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Abstract 

The strength of aluminum alloy 2025 (duralumin) micro-pillars is known to be 

significantly higher than that of pure Al micro-pillars of comparable sizes since the precipitates 

present act as obstacles to trap dislocations within the small sample volume. In this work, the 

creep behavior of precipitate-hardened duralumin micro-pillars of sizes ~1µm to ~6.5µm is 

investigated by compression experiments at room temperature. The effects of an internal grain 

boundary were also investigated by comparing the creep behavior between single crystalline and 

bi-crystalline micro-pillars. The results reveal that peak aged duralumin pillars, in which the 

produced precipitates can efficiently block mobile dislocations, show increasingly significant 

creep with increasing pillar size, with a typical creep rate of          which is drastically larger 

than that of bulk at room temperature. The bi-crystalline pillars creep even faster than the single 

crystalline counterparts. TEM examination of the deformed microstructures reveals that the creep 

rate depends on the residual dislocation density, indicating that dislocations are the agents for 

creep. Theoretical modeling suggests that the steady-state creep rate is proportional to the 

lifetime of mobile dislocations, which rises with specimen size in the microns range due to the 

fact that the dislocations are not easily pinned in this range. As the pillar size increases in this 

range, the dislocations spend longer time in viscous motion across the specimen, hence the 

retained dislocation density is higher which leads to a higher strain rate according to the Orowan 

equation. It is expected that this trend of creep rate with specimen size will be reversed for larger 

specimens, probably in the tens of microns range, when dislocations experience a higher chance 

of being pinned and immobilized by the precipitates.   
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1 Introduction 

It is well known that micro- and nano-sized metallic single crystals exhibit size-

dependent deformation behavior. The most investigated phenomena are the inverse relationship 

between strength and specimen size (Dimiduk et al., 2005; Dimiduk et al., 2007; Dou and Derby, 

2009; Frick et al., 2008; Greer and De Hosson, 2011; Han et al., 2010; Kim et al., 2010; Kim et 

al., 2012; Lee et al., 2009; Ng and Ngan, 2008b; Sun et al., 2011; Volkert and Lilleodden, 2006; 

Ye et al., 2011), and jerky flow behavior (Dimiduk et al., 2005; Dimiduk et al., 2007; Dimiduk et 

al., 2006; Greer and Nix, 2006; Greer et al., 2005; Ng and Ngan, 2008a, b; Shan et al., 2008; 

Uchic et al., 2004). With the assistance of advanced techniques such as in situ transmission 

electron microscopy (TEM) (Hemker and Nix, 2008; Oh et al., 2009; Shan et al., 2008) and Laue 

micro-diffraction (Maass and Uchic, 2012; Maass et al., 2009; Zimmermann et al., 2012), the 

dislocation structure evolution in nano- and micro- specimens can be visualized, and the physical 

mechanisms of the unusual deformation behavior are explainable by a number of models. One 

widely accepted model considers a “dislocation starvation” condition pertinent to submicron 

crystal volumes (Greer and Nix, 2006; Greer et al., 2005), in which mobile dislocations would 

easily glide through the crystal leaving the latter in a continuous dislocation-depleted state. The 

“source truncation” (Parthasarathy et al., 2007; Rao et al., 2007) and “exhaustion hardening” 

(Akarapu et al., 2010; Norfleet et al., 2008; Rao et al., 2008) models consider that in larger 

crystals that are microns in size, due to the distribution and operation of dislocation sources in 

the confined volume, a mean-field condition for forest hardening could not be met.  

In order to smooth out the jerky flow, a number of strategies have been proposed to 

restore the mean-field condition for dislocation interactions by introducing means to trap 

dislocations within the specimen, including coating (El-Awady et al., 2011; Gu and Ngan, 2012; 

Jennings et al., 2012; Lee et al., 2013; Ng and Ngan, 2009b; Xu et al., 2013), grain boundary 

(Burek et al., 2011; Gu et al., 2012; Jang et al., 2011; Kunz et al., 2011; Ng and Ngan, 2009a; 

Rinaldi et al., 2008; Zhang et al., 2013), nano-twinning (Afanasyev and Sansoz, 2007; Deng and 

Sansoz, 2009; Jang et al., 2011; Jang et al., 2012) and precipitates(Gu and Ngan, 2013). 

