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Test for homogeneity in gamma mixture models using

likelihood ratio

Tony Siu Tung Wong∗, Wai Keung Li

Department of Statistics and Actuarial Science,
The University of Hong Kong, Hong Kong

Abstract

A testing problem of homogeneity in gamma mixture models is studied. It is
found that there is a proportion of the penalized likelihood ratio test statis-
tic that degenerates to zero. The limiting distribution of this statistic is
found to be the chi-bar-square distributions. The degeneration is due to
the negative-definiteness of a complicated random matrix, depending on the
shape parameter under the null hypothesis. In light of this dependency,
bounds on the distribution are introduced and a weighted average procedure
is proposed. Simulation suggests that the results are accurate and consistent,
and that the asymptotic result applies to the maximum likelihood estimator,
obtained via an Expectation-Maximization algorithm.

Keywords: Chi-bar-square distributions, gamma mixture, likelihood ratio,
maximum likelihood, negative definite

1. Introduction

In recent years, gamma mixture models have seen a surge of applications
in many fields. Craig and Strassels (2010) examined the out-of-pocket prices
of analgesic medications using a two-component gamma mixture model. See
also Mayrose et al. (2005) for applications in bioinformatics and the ref-
erences in Liu et al. (2003). Due to their importance, developing effective
and handy statistical procedures for gamma mixture models is an imperative
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task, in particular for the test of homogeneity. An obvious way of approach-
ing the problem is to use the ordinary likelihood ratio test (LRT). One of
the few results available is Liu et al. (2003). The authors showed that when
the range of some parameters is unbounded, the LRT statistic diverges to
infinity at a rate of log log n and that its asymptotic behaviour is of extreme-
value type through a highly complex piece of stochastic analysis. However,
their simulation results suggested that the limiting distribution is far from
converging to the extreme value distribution and that a possible solution is
to simulate the finite-sample null distribution. The peculiar behaviour of the
statistic arises because the maximum likelihood estimator (MLE) of some
parameters may not be consistent. See, for example, the asymptotic result
for Rn (ε; I) in Chen and Chen (2001). Related problems in general mixture
models were also addressed by Ghosh and Sen (1985), Dacunha-Castelle and
Gassiat (1999), Chen and Chen (2001) and Liu and Shao (2003). In par-
ticular, Ghosh and Sen (1985) and Chen and Chen (2001) showed that the
asymptotic distribution involves the supremum of a Gaussian process. See
also Liu and Shao (2004) in normal mixture models. However, there are
several shortfalls of the above results. Firstly, the results lose their appeal
because the supremum of a Gaussian process is difficult to compute (Chen
et al., 2001). Secondly, the divergence to infinity is so slow that it is not
detected in simulation (Liu and Shao, 2004). The convergence of the test
statistic, normalized by log log n, to the extreme value distribution is hardly
detectable (Liu et al., 2003). Lastly, Hall and Stewart (2005) provided a
theoretical analysis on the reduction of power against alternative hypotheses
regarding the above results.

In light of the peculiar behaviour of LRT, a resampling approach (McLach-
lan, 1987; McLachlan and Peel, 2000; McLachlan and Khan, 2004) can be
carried out. However, when some of the regularity conditions are restored,
especially consistency of the estimator, it is of great theoretical significance
to further investigate the likelihood ratio.

The consistency of the MLE in the test for homogeneity has not been
solved until the introduction of a clever penalized procedure proposed by
Chen et al. (2001). The authors innovated the modified likelihood ratio test
(MLRT) by incorporating a penalty function. The MLRT was also devel-
oped by Chen and Kalbfleisch (2005) in normal mixture models and further
extended to an EM-test by Li et al. (2009) and Chen and Li (2009). Exact
theoretical results on the asymptotic null distribution have been obtained
in some special cases. For densities with a single parameter of interest, the
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MLRT statistic has the limiting distribution 0.5χ2
0+0.5χ2

1 (Chen et al., 2001;
Li et al., 2009). For the normal mixture model, the statistic has χ2

2 when the
means and the variances are unequal and unknown (Chen and Li, 2009). Con-
ceivably, the MLRT falls into the type II likelihood ratio problem (Lindsay,
1995, Section 4.4) which generates the chi-bar-square distributions of which
some are parameter-dependent limiting null distributions. The above result
in the normal mixture models returns to the χ2

2 distribution due to loss of
strong identifiability (Chen and Li, 2009, Example 1). Qin and Smith (2006)
investigated an extension of the MLRT in multivariate normal mixture mod-
els. The authors showed the asymptotic null distribution being a mixture
of distributions and suggested it must be found using numerical methods.
For models with multidimensional parameters, Zhu and Zhang (2004) anal-
ysed the asymptotic properties of LRT and Niu et al. (2011) considered an
EM test. Although the problem of estimator consistency has been solved in
MLRT and the EM-test, in many other mixture models, such as the gamma
mixture models, the results 0.5χ2

0 + 0.5χ2
1 or χ2

2 cannot be applied directly
without theoretical justifications. The general testing problem has not been
completely solved and remains as a long-standing open problem. Charnigo
and Sun (2004) acknowledged the generalization of the MLRT to higher di-
mensional problems and suggested that the null distribution can be obtained
by simulation. However, the extension is not at all straightforward as pre-
sented in this paper and simulation of the null distribution in the absence of
a closed-form expression should no longer be tolerated. A clear guideline has
been long overdue for practitioners in the rejection or retention of the homo-
geneity assumption. The purposes of the paper are to fill this research gap
in gamma mixture models and to explore how the limiting null distribution
depends on the parameters.

