

The HKU Scholars Hub

The University of Hong Kong

Title	Penicillium marneffei infection and impaired IFN- immunity in humans with autosomal-dominant gain-of-phosphorylation STAT1 mutations
Author(s)	Lee, PPW; Mao, H; Yang, W; Chan, KW; Ho, MHK; Lee, TL; Chan, JFW; Woo, PCY; Tu, W; Lau, YL
Citation	Journal of Allergy and Clinical Immunology, 2014, v. 133 n. 3, p. 894–896.e5
Issued Date	2014
URL	http://hdl.handle.net/10722/194970
Rights	NOTICE: this is the author's version of a work that was accepted for publication in Journal of Allergy and Clinical Immunology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Allergy and Clinical Immunology, 2014, v. 133 n. 3, p. 894–896.e5. DOI: 10.1016/j.jaci.2013.08.051

1	Penicillium marneffei infection and Impaired Interferon-gamma Immunity in
2	humans with Autosomal Dominant Gain-of-phosphorylation STAT1 mutations
3	Pamela P.W. Lee, MBBS ^{1*} , Huawei Mao, PhD ^{1*} , Wanling Yang, PhD ¹ , Koon-Wing
4	Chan, MSc ¹ , Marco H.K. Ho, MBBS ¹ , Tsz-Leung Lee, MBBS ¹ , Jasper F. W. Chan,
5	MBBS ² , Patrick C.Y. Woo, MD ² , Wenwei Tu, PhD ¹ , Yu-Lung Lau, MD ¹
6	
7	¹ Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine,
8	The University of Hong Kong;
9	² Department of Microbiology, LKS Faculty of Medicine, The University of Hong Kong
10	
11	*Lee and Mao are co-first authors with equal contribution to the work
12	
13	Short title: Penicilliosis in children without HIV
14	
15	Keywords: Penicillium marneffei; penicilliosis; chronic mucocutaneous candidiasis;
16	STAT1; interferon-gamma; primary immunodeficiency
17	
18	Word count: 1085
19	

Corresponding author and reprint request: Prof. Yu-Lung Lau Department of Paediatrics and Adolescent Medicine, Room 117, 1/F New Clinical Building, Queen Mary Hospital, Pokfulam, Hong Kong, CHINA; Telephone: (852)-2255-4481; Fax: (852)-2855-1523 E-mail: lauylung@hku.hk Capsule summary: Penicillium marneffei is an AIDS-defining illness. We provide the first identification of autosomal dominant gain-of-phosphorylation STAT1 mutations causing defective interferon-gamma and Th17 immunity in patients with penicilliosis, an invasive mycosis endemic in Southeast Asia.

39 To the Editor:

40	Penicillium marneffei (PM) is a pathogenic fungus endemic in Southeast Asia. PM was
41	an extremely rare pathogen in human before the HIV epidemic, but following the
42	exponential rise in HIV prevalence in Southeast Asia, penicilliosis emerged as a
43	clinically significant opportunistic infection and is classified as an AIDS-defining
44	illness. ¹ Less commonly, penicilliosis occurs in patients with other immunodeficiencies,
45	such as severe combined immunodeficiency, common variable immunodeficiency,
46	hyper-IgM syndrome, hyper-IgE syndrome, the presence of anti-IFNy autoantibody,
47	diabetes mellitus, immunosuppressive therapy, and solid organ or hematopoietic stem
48	cell transplant. ^{1,2} Affected individuals often have disseminated disease with rapid
49	progression to multi-organ failure and death.
50	
51	We previously reported 5 Chinese HIV-negative children and teenagers with
52	disseminated penicilliosis. Four had co-existing chronic mucocutaneous candidiasis
53	(CMC) since infancy, and one of them was genetically confirmed to have autosomal
54	dominant hyper-IgE syndrome (AD-HIES). For the remaining 3 patients, a search for
55	genetic defects in CARD9, AIRE, STAT3, IL12B, IL12RB1, IFNGR1 was unrevealing. ³
56	The co-existence of CMC and systemic penicilliosis suggested a possible functional
57	defect of Th17 immune response in these patients. Recently, AD gain-of-function