Somewhat surprisingly, in addition to achieving a smoother flow behavior, the rapid 

accumulation of dislocations within a small volume can often lead to tremendous strain 
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hardening and therefore elevation of the flow stress (Afanasyev and Sansoz, 2007; El-Awady et 

al., 2011; Gu and Ngan, 2012, 2013; Jang et al., 2011; Jennings et al., 2012; Ng and Ngan, 2009a, 

b; Zhang et al., 2013), although in the case of introducing a grain boundary to form a bi-crystal, a 

weakening effect was observed in nano-sized pillars (Kunz et al., 2011) whereas strengthening 

was observed in micron-sized counterparts (Ng and Ngan, 2009a). Our recent study on 

precipitated duralumin micro-pillars (Gu and Ngan, 2013) shows that strength is improved while 

size dependence is reduced by the precipitates, when compared with pure Al pillars. However, 

significant creep was also found in these precipitated duralumin micro-pillars, particularly in 

relatively larger pillars.  

Understanding time-dependent plasticity is very important in engineering applications, 

and so far, the room-temperature (RT) creep behavior of micro-pillars has been studied in a 

number of materials. Compression experiments on Ni3Al micro-pillars at RT have revealed an 

extremely high creep rate relative to that of bulk, which is thought to be due to the surface 

diffusion at the pillar heads (Afrin and Ngan, 2006). However, single crystalline Al micro-pillars 

were found to exhibit creep rates two orders of magnitude lower than polycrystalline Al bulk, 

and this is attributed to the much lower contents of dislocations which are the agents for 

dislocation creep (Ng and Ngan, 2007). The RT creep of nanocrystalline nickel pillars has also 

been found to exhibit a reverse relation with the specimen size, with a much larger creep rate 

than that of bulk due to an increased contribution of free surface (Choi et al., 2013). These 

observations as a whole suggest that both the external specimen size and internal microstructures 

can significantly affect the creep behavior of small crystals. However, the effects of these two 

factors on creep have not been systematically studied yet. In the present study, using duralumin 

micro-pillars as a model system, the coupled influence on the RT creep of a controlled 

precipitated microstructure, an introduced grain boundary, as well as external specimen size, was 

investigated.   

 

2 Experimental details 
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Two bulk slices of aluminum alloy 2025 (Al-4wt%Cu-1.3wt%Mg-1.3wt%Ag-0.6wt%Mn) 

were annealed at 500°C for 24 hours for homogenization initially. The specimens were then 

solution heat-treated at 520°C for 3 hours in an air furnace, followed by immediate water quench 

in icy water. The bulk specimens were stretched by ~2% in a tensile machine before aging 

treatment. Then, one of the specimens, labeled as the ‘RT-aged’ hereafter, was exposed at RT for 

several days without any artificial aging; the other, labeled as ‘peak-aged’, was aged at peak 

condition at 170°C for 15 hours in a furnace (Gu and Ngan, 2013). The two pieces were 

mechanically polished, and then electro-polished in a 1:4 mixture of nitric acid and methanol at -

30°C and 15V for 30 seconds. Afterwards, Electron Back Scattered Diffraction (EBSD) was 

carried out on both pieces to identify large grains with diameter > 80µm and orientation ~[101], 

in which micro-pillars were fabricated by a Quanta 200 3D Dual Beam FIB/SEM (FIB) system. 

