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Using a one-dimensional lattice model, we studied the switching characteristics of superlattices

formed out of alternate ferroelectric and dielectric layers. The two layers interact with each other

through the dipole lattices located at interface. Switching characteristics of pulsed field such as

hysteresis loop, differential electric susceptibility as a function of applied field, and switching current

as a function of applied field were examined. Influence of various model parameters included field

amplitude, viscosity, interaction between dipole lattices at interface, interaction between dipole

lattices within the layer, layer thickness and dielectric stiffness on the switching characteristics were

investigated in detail. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4846797]

I. INTRODUCTION

Ferroelectric superlattices are currently a topic of active

research1 because of their potential applications in ferroelec-

tric memories,2 as well as fundamental interest.3

Experimental studies on ferroelectric superlattices include

KTaO3/KNbO3,4,5 BaTiO3/SrTiO3,6,7 BaTiO3/(Ba, Sr)TiO3,8

BiFeO3/SrTiO3,9 and PbTiO3/SrTiO3.10 While the polariza-

tion switching in ferroelectric is a topic of interest, the

switching mechanism remains to be a classical unanswered

problem for many decades. When dealing with a ferroelec-

tric superlattice system, intermixed layers may form at inter-

faces between two ferroelectrics.11–15 These interface

intermixed layers with properties different from those of the

constituent layers may affect the properties of the superlat-

tice structure. The formation of intermixed layers can be

induced by short-range interactions between materials

in-contact, surface or interface reconstruction, cation inter-

mixing or composition deviations at the interfaces in super-

lattices of ferroelectric solid solution.16

Many theoretical studies on switching behaviors of ferro-

electric superlattices were performed using the Landau-type

theory.17–21 A model based on Landau theory is developed to

study the hysteresis loop behaviors of ferroelectric superlatti-

ces with antiferroelectric interlayer coupling.17,18 Several

authors extend the model by taking into account the spatial

variation of polarization with each constituent layers using the

Landau-Ginzburg theory.18–20 By treating the ferroelectrics as

wide band-gap semiconductors, Liu and Li studied the effect

of space charges on the hysteresis loops of ferroelectric super-

lattices based on Landau-Ginzburg theory.22 Those

works,17–22 however, do not consider interface intermixing in

ferroelectric superlattices. Pertsev and Tyunina16 investigated

the dielectric properties of superlattice by introducing an inter-

face layer with properties different from those of the constitu-

ent layers. However, the model is only applicable to system

with layers relatively thick compared to the correlation length

of ferroelectricity. The work does not consider the effect of

surface or interface; thus, the polarization is homogenous

without the local polarization coupling at the interface.

Based on the lattice dipole model,23–27 we have pro-

posed to study the influence of interface on the polarization

and dielectric properties of a superlattice consisting of alter-

nating ferroelectric and dielectric layers.28 However, the

switching behavior of ferroelectric superlattices was not dis-

cussed. We have shown that the lattice model of ferroelectric

superlattices28 can be casted into a continuum Landau-

Ginzburg theory.29,30 In the model, the interface energy can

be interpreted as the formation of interface “dead” layer that

are mutually coupled though polarization.29–31 In particular,

the interface parameter describes the interface intermixing in

superlattices.29–31 Explicit expressions derived from the

interface structure shows that the intermixed layer is deter-

mining by the physical properties of the two layers.32,33

Using a Landau-Ginzburg theory, it is shown that the inter-

face intermixing leads to a reduction in the coercive field,

though the associated remnant polarization is strongly

enhanced by a soft dielectric layer.29 The switching dynam-

ics of the superlattice are found to be significantly dependent

on interface intermixing, layer thickness and the dielectric

softness of dielectric layer based on the Landau-Khalatnikov

model.34 The hysteresis loop behavior of ferroelectric super-

lattices was studied by taking into account the time-

dependent space-charge-limited conductivity.35

In this work, we investigate the switching characteristics

of a superlattice composed alternating ferroelectric and

dielectric layers driven by a pulsed electric field. Based on a
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dipole lattice model of ferroelectric superlattice,28 the

switching characteristics of the superlattice is examined by

looking at the hysteresis loop, differential dielectric suscepti-

bility versus applied field and switching current versus

applied field. The parameters that govern the switching char-

acteristics of a superlattice consisting of alternate layer of

ferroelectric and dielectric will be discussed in detail.