58	missense mutations of STAT1 have been identified in several multiplex kindreds
59	displaying CMC, autoimmunity and squamous cell carcinoma. ⁴⁻⁹ We hypothesized
60	STAT1 as a candidate gene, and we sought to determine the cellular response to STAT1
61	activation in these patients. Consent for genetic diagnosis and functional studies was
62	obtained from parents, and the study was approved by The Institutional Review Board
63	of The University of Hong Kong / Hospital Authority Hong Kong West Cluster.
64	
65	P1, P2 and P3 were 3 unrelated Chinese children, and their clinical presentations and
66	immunological profile were previously reported in detail. ³ The core features and genetic
67	findings of the patients and their parents are listed in Table 1 and Fig E1 (Online
68	Repository). Heterozygous missense mutation in STAT1 was identified by Sanger
69	sequencing in P1 (c.800C>T, p.A267V) and P3 (c.863C>T, p.T288I), and total exome
70	sequencing in P2 (c.1074G>T, p.L358F; Online Repository). p.A267V is a known
71	mutation while p.T288I and p.L358F are novel, but missense mutations involving the
72	same amino acid residues (p.T288A and p.L358W) were reported in patients with
73	CMC. ⁴⁻⁶ Multiple sequence alignment of STAT1 orthologs (HomoloGene, NCBI)
74	showed that all residues are highly conserved in animals except zebrafish for A267 and
75	T288, and chicken for L358.

77	Missense mutations affecting the STAT1 coiled-coil domain identified in patients with
78	AD-CMC have been demonstrated to be gain-of-function mutants with increased
79	tyrosine-701 residue phosphorylation and enhanced γ -activated sequence (GAS)
80	promoter binding activity. ⁵ We compared the level of STAT1 phosphorylation in patients
81	with healthy controls by flow cytometric analysis of intracellular phosphorylated STAT1
82	(pSTAT1). PBMC from patients and controls were stimulated with recombinant human
83	IFN α (40,000IU/ml) or IFN γ (5,000 IU/ml) for 20min. Compared with normal controls,
84	lymphocytes from all patients demonstrated significantly higher percentage of pSTAT1+
85	cells and increased phosphorylation intensity in response to IFN α and IFN γ stimulation
86	(Fig 1 A and B, Fig E2 in the Online Repository). The kinetics of STAT1
87	dephosphorylation was studied in P1. When treated with tyrosine kinase inhibitor,
88	almost all STAT1 in control cells was dephosphorylated by 30min; whereas about 50%
89	and 25% of STAT1 in patient cells remained phosphorylated at 30 and 60min
90	respectively, indicating prolonged STAT1 phosphorylation in patient cells (Fig 1C). A
91	missense mutant affecting residue L358 was previously shown to cause delayed
92	dephosphorylation as well. ⁶
93	
94	Next, we determined the proportion of IFN γ and IL17A-expressing T-cells in PMBCs

95 activated by overnight incubation with PMA (100ng/ml) and ionomycin (1 μ g/ml) in the

96	presence of Brefeldin A. Patients had significantly lower CD3+/IFN γ + T-cells
97	(14.8±1.5% vs 43.3±12.8%, p<0.01) and CD3+/IL17A+ T-cells (0.30±0.11% vs
98	2.15±1.41%, p=0.01; Fig. 1D) compared to normal controls. Finally, we evaluated the
99	capacity of IFNy production towards fungal stimulation in P1 and P2. PBMCs were
100	co-cultured with Candida albicans or PM for 2 days, and supernatants were collected
101	for IFNy assay (FlowCytomix, Bender MedSystems). Compared with normal controls,
102	P1 and P2 produced much lower IFNy towards both fungi (Fig. 1E). Production of other
103	cytokines (IL1 β , IL6, TNF α and MIP1 α) was studied in P1, and was comparable with
104	normal controls. (Fig E3, Online Repository).
105	Previous studies demonstrated that patients with CMC caused by
106	gain-of-phosphorylation STAT1 mutations had impaired Th1 and Th17 response as a
107	result of defective signaling through the IL12 and IL23 pathways. ^{4-7, 10} Majority of these
108	gain-of-phosphorylation mutants are located in the coiled-coil domain and two in the
109	DNA-binding domain. ^{6, 7} Impaired dephosphorylation of STAT1 enhances
110	gamma-interferon activation factor (GAF)-dependent cellular response to IFN α/β , IFN γ ,
111	and IL27, which are repressors of Th17 development from naïve T-cells. The enhanced
112	response mediated by STAT1 probably impairs Th17 immunity. ⁵
113	