Micro-pillars of diameters ~6.5µm, ~3.5µm and ~1.0µm, all with a diameter-to-height ratio of 

~1:3, were made by a series of concentric annular-patterned FIB milling with decreasing currents 

at an ion beam voltage of 30kV. The fabricated micro-pillars were slightly tapered ~3º due to the 

defocused ion beam milling, and the diameters of pillars were taken at  mid-height. While most 

pillars machined this way were single crystalline, some were bi-crystalline with an initially 

subsurface grain boundary passing through the body of pillar. All pillars were subjected to creep 

testing at RT in an Agilent G200 Nanoindenter with a flat-ended diamond punch of diameter 

8.5µm, which was fabricated from a diamond Berkovich tip also by FIB milling. The creep tests 

were performed in a load controlled manner, in which the applied load was raised to a peak value 

and held for 200 seconds before unloading. The loading and unloading rate was the same at 

~12MPas
-1

, so that the strain rate during this stage could remain at ~10
-3

s
-1

. Thermal drift was 

controlled at within 0.5 nm/s. The deformed appearances of micro-pillars after creep tests were 

imaged by scanning electron microscopy (SEM) in a LEO1530 microscope. Finally the 

deformed duralumin pillars were characterized by transmission election microscope (TEM) in 

order to examine their crystal structures as well as dislocation distributions. Longitudinal TEM 

samples running along the long axis of the pillars were prepared by FIB milling on both sides of 

the pillars to reduce the thickness into ~1µm, then welded onto an in situ Omniprobe by tungsten 

deposition, followed by cutting off from the bulk. The samples were welded into TEM copper 

grids by tungsten deposition and cut from the Omniprobe, and finally thinned down to ~150nm 
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thickness by FIB milling for electron transparency. TEM characterization was carried out in a 

Philips Tecnai microscope operating at 200kV. 

 

3 Results and analysis 

3.1 Single crystalline micro-pillars 

The single crystalline duralumin micro-pillars of diameters 1µm, 3.5µm and 6.5µm were 

loaded to a peak value and held for 200 seconds. During the hold, the axial strain increased with 

time as shown in Figure 1(a-b), where different pillar sizes were labeled by different colors. The 

maximum peak load varied from 50MPa to 125MPa, which is lower than the yield strength of 

duralumin micro-pillars of similar sizes (Gu and Ngan, 2013). For all the RT-aged micro-pillars 

in the same test condition, the stress-strain curves for pillars of different sizes are almost 

coincident both at the loading/unloading stage and the holding regime with slight scattering, and 

do not show any obvious size-dependent trend. However, for the peak-aged micro-pillars, the 

external specimen size can significantly affect the stress-strain curves. During the initial loading 

stage, the large 6.5µm pillars were much softer than the smaller pillars, and this has already been 

discussed separately (Gu and Ngan, 2013). The increased strain during the holding regime also 

depends significantly on the specimen size as well as the holding stress. It is obvious that larger 

pillars under higher stress can creep more significantly. The size dependent stress-strain behavior 

can also indicate that the softening in the loading stage was not produced by misalignment 

during tests which can lead to elastic softening, because the latter should lead to scattered 

modulus independent of the specimen size. Figure 1(c) summarizes the relation between the 

increased strain during holding and the applied stress. For the RT-aged pillars, the increased 

strain shows no obvious correlation with the applied stress and their external size, and the mean 

value for all tests is ~0.004.  For the peak-aged micro-pillars, the strain in the holding stage 

obviously depends on the applied stress and external size. As the applied stress varied from 

~50MPa to ~125MPa, the increased strain for the 1.0µm pillars rose from 0.004 to 0.013 and that 

for the 6.5µm ones rose from 0.03 to 0.05 respectively, while the 3.5µm pillars exhibit an 

intermediate value. As the drift rate for all the tests was controlled to a similar value, for the 
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peak-aged micro-pillars the significant displacement recorded during peak load holding should 

represent their significant creep behavior.   