Motivated by the above needs and the importance of the gamma mix-
ture models, this paper aims at investigating the limiting distribution of the
MLRT statistic. We obtain the condition under which the MLRT statistic
degenerates to zero and determine the proportion of degeneration. Then,
we can show that the asymptotic null distribution has parameter-dependent
chi-bar-square distributions. This subsequently establishes a foundation for
quick model selection using the χ2

2 distribution in practice. Moreover, in
light of the popular Expectation-Maximization (EM) algorithm for param-
eter estimation in finite mixture models, we demonstrate through intensive
simulation studies that our results can be applied to the likelihood ratio
statistic evaluated at the MLE obtained via the EM algorithm.
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The article is organized as follows. In Section 2, we present the asymptotic
results. Section 3 lists a number of considerations in the applications of the
results. The asymptotic analysis is supplemented by simulation in Section 4.
Section 5 presents two data examples and Section 6 gives a conclusion.

2. Asymptotic Results

We consider a two-parameter gamma density function

f (x;α, β) =
1

Γ (α)
βαxα−1e−βx, x > 0,

where α > 1 and β > 0 are shape and scale parameters, respectively. Given
a set of independent and identically distributed data, we are interested in
testing the homogeneity hypothesis H0 against the alternative hypothesis of
a two-component gamma mixture model H1 where

H0 : f (x) = f (x;α, β) ;
H1 : f (x) = πf (x;α1, β1) + (1− π) f (x;α2, β2) ,

and 0 < π < 1 is a mixing proportion. In this paper, we study a very
general testing problem that the parameters under the hypotheses are all
unknown and unequal. This is completely different from the setting in Liu
et al. (2003). For parametric hypothesis testing problems it is customary to
use the ordinary LRT based on the statistic which is defined as

LRn = 2
{
L
(
π̂, α̂1, β̂1, α̂2, β̂2

)
− L

(
0.5, α̂, β̂, α̂, β̂

)}
,

where

L (π, α1, β1, α2, β2) =
n∑

i=1

log {πf (xi;α1, β1) + (1− π) f (xi;α2, β2)} (1)

is the log-likelihood function and
(
π̂, α̂, α̂1, α̂2, β̂, β̂1, β̂2

)
is the MLE of pa-

rameter (π, α, α1, α2, β, β1, β2). It is well known that the consistency of the
MLE, obtained by maximizing (1) directly, is not guaranteed. See for exam-
ple Ghosh and Sen (1985); Hathaway (1985); Chen and Chen (2001). This
motivates a penalized procedure coined by Chen et al. (2001) based on a
modified log-likelihood function

Lp (π, α1, β1, α2, β2) = L (π, α1, β1, α2, β2) + c log {4π (1− π)} , (2)
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where c is a positive constant corresponding to the level of modification. De-

note by
(
π̂p, α̂p

1, α̂
p
2, β̂

p
1 , β̂

p
2

)
the penalized MLE of (π, α1, α2, β1, β2) obtained

by maximizing (2) given a suitable value of c. Adding a penalty function to
the log-likelihood regains the consistency of the penalized MLE (Chen et al.,
2008; Chen and Li, 2009). The MLRT statistic is

LRp
n = 2

{
Lp
(
π̂p, α̂p

1, β̂
p
1 , α̂

p
2, β̂

p
2

)
− L

(
0.5, α̂, β̂, α̂, β̂

)}
. (3)

We study the asymptotic distribution of LRp
n which can be expressed as

LRp
n = LRp

1n−LR0n in terms of the true parameter (α0, β0) under H0, where

LR0n = 2
{
L
(
0.5, α̂, β̂, α̂, β̂

)
− L (0.5, α0, β0, α0, β0)

}
;

LRp
1n = 2

{
Lp
(
π̂p, α̂p

1, β̂
p
1 , α̂

p
2, β̂

p
2

)
− L (0.5, α0, β0, α0, β0)

}
.

An immediate asymptotic approximation for LR0n is(
n−1/2

n∑
i=1

Y T
i

)(
n−1

n∑
i=1

YiY
T
i

)−1(
n−1/2

n∑
i=1

Yi

)
+ op (1) ,

where Yi is a random vector given by

Yi =

{
−Γ(1) (α0) + log β0 + logXi

α0β
−1
0 −Xi

}
(4)

and Γ(k) (α) = dk ln Γ (α) /dαk. In Appendix A, we derive the following
asymptotic approximation for LRp

1n(
n−1/2

n∑
i=1

Y T
i

)(
n−1

n∑
i=1

YiY
T
i

)−1(
n−1/2

n∑
i=1

Yi

)
+

(
n−1/2

n∑
i=1

W T
i

)(
n−1

n∑
i=1

WiW
T
i

)−1(
n−1/2

n∑
i=1

Wi

)
+ op (1)

(5)

if n−1/2
∑n

i=1 Ui is non-negative-definite, where

Wi =

(
n∑

i=1

Ziγ̃2Y
T
i

)(
n∑

i=1

YiY
T
i

)−1

Yi − Ziγ̃2,
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γ̃2 ̸= 0 is the solution to
(∑n

i=1WiW
T
i

)−1∑n
i=1 Ui = I2, I2 is the two-

dimensional identity matrix,

Ui = Zi − ViZi, Vi =

(
n∑

j=1

Y T
j

)(
n∑

j=1

Y T
j Yj

)−1

Yi, (6)

and Zi is a symmetric random matrix whose elements on the top left, top
right and bottom right are, respectively

Zi[11] = −Γ(2) (α0) +
{
−Γ(1) (α0) + log β0 + logXi

}2
;

Zi[12] = β−1
0 +

{
−Γ(1) (α0) + β0 + logXi

} (
α0β

−1
0 −Xi

)
;

Zi[22] = −α0β
−2
0 +

(
α0β

−1
0 −Xi

)2
.