114 The identification of *STAT1* and *STAT3* mutations in patients with systemic penicilliosis

115	suggests the importance of Th1 and Th17 immune response against PM. It is generally
116	believed that PM establishes diseases in the lungs following inhalation of conidia, and
117	disseminates in the form of intracellular yeast via the reticuloendothelial system. The
118	activation of macrophages by IFN γ is essential for their fungicidal activity against PM
119	through the production of nitric oxide. While PM infection was self-limiting in
120	wild-type mice, all IFN _γ -knockout mice died of systemic mycosis. ¹¹ In humans,
121	individuals with anti-IFN γ autoantibody suffered from disseminated penicilliosis. ² Our
122	experiments showed that lymphocytes of P1 and P2 exhibited defective IFNy production
123	to PM in vitro. To our knowledge, this study shows for the first time that a primary
124	defect in IFN γ and IL17 immune response may be accountable for human PM infection.
125	Penicilliosis should be regarded as an indicator of underlying primary
126	immunodeficiency in HIV-negative individuals after excluding secondary causes.
127	
128	It is worth noting that impaired IFN γ and Th17 response in patients with
129	gain-of-phosphorylation STAT1 mutations can predispose them to invasive mycosis as
130	well as a range of bacterial and viral infections. Apart from penicilliosis, disseminated
131	aspergillosis, candidemia, disseminated histoplasmosis and recalcitrant cutaneous
132	fusariosis were reported. ^{6, 12} P2 and P3 had recurrent sinopulmonary infections caused
133	by respiratory viruses and encapsulated bacteria, which was also similarly described by

134	Uzel et al ⁶ and Takezaki et al. ⁷ Of note, P3 had tuberculous lymphadenitis, recurrent
135	herpes zoster and EBV-associated hemophagocytosis, supporting previous observation
136	that AD gain-of-phosphorylation STAT1 mutations are associated with susceptibility to
137	mycobacterial and herpes virus infections. ⁸ Autoimmunity such as hypothyroidism,
138	autoimmune hepatitis, systemic lupus erythematosus and type I diabetes mellitus, as
139	well as malignancy such as esophageal carcinoma can lead to significant morbidities to
140	this group of patients. The infectious disease susceptibility and phenotypic spectrum of
141	AD-CMC caused by STAT1 mutations are wider than previously believed, revealing the
142	divergent roles of STAT1 in host-pathogen interaction, immune tolerance and
143	carcinogenesis.
144	
145	Pamela P.W. Lee, MBBS ^{1*}
146	Huawei Mao, PhD ^{1*}
147	Wanling Yang, PhD ¹
148	Koon-Wing Chan, MSc ¹
149	Marco H.K. Ho, MBBS ¹
150	Tsz-Leung Lee, MBBS ¹
151	Jasper F. W. Chan, MBBS ²
152	Patrick C.Y. Woo, MD ²

153	Wenwei Tu, PhD ¹
154	Yu-Lung Lau, MD ¹
155	
156	From ¹ Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine,
157	The University of Hong Kong; ² Department of Microbiology, LKS Faculty of Medicine,
158	The University of Hong Kong
159	*These authors contributed equally to this work.
160	
161	Funding support: The Hong Kong Society for the Relief of Disabled Children
162	
163	Disclosure of potential conflict of interest: The authors declare that they have no
164	relevant conflicts of interest.
165	
166	
167	
168	
169	
170	
171	

174		REFERENCES
175	1.	Supparatpinyo K, Khamwan C, Baosoung V, Nelson KE, Sirisanthana T.
176		Disseminated Penicillium marneffei infection in southeast Asia. Lancet 1994;
177		344:110-3.
178	2.	Tang BS, Chan JF, Chen M, Tsang OT, Mok MY, Lai RW, et al. Disseminated
179		penicilliosis, recurrent bacteremic nontyphoidal salmonellosis, and burkholderiosis
180		associated with acquired immunodeficiency due to autoantibody against gamma
181		interferon. Clin Vaccine Immunol 2010; 17:1132-8.
182	3.	Lee PP, Chan KW, Lee TL, Ho MH, Chen XY, Li CH, et al. Penicilliosis in children
183		without HIV infectionare they immunodeficient? Clin Infect Dis 2012; 54:e8-e19.
184	4.	van de Veerdonk FL, Plantinga TS, Hoischen A, Smeekens SP, Joosten LA, Gilissen
185		C, et al. STAT1 mutations in autosomal dominant chronic mucocutaneous
186		candidiasis. N Engl J Med 2011; 365:54-61.
187	5.	Liu L, Okada S, Kong XF, Kreins AY, Cypowyj S, Abhyankar A, et al.
188		Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie
189		chronic mucocutaneous candidiasis. J Exp Med 2011; 208:1635-48.
190	6.	Uzel G, Sampaio EP, Lawrence MG, Hsu AP, Hackett M, Dorsey MJ, et al.
191		Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune
192		dysregulation-polyendocrinopathy-enteropathy-X-linked-like syndrome. J Allergy