Figure 2 (a-b) shows details of the creep behavior of the peak-aged single crystalline 

duralumin micro-pillars. As shown in Figure 2(a), the 6.5µm micro-pillars exhibited the usual 

transient creep regime where the strain increases rapidly with time, and then keeps on increasing 

with time almost linearly, indicating that a quasi-steady state regime has been reached, although 

the holding time is only 200 seconds. As for the 1.0 µm pillars, the demarcation of the two 

regimes is more ambiguous since the strain only grows slightly with time. Pop-in occasionally 

occurred on the strain curve when the applied stress was larger than 100MPa which is close to 

their yield strength(Gu and Ngan, 2013), suggesting the sudden generation of mobile dislocations 

at that moment(Li and Ngan, 2010; Ng and Ngan, 2007).    

The quasi-steady strain rate  ̇  was estimated as the average value of the strain rate 

between the holding time at 190s and 200s, and its relation with the applied stress is shown in 

Figure 2(b). During the hold, strain rate  ̇ is composed of the creep rate    ̇, thermal drift rate   ̇  

and strain rate    ̇ caused by environment noise, i.e.  ̇      ̇    ̇     ̇. As the drift rate during 

the tests was controlled at within 0.5 nms
-1

, this would lead to a fictitious strain rate   ̇  the upper 

limit of which would be             ,           and             respectively for the 

6.5µm, 3.5µm and 1.0µm micro-pillars, respectively, according to the diameter to height ratio of 

~ 1:3. However, Figure 2(b) shows an opposite trend of  ̇ increasing with the pillar size. For the 

largest 6.5µm pillars, the strain rate  ̇ increases with the applied stress from              to 

             , which is much larger than the upper limit value of    ̇ , confirming again that 

creep deformation was clearly significant in the 6.5µm pillars. This observation is very different 

from pure aluminum micro-pillars in the size range of ~4 µm to ~6.5 µm, where the creep strain 

rate was almost independent of stress and was in the order of ~10
-7

 s
-1

 to ~10
-6 

s
-1

 (Ng and Ngan, 

2007). For the peak-aged 1.0µm and 3.5µm pillars, the trend that the quasi-steady strain rate 

 ̇ increases with the applied stress becomes less obvious. The error bars in Figure 2(b) stand for 

one standard deviation from the mean value, and these are relatively wider for these two groups 

than the 6.5 µm group. This may be attributed to two reasons: (i) the environment noise affects 

the calculated strain rate of the smaller pillars more significantly, and (ii) the stochastic 
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fluctuations of the microstructures, in terms of the distribution of dislocations and precipitates, 

are more in smaller crystal volumes due to the breakdown of the mean-field effect. Nevertheless 

it is still obvious that the smaller pillars exhibit lower quasi-steady creep rate   ̇, despite that they 

are associated with larger drift rate   ̇ . To conclude, creep deformation is size dependent in the 

peak-aged duralumin micro-pillars, and it becomes much more significant for larger pillars in the 

micron scale.  

   The creep behavior of the peak-aged 6.5µm pillars was studied, with the applied stress 

in the holding regime increasing up to 350MPa. As the drift rate   ̇  and noise disturbance   ̇ are 

much smaller than the quasi-steady strain rate  ̇, the quasi-steady creep rate   ̇ is approximately 

equal to  ̇, and is shown in Figure 3.  It is found that, as similar to the creep behavior of 

duralumin bulk,    ̇ increases with the applied stress 𝜎 in a power-law manner   ̇ ∝ 𝜎 , where 

𝑚 = 0.55 is much smaller than that of bulk which is often in the range of ~3 to 8 (Nabarro and 

Villiers, 1995). The difference is thought to be a result of dislocation nucleation and depletion in 

the micro-crystals, as will be discussed later.   