(7)

The random quantity Vi is scalar. If n
−1/2

∑n
i=1 Ui is negative-definite, Wi are

taken to be zero resulting in LRp
n = op (1). Under H0, Yi and Zi are random

with mean zero. Then, by the central limit theorem , n−1/2
∑n

i=1Wi converges
to a bivariate normal random vector with mean zero. We summarize the
result in Theorem 1.

Theorem 1. Under H0, the asymptotic distribution of LRp
n degenerates to

zero with a weight 0 < p < 1 and has a χ2
2 distribution with a weight

1 − p where p is the probability that the random matrix to which the ma-
trix n−1/2

∑n
i=1 Ui converges as n → ∞ is negative-definite and Ui is defined

in (6). That is,
LRp

n ∼ pχ2
0 + (1− p)χ2

2 (8)

for large n, where χ2
0 is a degenerate distribution with all its mass at zero

and the notation ∼ means ‘is distributed like’.

The limiting distribution in (8) is known as the chi-bar-square distributions
(Johnson et al., 1994, pg. 454). A more precise expression for p will be
derived in Section 3.2. Hence, the above result will be restated by (10)
indicating clearly the dependency on the shape parameter.

3. Practical Considerations

3.1. Estimating p

From the definition of Ui in (6), we observe its dependence on the random
vector Yi and the random matrix Zi given by (4) and (7), respectively, which
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Figure 1: Plots of weight ps (α0, β0, n) against α0. The left panel shows three series of
β0 = 2 (⋄), β0 = 6 (�) and β0 = 10 (△). The right panel shows three series of n = 100
(⋄), n = 500 (�) and n = 1000 (△). The solid line depicts the asymptotic weight p (α0).

are related to the parameter (α0, β0) under H0. In addition, the estimate of
p may also depend on n as the random matrix concerned involves a sum-
mation over n random matrices. As a rough visualization of the relations
between these variables, we simulate n random variables from f (x;α0, β0),
compute Yi, Zi and Ui, and evaluate the proportions in 10000 replications
that n−1/2

∑n
i=1 Ui is negative-definite. Denote by ps (α0, β0, n) such a pro-

portion. Fig. 1 displays two plots of ps (α0, β0, n) at some selected values of
α0, β0 and n. The left panel shows three series of ps (α0, β0, n) against α0

at n = 1000, each series corresponding to different values of β0. There is a
decreasing trend of ps (α0, β0, n) as α0 increases, this trend being invariant
in β0. The right panel shows another three series of ps (α0, β0, n) against
α0 at β0 = 2, each series corresponding to different values of n. A similar
decreasing trend of ps (α0, β0, n) against α0 is observed. In addition, the val-
ues of ps (α0, β0, n) get lower at larger sample sizes and seem to converge to
some certain level as n grows. Overall, ps (α0, β0, n) seems to decreases as
α0 increases, but remains constant as β0 varies. Its possible convergence as
n tends to infinity motivates further investigation. Last, it is worth pointing
out some merits of the simulation technique. Apart from quick and easy
construction of the weight estimate, its use in the construction of a lower
bound in a finite samples will be outlined in Section 4.
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3.2. Asymptotic p

We require some general conditions on Yi, Zi and the products of their
elements. In particular,

n−1

n∑
i=1

YiY
T
i → M, n−1

n∑
i=1

Yi[j]Zi → υj

in probability for j = 1, 2, where Yi[j] denotes the jth element of vector Yi.
The expression of each of the elements in matrices M and υ are given in
Appendix B. Denote by Ui[11], Ui[12] and Ui[22], respectively the elements on
the top left, top right and bottom right of Ui. By the central limit theorem,
the vector on the left-hand side below

n−1/2

 ∑n
i=1 Ui[11]∑n
i=1 Ui[12]∑n
i=1 Ui[22]

→ N3

0,

 σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33


converges, as n → ∞, to a random vector denoted by ST = (S1, S2, S3) having
a trivariate normal distribution N3 with zero mean vector and covariance
matrix whose elements are

σ11 = 2
{
Γ(2) (α0)

}2
+ Γ(4) (α0) + α0

{
Γ(3) (α0)

}2 {
1− α0Γ

(2) (α0)
}−1

;

σ12 =
[
−2Γ(2) (α0) + Γ(3) (α0)

{
1− α0Γ

(2) (α0)
}−1
]
β−1
0 ;

σ13 =
[
2 + α0Γ

(3) (α0)
{
−1 + α0Γ

(2) (α0)
}−1
]
β−2
0 ;

σ22 =
[
−1 + Γ(2) (α0)

{
−1 + α2

0Γ
(2) (α0)

}] {
−1 + α0Γ

(2) (α0)
}−1

β−2
0 ;

σ23 =
[
−2α0 +

{
−1 + α0Γ

(2) (α0)
}−1
]
β−3
0 ;

σ33 = α0

[
2 + 2α0 +

{
1− α0Γ

(2) (α0)
}−1
]
β−4
0 .