- 193 Clin Immunol 2013; doi: 10.1016/j.jaci.2012.11.054.
- 194 7. Takezaki S, Yamada M, Kato M, Park MJ, Maruyama K, Yamazaki Y, et al. Chronic
- 195 mucocutaneous candidiasis caused by a gain-of-function mutation in the STAT1
- 196 DNA-binding domain. J Immunol 2012; 189:1521-6.
- 197 8. Toth B, Mehes L, Tasko S, Szalai Z, Tulassay Z, Cypowyj S, et al. Herpes in STAT1
- 198 gain-of-function mutation. Lancet 2012; 379:2500.
- 199 9. Soltész B, Tóth B, Shabashova N, Bondarenko A, Okada S, Cypowyj S et al. New
- and recurrent gain-of-function STAT1 mutations in patients with chronic
- 201 mucocutaneous candidiasis from Eastern and Central Europe. J Med Genet. 2013
- 202 Jul 17. doi: 10.1136/jmedgenet-2013-101570.
- 203 10. Smeekens SP, Plantinga TS, van de Veerdonk FL, Heinhuis B, Hoischen A, Joosten
- LA, et al. STAT1 hyperphosphorylation and defective IL12R/IL23R signaling
- 205 underlie defective immunity in autosomal dominant chronic mucocutaneous
- 206 candidiasis. PLoS One 2011; 6:e29248.
- 207 11. Sisto F, Miluzio A, Leopardi O, Mirra M, Boelaert JR, Taramelli D. Differential
- 208 cytokine pattern in the spleens and livers of BALB/c mice infected with Penicillium
- 209 marneffei: protective role of gamma interferon. Infect Immun 2003; 71:465-73.
- 210 12. Wang X, Lin Z, Gao L, Wang A, Wan Z, Chen W, et al. Exome sequencing reveals a
- signal transducer and activator of transcription 1 (STAT1) mutation in a child with

212 recalcitrant cutaneous fusariosis. J Allergy Clin Immunol 2013; 131:1242-3.

214 Table 1 Core clinical features of 3 patients with systemic *P. marneffei* infection and

	P1	P2	P3
Gender	М	F	F
Age of presentation	Infancy	Infancy	infancy
Family history	Nil of significance	Nil of significance	Nil of significance
Infections			
Fungus	CMC, disseminated	CMC, C. albicans and C.	CMC, disseminated PM,
	PM	tropicalis otitis externa,	disseminated aspergillosis
		disseminated PM	
Bacteria	Nil documented	Recurrent sinopulmonary	Recurrent sinopulmonary
		infections	infections
Mycobacteria	Nil documented	Nil documented	M. tuberculosis
			lymphadenopathy
Virus	Nil documented	H1N1 influenza A respiratory	Recurrent herpes zoster
		infection with prolonged carriage,	reactivation, EBV-associate
		CMV pneumonitis	hemophagocytosis
Mutation			
Nucleotide change	c.800C>t	c.1074G>T	c.863C>T
Amino acid change	p.A267V	p.L358F	p.T288I
Domain	Coiled-coil domain	DNA binding domain	Coiled-coil domain
Carrier status of	Not carrier	Not carrier	Mother - not carrier
parents			(father not checked)

STAT1 mutations.

224	Figure 1. Gain-of-phosphorylation STAT1 mutations impaired IFN γ and IL17 responses.
225	A, PBMCs were stimulated with IFN α or B , IFN γ and analyzed for intracellular
226	pSTAT1 expression by gating on lymphocytes. The increase in %pSTAT1+ population
227	in stimulated cells relative to unstimulated cells was calculated. Representative
228	histograms are shown for P1 and a normal control. C, PBMCs from P1 were
229	stimulated by IFN γ followed by treatment with staurosporine for 30 or 60 minutes. The
230	percentage of intracellular pSTAT1 expression and mean fluorescence intensity (MFI)
231	were determined in monocytes by flow cytometry. D , PBMCs were stimulated with PMA
232	plus ionomycin and intracellular expression of IFN γ and IL17A in CD3+ T-cells was
233	analyzed by flow cytometry. E , PBMCs were co-cultured with <i>C</i> . <i>albicans</i> (MOI of 5) or
234	<i>P. marneffei</i> conidia (MOI of 1) for 48 hours, and IFNγ in the supernatant was quantified.