II. A DIPOLE LATTICE MODEL OF FERROELECTRIC
SUPERLATTICES

We consider a periodic superlattice composed of alter-

nate layer of ferroelectric and dielectric, as shown in

Fig. 1(a). The two layers interact with each other via the

polarizations located at the interfaces. We construct the

model using a dipole lattice model, as proposed by

Ishibashi.23–27 The dipole lattice model has been used to

study the polarization reversal in ferroelectric thin films.36–38

Within the framework of a dipole lattice model,23–27 each

layer is an ensemble of dipole lattices characterized by polar-

ization, which has double potential wells. For simplicity, we

consider the simple case of one-dimensional ferroelectric

superlattice consisting of alternating layer 1 and layer 2 with

total number of M and N lattices, respectively, as depicted in

Fig. 1(b). pm and qn represent dipole lattices located at the m-

th and n-th sites of layer 1 and layer 2, respectively. Each

dipole interacts with its nearest-neighboring dipoles. j1 and

j2 denote the interaction parameter between the nearest-

neighboring dipoles within layer 1 and layer 2, respectively.

The free energy for the ferroelectric layer 1 with total

dipole lattices M, is28

F1 ¼
XM

m¼1

a1

2
p2

m þ
b1

4
p4

m � pme

� �
þ
XM

m¼2

j1

2
pm � pm�1ð Þ2

� �
;

(1)

and the free energy for the dielectric layer 2 with total latti-

ces N is

F2 ¼
XN

n¼1

a2

2
q2

n þ
b2

4
q4

n � qne

� �
þ
XN

n¼2

j2

2
qn � qn�1ð Þ2

� �
;

(2)

where the higher order p and q terms are truncated. e denotes

the applied electric field. In the ferroelectric phase, a1 < 0

and b1 > 0, whereas a2 > 0 and b2 > 0 for the paraelectric

layer. The dipoles at the interface of layer 1 and layer 2 are

given by p1 ¼ pM and q1 ¼ qN , respectively. It is easily seen

that the interaction energy between the dipoles at the inter-

face of the two constituent layers is given by28

Fi ¼
k
2

pM � q1ð Þ2 þ p1 � qNð Þ2
h i

; (3)

where the interaction parameter between the interface dipole

lattices is given by k. Within the framework of dipole lattice

model,23–27 jj (j¼ 1 or 2) describes the strength of interaction

between neighboring atoms (or polarizations) within the same

layer. k gives the strength of coupling between the polariza-

tion localized at the interface. For ferroelectrics with second

order phase transition, the correlation length K�1
j characteriz-

ing the domain wall thickness is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�j1=a1

p
, whereas

ffiffiffiffiffiffiffiffiffiffiffiffi
j2=a2

p
is the correlation length of the dielectric layer.

It is important to mention here that if the variation of the

order parameter within each layer is smooth and each layer

consists of a large number of dipoles, the interaction energy

of layer 1 (second term in Eq. (1)) can be approximated

as follows:28 PM
m¼2½j1

2
pm � pm�1ð Þ2� �

Ð L1

0
j1

2
dp
dx

� �2

dx, where

L1 ¼ Ma1 and a1 are the thickness and the lattice constant of

layer 1, respectively. Similarly, the interaction energy of

layer 2 with thickness L2 ¼ Na2 and its lattice constant a2

(second term in Eq. (2)) is given by
PN

n¼2½j2

2
qn � qn�1ð Þ2�

�
Ð L2

0
j2

2
dq
dx

� �2

dx, and L¼ L1þ L2 is the periodic thickness.

Thus, it is clear that the interface energy has the same form

as the interaction energy term of the dipole lattice model, or

FIG. 1. (a) Schematic illustration of a periodic superlattice composed of alternating ferroelectric layer 1 and dielectric layer 2. Black and blue arrows indicate the

direction of polarization for layer 1 and layer 2, respectively. Orange arrow denotes the direction of applied electric field E. (b) A dipole lattice model of ferroelec-

tric superlattices composed of alternating layer 1 and layer 2 with total number of M and N lattices, respectively. pm and qm represent dipole lattices, lying in

double potential wells, located at the m-th and n-th sites of layer 1 and layer 2, respectively. j1 and j2 describe the interaction parameters between the nearest-

neighboring dipoles within layer 1 and layer 2, respectively. At the interface, interaction parameter between the interface dipole lattices is described by k.
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the gradient term of the continuum model (the Landau-

Ginzburg theory), which describes the inhomogeneity of

polarization within the constituent layer.