Hence, the negative-definiteness condition implies that p can be obtained by
the following probability

P
(
{S1 < 0} ∩

{
S1S3 − S2

2 > 0
})

=

∫ 0

−∞

∫ ∞

−∞

∫ s22s
−1
1

−∞
g (s1, s2, s3) ds3ds2ds1,

(9)
where g (s1, s2, s3) is the density function of the above trivariate normal dis-
tribution. The probability can be easily evaluated by numerical integration
using, for example, Wolfram Mathematicar. It is important to observe that
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the integral is independent of β0. This can be easily verified by simple trans-
formation in the integration. Hence, the probability may precisely be denoted
by p (α0) and the result in (8) is more appropriately written as

LRp
n ∼ p (α0)χ

2
0 + {1− p (α0)}χ2

2. (10)

A more precise description of the relation of p (α0) as α0 varies can be ob-
tained by (9). Fig. 1 overlays a curve of p (α0) against α0 for 1 ≤ α0 ≤ 10.
Its match with the simulated weight ps (α0, β0, n) suggests that the mysteri-
ous dependency of the proportion of degeneration on the shape parameter is
further illustrated. An astounding observation is that p (α0) is small at some
large values of α0. An example p (12)=0.0497 suggests that the χ2

2 distribu-
tion is quite accurate to approximate the asymptotic null distribution. In ad-
dition, as an empirical rule of thumb, we may use that p (α0) ≤ p (1) =0.1345
and p (α0) > 0 to develop a lower bound DL and an upper bound DU for the
statistic LRp

n

DL ≤ LRp
n ≤ DU , DL ∼ 0.1345χ2

0 + 0.8655χ2
2, DU ∼ χ2

2 (11)

as a quick guideline. Given a significance level, H0 is retained if the observed
MLRT statistic falls below the critical value evaluated by the above lower
bound, and is rejected if it is above the critical value based on the upper
bound.

3.3. Weighted Average Procedure

The previous subsections demonstrate the theoretical analysis to the test-
ing problem. However, practical implementation of (10) encounters a draw-
back in that the value α0 is unknown. A possible solution is to substitute
this value by the parameter estimate, for instance, the maximum likelihood
estimate α̂ under H0. Then, the weight p (α0) is estimated by α̂ through (9)
and the asymptotic null distribution is established as in (10). However, the
substitution may suffer a certain degree of bias because all prior beliefs are
placed on α̂. Lindsay (1995) suggested the use of the least favourable null
distribution by employing the least favourable critical value within a confi-
dence interval for α0. However, the problem remains unsolved if the observed
test statistic falls below this least favourable critical value.

In light of the above difficulties, we propose a weighted average procedure
to accommodate the estimation error. It is well-known that α̂−α0 is asymp-

totically normal with mean zero and variance v (α0) = n−1α0

{
−1 + α0Γ

(2) (α0)
}−1

.
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Table 1: Weight p against α using weighted average procedure pw (α, r) and direct sub-
stitution p (α). Different numbers of candidates r and the effect of sample size n for the
weighted average procedure are shown.

α pw (α, 10) pw (α, 20) p (α)
n = 100 n = 1000 n = 100 n = 1000

2 0.1023 0.1023 0.1023 0.1023 0.1023
4 0.0744 0.0743 0.0744 0.0743 0.0743
6 0.0612 0.0611 0.0613 0.0611 0.0608
8 0.0540 0.0536 0.0541 0.0536 0.0536
10 0.0509 0.0497 0.0512 0.0497 0.0496

Then, r candidates of α0,k can be obtained from the normal distribution
through

k

r + 1
=

∫ α0,k

−∞
{2πv (α̂)}−

1
2 exp

{
−(x− α̂)2

2v (α̂)

}
dx, k = 1, . . . , r

provided that α0,k ≥ 1. Each of these α0,k forms an asymptotic null distri-
bution given by (8). The assignment of an equal weight to each α0,k leads to
the asymptotic null distribution

pw (α̂, r)χ2
0 + {1− pw (α̂, r)}χ2

2, pw (α̂, r) =
1

r

r∑
k=1

p (α0,k).

As illustrated in Fig. 1 the convexity of the weight in the shape parameter, the
weighted average procedure will give a weight slightly larger than the direct
substitution does. The effect of this finite-sample refinement is illustrated
in Table 1. The weights pw (α̂, r) using n = 100 are slightly larger than
those using n = 1000 which are very close to the value obtained by direct
substitution p (α̂). Hence, this procedure tends to yield a smaller p-value
than the method of direct substitution leading to a conclusion which is less
favourable to the null hypothesis when information from the sample is scarce.
Moreover, the input r seems less important compared to the sample size. We
shall fix r = 10 in data analysis in Section 5.2.

3.4. MLE Obtained via EM Algorithm

Mixture models are getting popular in the statistics literature because of
its wide range of applications, including examination of homogeneity of pop-
ulations, assessment of unimodality and identifications of clusters or outliers.
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The introduction of the EM algorithm has further pushed up its popularity.
Frühwirth-Schnatter (2006) commented that the EM algorithm is the most
common method for parameter estimation in finite mixture models nowa-
days. However, the penalized procedure will not be considered for parameter
estimation of a mixture model, except only when a test of homogeneity is
conducted. Given the homogeneous and mixture models, the latter one is
fitted to the data by the EM algorithm. The goodness-of-fit may be justified
by comparing the values of the log-likelihood. Hence, the EM algorithm has
retained the convenience of the ordinary LRT. We will investigate through
simulation whether the goodness-of-fit justification is appropriate and un-
der what circumstances it can be applied. Another problem inherited in the
MLRT is the possible reduction of power under H1. In the twelve cases
under study in the simulation, the power is not seriously affected but the
reduction in log-likelihood value due to the penalty function should not be
overlooked. In light of this, we may use the following conventional likelihood
ratio as an alternative statistic