 

3.2 Bi-crystalline micro-pillars 

The creep behavior of bi-crystalline 6.5µm pillars was also investigated, and their stress-

strain behavior is shown in Figure 4(a). Compared with the single crystalline case in Figure 1(a-

b), it is obvious that for both the RT-aged and peak-aged cases, the bi-crystalline pillars are 

softer during the initial loading stage and exhibit large strain increments in the holding stage, and 

these are particularly so for the peak-aged bi-crystalline pillars which show very significant 

softening compared to the single crystalline counterparts. The stress-strain curves in the loading 

stage in Figure 4(a) are uniform with slight scattering for the same kind of specimens, proving 

again that the softening is not introduced by misalignment between the specimens and the flat 

punch.  The relation of quasi-steady strain rate and applied stress for the 6.5µm pillars is shown 

in Figure 4(b). For both the RT-aged and peak-aged specimens, it is obvious that the bi-

crystalline pillars creep much faster compared to the single crystalline counterparts under the 

same test condition, and the quasi-steady strain rate monotonously increases with stress at a 
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much higher rate than the single crystalline pillars. In a word, an introduced grain boundary in 

the duralumin micro-pillars can lead to significant softening and enhanced creep when compared 

to monolithic pillars, even for the RT-aged pillars in which the precipitate size is much smaller. 

This result is contrary to pure Al micro-pillars (Ng and Ngan, 2007) of similar sizes, where  an 

introduced grain boundary leads to higher strength and work-hardening rate.   

       

3.3 SEM and TEM examinations 

Figure 5(a-b) is the deformed appearances of bi-crystalline 6.5µm pillars aged at RT and 

peak condition, corresponding to Figure 4 with a final strain of ~0.035 and ~0.134 respectively. 

Compared with the pure aluminum pillars of diameter 5-6µm after creep test (Ng and Ngan, 

2007), it is surprising that the deformed duralumin micro-pillars did not show any obvious slip 

bands around its surface. Their surface is very smooth except for a flaw where a grain boundary 

is located. The stress-strain curve in Figure 4 shows that the whole deformation process is very 

smooth and continuous without any pop-ins that happen in the case of pure aluminum, 

suggesting that dislocations do not in general zip through the pillar thickness to produce slip 

steps on the free surface, as is the case in pure Al pillars.  

The microstructures of deformed duralumin pillars were characterized by TEM. All of 

the TEM samples were fabricated from 6.5µm duralumin pillars after creep tests with stress 

~100MPa. The   vectors for two-beam conditions were chosen to give the most abundant visible 

dislocations under Bragg conditions. Although ion damage during FIB preparation was 

inevitable in the TEM samples, the dislocation distribution in the specimens, and in particular its 

variation with pillar size and precipitation microstructure, was still obvious. Figure 6(a-c) show 

the TEM images of deformed single crystalline duralumin pillars. In the TEM montage of the 

RT-aged pillar shown in Figure 6(a), dislocations with short lengths are seen tangled together 

and accumulating to a much higher density in the top part of the pillar, where the local stress 

should be slightly higher due to the slight tapered geometry of the pillar. Rod-shape dispersoids 

of T phase (Al20Cu2Mn3) 0.2-0.5µm long are seen distributed randomly in the pillar, which is not 

responsible for strengthening of the material (Wang and Starink, 2005). Figure 6(b) and 6(c) 
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show representative high-magnification TEM images of a RT-aged and a peak-aged pillar with 

corresponding final strain of 0.013 and 0.056 respectively, taken close to the top of the pillars. 

Bowed-out dislocations are seen tangled in the RT-aged pillar in Figure 6(b), indicating Orowan 

bowing mechanism was operative in the specimen with aging precipitates of Mg-Cu co-clusters 

in nano-size(Austin and McDowell, 2011; Starink and Wang, 2009; Wang and Starink, 2005). 

While in the peak-aged pillar in Figure 6(c), dislocations are zigzagged and jammed by co-

existing precipitates of non-coherent lath-shaped S phase (Al2CuMg) and coherent Guinier–

Preston–Bagaryatsky (GPB) zones (Wang and Starink, 2005, 2007) in a much denser state. The 

dislocation density   was estimated by the line-intercept method, in which   is calculated 

as    
  ⁄   where   is the average spacing between dislocation segments. It is obvious that 

dislocations distribute more densely in the peak-aged pillar with an average density        

       , an order of magnitude higher than the RT-aged one with              . Although 

the two pillars in Figure 6(b-c) did not have the same final strain, during steady-state creep the 

dislocation density should also reach a steady state (Smallman and Ngan, 2007) and so these 

estimates of   here should be representative of the steady-state creep behavior. The results reveal 

that in the single crystalline pillars of 6.5µm diameter, the precipitates in the peak-aged condition 

are much more effective in slowing down mobile dislocations than the RT-aged condition, so 

that the former exhibits a higher residual dislocation density after deformation.  