Since there are only two dipoles at each interface con-

tributing to the interface coupling energy, the interface

energy (3) remains unchanged. By symmetry, the periodic

boundary condition gives pM ¼ p1 ¼ pi and qN ¼ q1 ¼ qi,

and thus Eq. (3) becomes Fi ¼ k
2

pi � qið Þ2 ¼ k
2

p2
i þ q2

i

� �
�kpiqi.

29–31 The former term is analogous to the formation

of “dead” layers39–41 at the interface region, i.e., the surfaces

of layer 1 (“kp2
i =2”) and layer 2 (“kq2

i =2”). The dead layers

are linear dielectrics, and their dielectric stiffnesses are

determined by the interface parameterk > 0. The second

term “kpiqi” describes the mutual interaction between the

local polarization at interfaces (i.e., pi and qi) due to the

modification of bonding at the interfaces, which has

the same form as the coupling term (the linear term) in the

Landau-like formulation by taking the continuum approxi-

mation of transverse Ising model.42 In the superlattice sys-

tem, k describes the intermixing at interface between two

layers in continuum model.29–31

The interfacial coupling k 6¼ 0 leads to inhomogeneity

of polarization near the interfaces.29–31 On the other hand, if

k ¼ 0 the polarization is homogenous throughout the constit-

uent layers, regardless of the thickness of layer 1 or layer 2.

In this case, the coercive field of the superlattice eC, under an

assumption of homogenous electric field e, can be obtained

from de=dp ¼ 0 as

eC ¼ 6
2a1

3
� a1

3b1

	 
1=2

; (4)

which is also the coercive field of the ferroelectric layer 1.

In order to study the process of polarization reversal, we

need to take into account the viscosity that causes the delay

in motion of the individual polarization. The time-dependent

Landau-Ginzburg equations of motion are

c1

dpm

dt
¼ � @F

@pm
¼ � a1pm þ b1p3

m

�
� j1 pmþ1 � 2pm þ pmþ1ð Þ � eg (5a)

and

c2

dqn

dt
¼� @F

@qn
¼� a2qn�j2 qnþ1�2qnþqnþ1ð Þ�e

� �
; (5b)

where c1and c2 are the viscosity coefficients for layer 1 and

2, respectively.

The average polarization of the superlattice is given by

P ¼ 1

L

XM

m¼1

pm þ
XN

n¼1

qn

" #
; (6)

and the current response is obtained by

i ¼ 1

L

XM

m¼1

dpm

dt
þ
XN

n¼1

dqn

dt

" #
: (7)

In the present study, the switching characteristics of the

superlattices are obtained using the applied electric e as

e ¼ e0 sinð2pftÞ; (8)

where e0 and f denote the amplitude and frequency, respec-

tively. In the present study, the simulation is conducted using

Eq. (5). Differential electric susceptibility versus applied

electric field is obtained by calculating dP/de.

III. RESULTS AND DISCUSSION

In this section, the calculations are conducted using a

relaxation method.43 For the convenience of discussion, we

denote the superlattice with M and N unit layers of ferroelec-

tric and dielectric, respectively, as “a M-N superlattice.” The

following parameters are adopted unless otherwise specified:

a1 ¼ �1, a2 ¼ 1, b1 ¼ b2 ¼ 1, j1 ¼ j2 ¼ 1, c1 ¼ c2 ¼ 1,

and k�1 ¼ 0:02. The correlation lengths correspond to the

ferroelectric and dielectric layers are K�1
1 ¼ 1 and K�1

2 ¼ 1,

respectively. For a “5-5” superlattice structure, we have M ¼
5 > 2K�1

1 and N ¼ 5 > 2K�1
2 . We first examine the switch-

ing process by applying a sequence of pulsed electric field to

a strongly coupled “5-5” superlattice with k�1 ¼ 0:02, and

investigate the switching current i(t) and polarization

response P(t), as shown in Fig. 1. The pulsed field is gener-

ated using Eq. (8) by taking only pulses with polarity in the

direction opposite to the initial polarization. The polarization

switching event begins with the initial polarizations in the

negative states when t ¼ 0. The switching process, under-

standably, depends strongly on the field amplitude e0 and

pulse length tp or frequency f.
Figure 2(a) shows the results of pulse switching with

pulse length tp ¼ 50 (f ¼ 0:01) for field amplitudes e0: 0.2eC

(—), 0.4eC (—), and 0.8eC (—). The polarization remains in

negative states when pulses with e0¼ 0.2eC is applied. It is

seen that the state of polarization changes from negative to

positive states when the first pulse with e0¼ 0.4eC (—) or

0.8eC (—) is applied. This is characterized by the maximum

value imax of current response and the time tmax at which it

occurs. The switching time tmax for the case with e0¼ 0.8eC

(—) is shorter than that for the case with e0¼ 0.4eC (—), as

expected. The decay of polarization after the removal of the

applied field is called back-switching, which leads to nega-

tive current flow. When the second and third positive pulses

are applied in the positive states, we find that the current

response is different from that by the first pulse. The cou-

pling at the interface between the constituent layers reduces

the coercive field eC for polarization switching, indicating

the presence of interface-aided polarization switching.44 In

Fig. 2(b), we investigate the switching process produced by

different pulse lengths tp.