LREM
itr,n = 2

{
L
(
π̂EM , α̂EM

1 , β̂EM
1 , α̂EM

2 , β̂EM
2

)
− L

(
0.5, α̂, β̂, α̂, β̂

)}
, (12)

where
(
π̂EM , α̂EM

1 , β̂EM
1 , α̂EM

2 , β̂EM
2

)
is the MLE of (π, α1, β1, α2, β2) ob-

tained via the EM algorithm and itr is the number of EM algorithm it-
erations given a suitable initial guess. This statistic not only preserves the
convenience as the ordinary LRT does, but part of it is also very common
in the formation of AIC and BIC in mixture model selection.

The limiting distribution of LREM
itr,n will be given after a brief discussion

of the asymptotic characteristics of the EM estimators. In the rest of this
subsection, we assume without loss of generality that π ≥ 0.5. The argument
in Chen and Chen (2001) points to the problem that in the ordinary LRT
under H0, the products

(
1− π̂EM

)
α̂EM
2 and

(
1− π̂EM

)
β̂EM
2 are consistent

but not α̂EM
2 and β̂EM

2 . The EM algorithm suffers a similar problem except
that it can never reach the boundary point of π and that the iterations
will either slowly merge α̂EM

1 with α̂EM
2 and β̂EM

1 with β̂EM
2 , or force π̂EM

towards one (Lindsay, 1995, Section 3.4). Denote by EI the former event
that individual estimators are consistent and by EII the latter event that
individual estimators are not consistent. The advantage of LREM

itr,n is on the
extremely slow convergence of the EM algorithm under H0. The occurrence
of EI or EII can be easily observed as the iterations proceed. If EII is
observed, we may retain H0 in the absence of a tolerable significance level;
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otherwise, large values of LREM
itr,n may suggest rejection of H0 according to

(10) conditional on EI . Precisely,

LREM
itr,n | EI ∼ p (α0)χ

2
0 + {1− p (α0)}χ2

2 (13)

as n → ∞. The number of iterations itr may be determined based on
some stopping rules as outlined in Lindsay (1995). Our simulation results
suggest that when a suitable initial guess, such as the penalized maximum
likelihood estimate, is adopted, the increase in the likelihood function is not
significant as the iterative run proceeds. Hence, practitioners may pick a
number of LREM

itr,n values after the EM algorithm has changed insignificantly
and conclude whether to retain or to reject H0 if these values yield consistent
results. The above suggestions essentially preserve the convenience in the use
of likelihood-ratio-type tests and avoid power deterioration in applications.
The arguments and suggestions in this subsection will be supplemented by
the material lifetimes example in Section 5.2.

4. Simulation

We have conducted an extensive simulation study to evaluate the accuracy
of the results. Due to the dependency of p (α0) on α0, it is interesting to
conduct simulations using different values of α0 and holding β0 = 1 with a
number of sample sizes. The first statistic under study is LRp

n given by (3). It
is the MLRT statistic with c = log 50 in the penalty function in accordance
with the recommendations in Chen et al. (2001). The second statistic LREM

itr,n

given by (12) uses the likelihood ratio evaluated at theMLE obtained via the
EM algorithm. The extremely slow convergence in the EM algorithm makes
simulation studies tedious. Lindsay (1995) pointed out that the solution of
the likelihood equations can depend greatly on the initial values. Therefore,
we use the penalized MLEs as initial guesses and carry out ten iterations.

We report the empirical sizes obtained from 10000 replications. Two sets
of simulations are illustrated in Table 2. Other sets using different values of
α0 share similar results and hence are not reported. The agreement between
the theoretical results and the simulation results is obvious. Improvements
are generally obtained when we increase the sample size. The simulation also
shows the dependency of p (α0) on α0. In Table 3, we report the proportions
of zero statistics obtained from the simulation and the weight ps (α0, β0, n)
obtained from simulation in Section 3.1, and the asymptotic weight p (α0) is
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Table 2: Simulation results at selected nominal levels of 0.1, 0.05 and 0.01 using two
homogeneous gamma models.

Empirical significance levels for H0 : f (x; 2, 1)
0.10 0.05 0.01

n LRp
n LREM

10,n LRp
n LREM

10,n LRp
n LREM

10,n

100 0.1144 0.1285 0.0598 0.0701 0.0138 0.0176
200 0.1057 0.1117 0.0524 0.0562 0.0112 0.0135
500 0.1025 0.1034 0.0559 0.0569 0.0111 0.0114
1000 0.0972 0.0974 0.0471 0.0476 0.0103 0.0104

Empirical significance levels for H0 : f (x; 8, 1)
0.10 0.05 0.01

n LRp
n LREM

10,n LRp
n LREM

10,n LRp
n LREM

10,n

100 0.1073 0.1207 0.0563 0.0662 0.0121 0.0158
200 0.1044 0.1114 0.0560 0.0600 0.0143 0.0161
500 0.1053 0.1064 0.0532 0.0540 0.0093 0.0097
1000 0.1047 0.1052 0.0535 0.0541 0.0106 0.0107

in the caption. First, it is interesting that both statistics LRp
n and LREM

10,n

result in the same figures. This implies that the EM algorithm no longer
increases the likelihood value under the occurrence of degeneration. Second,
it is obvious that the asymptotic analysis leading to p (α0) agrees quite well
with the simulation results of LRp

n and LREM
10,n. This consistently justifies

one of the main results of this paper that the degeneration arises from the
negative-definiteness of the random matrix. The relatively weak approxi-
mation in the sample size of 100 can be explained by the relatively weak
second-order approximation given by (5). Lastly, the value ps (α0, β0, n) is
the largest when the sample size is less than 1000. We may replace the
lower bound given by (11) by ps (α0, β0, n) if being smaller as a more prudent
benchmark in a finite-sample situation.