Figure 7(a-d) show details of the TEM characterization of the RT- and peak-aged bi-

crystalline 6.5 µm duralumin pillars deformed in similar creep tests up to final strains 0.035 and 

0.134 respectively. The TEM montages of the upper parts of the pillars in Figure 7(a,c) show that 

a grain boundary passes through the pillars and dislocations are more abundant than the case 

shown in Figure 6(a). Figure 7(b) and (d) are representative TEM images on the top grain close 

to the top of the pillars, from which the dislocation density is estimated as               

and              , respectively. As similar to the case of pure Al bi-crystalline pillars (Ng 

and Ngan, 2009a), a grain boundary can act not only as nucleation sites of dislocations, but also a 

barrier for mobile dislocations, so it is not surprising that the deformed bi-crystalline pillars show 

a higher dislocation density than the single crystalline case. 
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4 Discussions 

4.1 Microstructural effects on creep behavior 

Figure 1(a-c) show that the peak-aged duralumin micro-pillars creep much faster than the 

RT-aged counterparts, indicating that the precipitates present in the specimen is an important 

factor for creep. The precipitates in the specimen can act as obstacles for dislocation movement, 

so as to impede their elimination at free surfaces. The major precipitates in peak-aged duralumin 

are non-coherent S phase particles (Al2CuMg) with a submicron size (Wang and Starink, 2005). 

Compared with the precipitates produced under RT ageing, they are much larger but wider in 

spacing (Wang and Starink, 2005), therefore for a micro-pillar with a large enough size D ( e.g. 

D > 5 µm), dislocation motion in the peak-aged case is more likely to be slower due to the 

precipitates, resulting in higher dislocation contents in the deformed crystal (Gu and Ngan, 2013). 

In a small size pillar such as D ~1 µm, for both the RT-aged and peak-aged case, mobile 

dislocations have more opportunities to zip through the confined volumes, leading to a lower 

dislocation density in the deformed state (Gu and Ngan, 2013). Precipitates therefore play the 

role to accumulate dislocations which are the agents for creep, and so it is not surprising that 

with increasing crystal size, peak aged micro-pillars creep faster than RT-aged counterparts as 

shown in Figure 1. The fact that creep of micron-sized crystal volumes at RT is intrinsically tied 

to pre-existing dislocations has been demonstrated earlier in nanoindentation experiments on 

pure Al at constant loads (Feng and Ngan, 2001) 

On the other hand, when a grain boundary is introduced, duralumin bi-crystalline micro-

pillars can creep even faster than the single crystalline pillars at both the RT-aged and peak-aged 

conditions, as shown in Figure 4(a-b). It has been found that the embedded Ga atoms on the 

aluminum grain boundary introduced by FIB milling can cause grain boundary weakening and 

intergranular embrittlement (Zhang et al., 2006). However, the deformation behavior of pure Al 

bi-crystal pillars with similar sizes (Ng and Ngan, 2009a) shows that the presence of a grain 

boundary can increase the strength of micro-pillars due to the storage of dislocations to a high 

density inside, suggesting that the weakening effect by the embedded Ga at the grain boundary is 

limited.  TEM examination of the deformed state reveals that the dislocation density in the bi-

crystalline case is much higher, especially for the peak-aged case, suggesting that like the pure 
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aluminum case (Ng and Ngan, 2009a), the grain boundary in the duralumin micro-pillars may 

not just be a source for dislocation nucleation, but can also be a barrier for mobile dislocations to 

prevent them from leaving the crystal, thus retaining a high content of dislocations inside the 

crystal, which are the agents for creep. The grain boundary may introduce other effects on creep 

deformation, such as grain-boundary diffusion and sliding, as shown in another investigation on 