In this study, a series of pulses with field amplitude

e0¼ 0.5eC is applied and the duration between those pulses

is set as 50. It is seen that for certain field amplitude e0, there

exists a critical pulse length t�p at which the crystal begins to

switch. No switching is expected for field pulses shorter than

a critical duration tp < t�p. If tp > t�p, the switching process is

completed. We can now study the switching characteristics

224108-3 Chew et al. J. Appl. Phys. 114, 224108 (2013)
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of a strongly coupled “5-5” superlattice k�1 ¼ 0:02 produced

by bipolar pulses, and it is featured by Eq. (8). Switching

characteristic studies include P-e hysteresis loop, differential

electric susceptibility as a function of applied field dP/de-e
and switching current as a function of applied field i-e. In

these studies, the frequency of the field is chosen as f ¼ 0:01

(i.e., pulse length tp ¼ 50). Figure 1(c) shows the field ampli-

tude e0 dependent of switching characteristics. It is clearly

seen that both the coercive field and polarization increase

with increasing field amplitude, which is the well-known ex-

perimental results. As e0 increases, the maximum value of

dP/de reduces and the slope decreases.

Figure 3 shows the viscosity coefficients dependent of

switching characteristics for a strongly coupled “5-5” super-

lattice. c1 and c2 denote the viscosity coefficients of the fer-

roelectric and dielectric layers, respectively. The results

show that the coercive field is strongly enhanced, as c1 or c2

decreases. This indicates that the switching time decreases if

the value of c1 or c2 decreases, as shown in Fig. 3(c). The

slope of dP/de-e decreases and the maximum value of

dP/de-e increases with decreasing the value of c1 or c2. In

comparison with decreasing c1, the effect of c2 on the coer-

cive field and the slope of dP/de-e is more marked. The

polarization is slightly reduced, as c1 decreases. Changes in

c2, however, do not induce an obvious impact on the polar-

ization behavior of the superlattice.

Influence of interface coupling k on the switching char-

acteristics of the superlattices is examined in Fig. 4. Inset

shows the distribution of polarizations in the initial states

t ¼ 0. If k ¼ 0, polarization remains homogenous throughout

the ferroelectric layer, whereas no polarization is induced in

the dielectric layer. The existence of the interface coupling

leads to a suppression of polarization near the ferroelectric

surface, and forms an interface-induced ordered state in the

dielectric layer. The suppression of polarization in the

FIG. 2. Pulses of applied field, of polarization and of switching current (a)

for different e0 with tp ¼ 50 and (b) for different tp with e0 ¼ 0:5eC. (c)

Applied electric field e dependent of switching characteristics with e:

0:5eC(-), eC (-), and 2eC (-). In the calculations, a1 ¼ �1, a2 ¼ 1,

b1 ¼ b2 ¼ 1, j1 ¼ j2 ¼ 1, c1 ¼ c2 ¼ 1, k�1 ¼ 0:02, and M ¼ N ¼ 5.

FIG. 3. Influence of viscosity on switching characteristics with e0 ¼ eC. The

values of c1 and c2 are: 2 and 1 (-), 0.5 and 1 (-), and 1 and 0.5 (-), respec-

tively. In the calculations, a1 ¼ �1, a2 ¼ 1, b1 ¼ b2 ¼ 1, j1 ¼ j2 ¼ 1,

k�1 ¼ 0:02, and M ¼ N ¼ 5.

FIG. 4. Influence of interface couplings k on switching characteristics with

e0 ¼ 1:2eC. The value of k�1 is: 50 (-), 2 (-), and 0.02 (-). In the calculations,

a1 ¼ �1, a2 ¼ 1, b1 ¼ b2 ¼ 1, j1 ¼ j2 ¼ 1, and M ¼ N ¼ 5.

