4rchC into (30) gives the upper
limit of the input voltage as

vi ≤
[
req + (2N − n)(rsen + rL)−

(
2
n

)
rch

]
VO

(2N − n)rL

+
4.0746rchVO

nrL
. (34)
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