Some insights on the power of the tests can be gained. We consider a
number of gamma mixture models which are either entirely different in mix-
ing proportion, shape and scale parameters or with some of these parameters
being equal. Each of the following alternative hypotheses is formulated to
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Table 3: Proportions of zero statistics and simulated weights ps (α0, β0, n) using four
homogeneous gamma models. The asymptotic weights for the four cases are p (2) =0.1023,
p (6) =0.0576, p (8)=0.0536 and p (12)=0.0497.

H0 : f (x; 2, 1) H0 : f (x; 6, 1)
n LRp

n LREM
10,n ps (2, 1, n) LRp

n LREM
10,n ps (6, 1, n)

100 0.1195 0.1195 0.1636 0.0516 0.0516 0.0925
200 0.1258 0.1258 0.1596 0.0484 0.0484 0.0839
500 0.1206 0.1206 0.1382 0.0542 0.0542 0.0763
1000 0.1225 0.1225 0.1301 0.0545 0.0545 0.0649

H0 : f (x; 8, 1) H0 : f (x; 12, 1)
n LRp

n LREM
10,n ps (8, 1, n) LRp

n LREM
10,n ps (12, 1, n)

100 0.0465 0.0465 0.0731 0.0349 0.0349 0.0578
200 0.0470 0.0470 0.0674 0.0324 0.0324 0.0439
500 0.0384 0.0384 0.0592 0.0336 0.0336 0.0357
1000 0.0444 0.0444 0.0473 0.0297 0.0297 0.0259

test against H0

H101 : 0.2f (x; 8, 1) + 0.8f (x; 2, 4) ; H102 : 0.8f (x; 8, 1) + 0.2f (x; 2, 4) ;
H103 : 0.5f (x; 8, 1) + 0.5f (x; 2, 4) ; H104 : 0.5f (x; 8, 4) + 0.5f (x; 2, 1) ;
H105 : 0.2f (x; 8, 1) + 0.8f (x; 2, 1) ; H106 : 0.2f (x; 8, 4) + 0.8f (x; 2, 4) ;
H107 : 0.2f (x; 8, 1) + 0.8f (x; 8, 4) ; H108 : 0.2f (x; 2, 1) + 0.8f (x; 2, 4) ;
H109 : 0.5f (x; 8, 1) + 0.5f (x; 8, 4) ; H110 : 0.5f (x; 2, 1) + 0.5f (x; 2, 4) ;
H111 : 0.5f (x; 8, 1) + 0.5f (x; 2, 1) ; H112 : 0.5f (x; 8, 4) + 0.5f (x; 2, 4) .

Every simulation experiment consists of 10000 replications, each of sample
size 1000. We find that the upper bound χ2

2 given by (11) is extremely efficient
in the testing process. Almost all simulated test statistics of LRp

n and LREM
10,n

are greater than the critical values of the χ2
2 distribution. The powers are

all equal to one at significance levels 0.1, 0.05 and 0.01 except for the test
of H104. In this particular case, the statistic LRp

n gives powers of 0.9999,
0.9997 and 0.9985 at the corresponding significance levels, whereas LREM

itr,n

yields powers of 0.9999, 0.9997 and 0.9987. Both methods seem to be equally
powerful. However, we should point out that the EM algorithm increases the
likelihood value at each cycle in the iterative sequence (Dempster et al., 1977).
Meanwhile, the penalty function in theMLRTmay reduce the log-likelihood.
In Table 4, we report the average test statistics in 10000 replications for each
of the alternative hypotheses. That the averages of LREM

10,n are always higher
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Table 4: Average values of test statistics under alternative hypotheses.

H101 H102 H103 H104 H105 H106

LRp
n 576.1 487.5 780.4 43.54 61.82 61.82

LREM
10,n 884.3 783.7 781.2 43.79 76.23 76.21

H107 H108 H109 H110 H111 H112

LRp
n 470.8 129.0 341.4 62.63 124.9 61.82

LREM
10,n 558.5 140.8 342.2 62.72 125.6 74.64

implies that the use of LREM
10,n may achieve higher power given some extremely

small significance level or in some special cases that have not been considered
in the simulation.

5. Data Example

5.1. Danish Fire Loss

This example is based on the Danish fire loss data set which consists
of 2157 losses exceeding one million Danish Krone from the years 1980 to
1990 inclusive. It is well known that the data set has a heavy right tail in
the extreme value literature (Embrechts et al., 1997). The adequacy of the
homogeneous gamma model which has a moderate tail is suspected. We apply
the proposed results and methods to see if a two-component gamma mixture
model will improve the fitting with further verifications, justified by some
goodness-of-fit measures. McNeil (1997) provided a time series plot to check
for clustering of large losses and a sample mean excess function to determine
heavy-tailed behaviour. The results suggest the validity of the independence
assumption and the possibility in modelling excesses over high thresholds
using the generalized Pareto distribution. Recently, Wong and Li (2010)
proposed a threshold model incorporating the generalized Pareto distribution
for excesses and a Weibull distribution for the rest of the observations. This
threshold model flexibly gives a global fit and an appropriate tail modelling.
These two findings suggest that the loss data are likely to be independent
but from a heterogeneous population.