224108-4 Chew et al. J. Appl. Phys. 114, 224108 (2013)
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ferroelectric layer and the interface-induced ordered state in

the dielectric layer become very strong with pM � q1 and

p1 � qN , if the interface coupling is strong k�1 ¼ 0:02. By

increasing the interface coupling, the polarization is

enhanced slightly, whereas the coercive field is strongly

decreased. The slope of dP/de-e increases and the maximum

value of switching current imax and dP/de-e decreases, as k
increases.

In Fig. 5, we examine how the interactions between

polarizations within the ferroelectric layer j1 and between

the induced-polarizations within the dielectric layer j2 affect

the switching characteristics. The P-e hysteresis loop indi-

cates that the polarization decreases and the coercive field

increases, as the interaction coefficient j1 or j2 decreases.

As the interaction coefficient j1 or j2 decreases, the maxi-

mum value of dP/de-e increases and the slope of dP/de-e
decreases. From the i-e curves, the maximum value of i
increases with decreasing j1 or j2.

The properties of ferroelectric materials are expected to

change, if the thickness approaches its characteristic length.28

In Fig. 6, we show the effect of thickness on the P-e hystere-

sis loops, dP/de-e and i-e curves for superlattices with differ-

ent thickness configurations: “10-2,” “3-2,” and “3-5.” We

first examine the thickness effect of ferroelectric layer on the

switching characteristics of the superlattice, i.e., “10-2” and

“3-2” superlattices. Here, the thickness of the dielectric layer

is set as N ¼ 2 ¼ 2K�1
1 . For the superlattice with

M ¼ 10 > 2K�1
1 , the ferroelectric layer is thick enough to

sustain a strong ferroelectric behavior, whereas the thickness

of the ferroelectric layer approaches the characteristic length,

if M ¼ 3 � 2K�1
1 . As the M reduces from 10 to 3, the polar-

ization reduces. The polarization is further decreased, if the

dielectric layer thickness N is increased from 2 to 5, i.e., the

“3-5” superlattice. The suppression of polarization as a result

of the thickness effect leads to a reduction in the coercive

field, the peak value of dP/de and the maximum value of i.
Figure 7 illustrates the influence of dielectric stiffness a1

on the switching characteristics of a strongly coupled “3-2”

superlattice. If a1 ¼ 0:02, the dielectric layer is very soft.

FIG. 5. Influence of interaction coefficients on switching characteristics

with e0 ¼ eC. The values of j1 and j2 are: 20 and 1 (-), 0.5 and 1 (-), 1 and

20 (-), and 1 and 0.5 (-), respectively. In the calculations, a1 ¼ �1, a2 ¼ 1,

b1 ¼ b2 ¼ 1, c1 ¼ c2 ¼ 1, k�1 ¼ 0:02, and M ¼ N ¼ 5.

FIG. 6. Influence of layer thickness on switching characteristics with

e0 ¼ eC. The values of M and N are: 10 and 2 (-), 3 and 2 (-), and 3 and 5

(-), respectively. In the calculation, a1 ¼ �1, a2 ¼ 1, b1 ¼ b2 ¼ 1,

j1 ¼ j2 ¼ 1, c1 ¼ c2 ¼ 1, and k�1 ¼ 0:02.

FIG. 7. Influence of dielectric stiffness a2 dependent of switching character-

istics with e0 ¼ eC, M¼ 3, and N¼ 2. The value of a2 is: 0.02 (-), 2 (-), and

5 (-). In the calculations, a1 ¼ �1, b1 ¼ b2 ¼ 1, j1 ¼ j2 ¼ 1, c1 ¼ c2 ¼ 1,

k�1 ¼ 0:02, and M ¼ N ¼ 5.
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Thus, the polarization is strongly induced in the dielectric

layer via a strong interface coupling. Thus, the polarization

and coercive field are strong a1 ¼ 0:02. As the dielectric

layer becomes more rigid, the polarization and coercive field

decrease. The peak value of dP/de and the maximum value

of i decrease, as a1 increases.

IV. CONCLUSION

In this work, we have carried out a systematic investiga-

tion on the influence of various model parameters included

the field amplitude, viscosity, interface coupling, interaction

between neighboring polarizations within the layer, layer

thickness and dielectric stiffness on switching characteristics

of a superlattice. Our results reveal that the P-e hysteresis

loop, dP/de-e differential electric susceptibility versus

applied field and i-e switching current versus applied field

depend sensitively on those parameters. The work may pro-

vide useful information for the design of ferroelectric mem-

ory with specific hysteresis loop by manipulating those

parameters in superlattice structures.
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