RT creep of nanocrystalline nickel pillars (Choi et al., 2013), but the results there indicated a 

reversed size dependent creep behavior, due to the increased contributions of free surfaces in 

smaller crystals. Therefore it is suggested that the creep of the duralumin bi-crystal micro-pillars 

here is dislocation, rather than grain-boundary, controlled.  Figure 8 summarizes the estimated 

dislocation density in the deformed 6.5µm duralumin pillars under the same testing condition, 

together with their quasi-steady creep rate   ̇. Although the dislocation density   was a rough 

estimate from <111> Bragg conditions, it is still obvious that    ̇ increases with    with a strong 

correlation, indicating again that creep in the duralumin micro-pillars is dislocation controlled.  

  

4.2 Size effect on creep behavior  

Another significant observation can be made by comparing the creep behavior between 

duralumin bulk and micro-pillars. Duralumin is an engineering material with wide applications 

(Dunnwald and ElMagd, 1996; Kazanjian et al., 1997; Kloc et al., 1996; Lumley et al., 2002), as 

it exhibits enhanced strength as well as better creep performance than pure Al, and the creep rate 

at stresses ranging from dozens to several hundreds of MPa is just about                 even 

at elevated temperatures (         ). However the above observations reveal that peak-aged 

duralumin micro-pillars creep significantly at RT, and even much faster than Al bulk and Al 

micro-pillars (Ng and Ngan, 2007). A similar observation arises in nano-crystalline nickel pillars 

of submicron sizes which creep much faster than bulk in RT with a creep rate 4 to 5 orders of 

magnitude higher than that of bulk (Choi et al., 2013), and this is attributed to the large 

proportion of free surface in the small pillar case (Choi et al., 2013). In the case of duralumin 

micro-pillars, the external size also plays an important role in their creep behavior. As mentioned 

above, the density of dislocations, which are the agents for creep, is controlled by the specimen 

size. In a small crystal, a mobile dislocation is more likely to zip through the confined volume 
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without multiplication or being slowed down or pinned by precipitate particles, so compared 

with a large micro-pillar, it exhibits a lower residual dislocation density, as demonstrated by 

TEM examination (Gu and Ngan, 2013), and also creeps less as shown in Figure 2.  

To quantitatively estimate the size effect on creep of micro-pillars, a model is developed 

here. According to the Orowan equation, the strain rate   ̇  during the steady state of a creep test 

can be written as 

  ̇     ̅ ,        (1) 

where   , and  ̅ respectively represent the mobile dislocation density and average velocity, and 

  is the Burgers vector. Very generally, the rate of mobile dislocation density  ̇  evolves 

according to  

 ̇   ̇   ̇  ,     (2) 

where  ̇  and  ̇  are the production and annihilation rates of the mobile dislocations, and  ̇  

here includes both the nucleation as well as multiplication rate. In a micro-pillar, fresh 

dislocations can be produced from the free surface or by sources inside, and both mechanisms 

should operate more rapidly at a higher stress level.  The production rate  ̇ of dislocations has 

been proposed as a power-law form (Ngan and Ng, 2010; Nix and Lee 2011) 

 ̇ ∝ 𝜎       (3) 

and with this, the dislocation generation rate would be  

 ̇   𝜎       (4) 

where   is a material constant. The dislocation annihilation rate can be supposed to obey first-or

der kinetics so that it can be written as: 

 ̇   
  

 
,      (5) 

where   is the average life time of mobile dislocations (Nix and Lee 2011).  
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When a mobile dislocation glides in a precipitated crystal, it may encounter precipitate 

particles. Upon interacting with such a particle, the dislocation may either overcome it by some 

bypassing mechanisms such as cross-slip (Poirier, 1985), or may be pinned and immobilized by 

it. A survival probability      is introduced here, which is the probability that a mobile 

dislocation has not been pinned by precipitates yet after gliding for a distance L. For obvious 

reasons,      should be monotonically decreasing with L, varying from 1 to 0 when L 

approaches infinity. A convenient phenomenological form of      can be: 

        (    ),     (6) 

where      . If the dislocation is able to overcome the particles it encounters during a travel 

distance L, then the life time   in eqn. (5) above should be the sum of the time    for gliding the 

distance L, and the time    for overcoming the particles, i.e.  