The maximum likelihood estimate of a gamma model is
(
α̂, β̂

)
= (1.299, 0.382)

with a corresponding maximized log-likelihood of -4752. In the gamma mix-
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Figure 2: The probability-probability plots. The left panel shows the plot of the fitted
gamma model and the right panel shows that of the fitted gamma mixture model using
the EM algorithm. A 45-degree straight line is given for reference.

ture model, the penalized procedure and the EM algorithm give(
π̂p, α̂p

1, β̂
p
1 , α̂

p
2, β̂

p
2

)
= (0.5098,15.68,10.09,1.226,0.2040) ;(

π̂EM , α̂EM
1 , β̂EM

1 , α̂EM
2 , β̂EM

2

)
= (0.2816,1.256,0.1619,10.19,6.036)

which yield the values of the test statistic of 1829 and 1978, respectively.
The evidence for the mixture model is overwhelming as both statistics are far
greater than the critical values of the χ2

2 distribution at any reasonable signif-
icance level. Further support for this is a goodness-of-fit assessment based on
probability-probability plots as shown in Fig. 2. The gamma mixture model
provides a much better fit as the plot exhibits obviously a straight line pat-
tern. This example lends further support to the asymptotic distribution in
(10), improvement in power through the use of LREM

itr,n, and demonstrates its
simplicity in implementation.

5.2. Material Lifetimes

Gamma distributions give useful representations of a number of physi-
cal situations such as random processes in time. We consider a set of 101
observations for the lifetime of an aluminium sheet under maximum stress
of 21,000 psi. A brief description and the data listed in increasing order
are available in Birnbaum and Saunders (1958). The authors demonstrated
a realistic adjustment to exponential models in representing lifetimes in a
life-testing situation. Therefore, it is interesting to check the redundancy of
a mixture structure in the representation. More insight may be gained by
applying our results in studying the data set.
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Table 5: Estimation results of the EM algorithm for the material lifetimes data. The p-
values are calculated using (13) based on (a) direct substitution and (b) weighted average
procedure.

itr Parameter estimate LREM
itr,n p-value(

π̂EM , α̂EM
1 , β̂EM

1 , α̂EM
2 , β̂EM

2

)
(a) (b)

10 (0.5048,22.73,0.01452,10.25,0.008307) 2.389 0.2879 0.2872
50 (0.5222,22.20,0.01425,10.15,0.008262) 2.397 0.2867 0.2860
100 (0.5446,21.53,0.01389,9.999,0.008175) 2.408 0.2851 0.2845

The parameter estimate of a gamma model is
(
α̂, β̂

)
= (11.86,0.008462).

In the gamma mixture model, the penalized maximum likelihood estimate of(
π̂p, α̂p

1, β̂
p
1 , α̂

p
2, β̂

p
2

)
= (0.5001, 22.82, 0.01457, 10.26, 0.008307)

leads to a value of the MLRT statistic of 2.387. A lower bound of the p-
value evaluated through (11) is 0.2624, larger than any reasonable size of
a statistical test. In the absence of α0 under H0, direct substitution and
the weighted average procedure yields p (α̂)=0.0495 and pw (α̂, 10)=0.0518,
respectively. The corresponding p-values are 0.2882 and 0.2875. The use of
the penalized estimates initiates the EM iterative sequence. A series of 1000
iteration steps seems to indicate the occurrence of event EII that individual
estimators are not consistent as shown in the left panel of Fig. 3 in which
π̂EM increases slowly to one as the iteration moves on. Evidence in favour of
H0 is obvious. On the other hand, the behaviour of LREM

itr,n is agonizing, in
particular as π̂EM is closer to one that a jump in the test statistic is observed
in the right panel of Fig. 3. The AIC criterion starts to reject H0 in the
833th iteration whereas the BIC criterion and the statistic LREM

itr,n at the 5%
significance level consistently suggest retention of H0 in all 1000 iterations.
However, the insignificant increase of the statistic in the first 600 iterations
suggests early termination of the EM algorithm. Therefore, the suggestions
in Section 3.4 are useful. We can consider a number of the test statistics
in different iterative steps and apply (13). The results reported in Table 5
consistently suggest the retention of H0 in agreement with the method of
MLRT.
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Figure 3: The EM estimate of the mixing proportion (left) and the statistic LREM
itr,n (right)

in each iterative run.

6. Conclusion

We investigate the modified likelihood ratio test for homogeneity in two-
component gamma mixture models. We have found that the limiting distri-
bution of the test statistic is the parameter-dependent chi-bar-square distri-
butions given by a degeneration to zero with weight p (α0) and a chi-square
distribution with two degrees of freedom with weight 1− p (α0). This weight
is related to the negative-definiteness of a complicated random matrix de-
pendent on the shape parameter of the homogeneous gamma model. An
asymptotic approximation using a trivariate normal probability has been de-
veloped for p (α0). All these theoretical results have been revealed through
an extensive simulation to be very accurate and reliable.

In applications, the shape parameter is unknown. Based on the behaviour
of p (α0), we have developed a lower bound for the retention of the homo-
geneous hypothesis and an upper bound for the rejection. The bounds have
been proved to be extremely useful in simulation and in two real examples.
On the rare occasion that the observed test statistic falls between the bounds
or if practitioners require an evaluation of the p-value, we recommend the
weighted average procedure which takes into account the estimation error
of the shape parameter. This procedure has yielded consistent results in a
study of the material lifetimes data.

Due to the popularity of the EM algorithm in the analysis of mixture
models, we recommend that the likelihood ratio test statistic be evaluated
at the maximum likelihood estimates obtained via the EM algorithm. There
are some appealing advantages including the preservation of the convenience
of the conventional likelihood ratio test procedure and in the prevention of
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power reduction. The fact that the EM iterative sequence converges slowly
allows the selection of a number of observed test statistics. A decision may
therefore be based on these statistics by comparing the derived asymptotic
null distribution conditional on the consistency of individual estimators. Its
simplicity and convenience have been illustrated in the real examples.

A number of interesting insights have been obtained on the form of the
asymptotic null distribution and on its practical implementation. We believe
many other mixture models share similar characteristics and this deserves fur-
ther research and discussion. In particular, the parameter-dependent struc-
ture of the limiting distribution may not be as simple as our situation in
which only the shape parameter is involved. Developing simple decision cri-
teria such as bounds appears to be very challenging.
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Appendix A. Approximation for LRp
1n

Define

Yi =
1

f (Xi;α0, β0)

{
∂f(Xi;α0,β0)

∂α
∂f(Xi;α0,β0)

∂β

}
; Zi =

1

f (Xi;α0, β0)

{
∂2f(Xi;α0,β0)

∂α2

∂2f(X;α0,β0)
∂α∂β

∂2f(Xi;α0,β0)
∂α∂β

∂2f(X;α0,β0)
∂β2

}

whose expressions for the gamma model are given by (4) and (7), respec-
tively. The penalty function regains the consistency and efficiency of the
penalized maximum likelihood estimators (Chen et al., 2008; Chen and Li,
2009). Following Section 2.3 of Chen et al. (2000), but in a bivariate context
below, the resulting characterization of LRp

1n involves the maximum of the
following function

2
n∑

i=1

δi −
n∑

i=1

δ2i
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plus op (1), where

δi = π

(
α1 − α0

β1 − β0

)T

Yi + π

(
α1 − α0

β1 − β0

)T

Zi

(
α1 − α0

β1 − β0

)
+(1− π)

(
α2 − α0

β2 − β0

)T

Yi + (1− π)

(
α2 − α0

β2 − β0

)T

Zi

(
α2 − α0

β2 − β0

)
.

A re-parameterization using vector parameters γ1 and γ2, where

γ1 =

{
π (α1 − α0) + (1− π) (α2 − α0)
π (β1 − β0) + (1− π) (β2 − β0)

}
; γ2 = {0.5π (1− π)}

1
2

(
α1 − α2

β1 − β2

)
leads to

LRp
1n = max

γ1,γ2
q (γ1, γ2) + op (1) ,

where

q (γ1, γ2) = 2
n∑

i=1

(
γT
1 Yi +

1

2
γT
1 Ziγ1 + γT

2 Ziγ2

)
−

n∑
i=1

(
γT
1 Yi +

1

2
γT
1 Ziγ1 + γT

2 Ziγ2

)2

.

From Lemma 1 in Charnigo and Sun (2004) and Lemma A2 in Li et al.
(2009) that γ̂p

1 = Op

(
n−1/2

)
and by the strong law of large numbers that

n−1
∑n

i=1 Zi = op (1). It follows that

LRp
1n = max

γ1,γ2
q∗ (γ1, γ2) + op (1) ,

where

q∗ (γ1, γ2) = 2
n∑

i=1

(
γT
1 Yi + γT

2 Ziγ2
)
−

n∑
i=1

(
γT
1 Yi + γT

2 Ziγ2
)2
.

The maximum value of q∗ (γ1, γ2) is (5) excluding the term op (1).

Appendix B. Asymptotic weight p (α0)

Denote the matrices M and υj by

M =

(
m11 m12

m12 m22

)−1

; υj =

(
υj11 υj12
υj12 υj22

)
,
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where

m11 =
α0

−1+α0Γ(2)(α0)
; m12 =

β0

−1+α0Γ(2)(α0)
; m22 =

β2
0Γ

(2)(α0)

−1+α0Γ(2)(α0)
;

υ111 = Γ(3) (α0) ; υ112 = 0; υ122 =
1
β2
0
;

υ211 = 0; υ212 =
1
β2
0
; υ222 = −2α0

β3
0
.

Then, we express Ui[11], Ui[12] and Ui[22] by

Ui[11] = Zi[11] − Yi[1] (m11υ111 +m12υ211)− Yi[2] (m12υ111 +m22υ211) ;
Ui[12] = Zi[12] − Yi[1] (m11υ112 +m12υ212)− Yi[2] (m12υ112 +m22υ212) ;
Ui[22] = Zi[22] − Yi[1] (m11υ122 +m12υ222)− Yi[2] (m12υ122 +m22υ222) .

The result in Section 3.2 follows from the central limit theorem and the
covariance matrix is obtained by σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 =


E
(
U1[11]U1[11]

)
E
(
U1[11]U1[12]

)
E
(
U1[11]U1[22]

)
E
(
U1[11]U1[12]

)
E
(
U1[12]U1[12]

)
E
(
U1[12]U1[22]

)
E
(
U1[11]U1[22]

)
E
(
U1[12]U1[22]

)
E
(
U1[22]U1[22]

)
 .
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