       .      (7) 

It is reasonable to assume that    is linearly proportional to    during a given distance travelled, 

as the distribution of precipitates is relatively homogeneous in the duralumin. Therefore, 

equation (7) can be written as       , where   is a coefficient that represents the difficulty 

for dislocations to glide a given distance in the material, and so   for the peak-aged duralumin 

should be much larger than that in the RT-aged case. In a micro-crystal with thickness D, a 

mobile dislocation can either glide through the specimen thickness D and finally annihilate at a 

free surface, or be immobilized by precipitate pinning and other ways. Therefore the average life 

time   of mobile dislocations is 

         {
 

 ̅
       

 

 ̅
  [      ]},   (8) 

where   is the mean free path of a dislocation between blockage by precipitates or 

immobilization events of other types. In this equation, the first term   
 

 ̅
       represents 

those dislocations which can zip through the pillar’s thickness D without being captured by the 

precipitates, and the second term   
 

 ̅
  [      ] represents those which are immobilized 
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by the precipitates or things alike. In the steady state   ̇   , so eqns. (2), (4), (5) and (8) can be 

developed into   

   
    

 ̅
{          [      ]},    (9) 

and from eqn. (1), the creep rate then becomes 

  ̇    𝜎 {          [      ]}      (10) 

where          

In the case of duralumin, we suppose d to be a constant for a given aged condition. The 

parameter m in Equation (10) corresponds to the experimental results in Figure 3 where  𝑚  

    . Other parameters in Equation (10) can be obtained by fitting to experimental results in 

Figure 2(b), which gives        ,         ,          and 

                             . The result shows that in Equation (10), the second term 

involving   weighs no more than ~3% of the first term, suggesting that slight deviations in the 

value of d would not affect the calculated   ̇  significantly, so that the assumption of a constant d 

is reasonable. It should also be noticed that d is the mean free path of a dislocation between 

pinning points, rather than the spacing of precipitates, because a gliding mobile dislocation may 

have opportunities to overcome the precipitates and keep on moving in the slip plane. Therefore, 

it is reasonable that d is larger than the precipitates spacing of a few dozens to hundreds of 

nanometers. The theoretical curves are shown in Figure 2(b) when   ̇ is taken as the strain rate  ̇, 

and it can be seen that one set of  ,  , d and    parameters can fit the   ̇  𝜎 relation for three 

different pillar sizes D.  

The fact that the experimental trends in Figure 2(b) can be described well by the model 

above indicates the validity of the latter. In a solute rich environment, the viscous motion of the 

dislocations, rather than strain hardening, controls the deformation rate, which increases as the 

quantity of mobile dislocations increases according to eqn. (1). In this picture, as Eqns. (9) and 

(10) show, the dependence of the creep rate on stress and pillar size as seen in Figure 2(b) is 

simply the effect of these two factors on the mobile dislocation density, which also agrees well 

with the observation from Figure 8 that the measured creep rate exhibits a good correlation with 
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the measured dislocation density. In the model, the stress dependence of the mobile dislocation 

density arises from the enhanced dislocation nucleation at higher stress, and although the power-

law form in eqn. (4) is empirical, such a form was found previously (Ngan and Ng, 2010; Nix 

and Lee 2011) to be able to produce predictions agreeing well with experiments.  

The size dependence of the dislocation density, on the other hand, arises from the effect 

of specimen size on the lifetime   of mobile dislocations inside the pillar, in a steady state where 

production balances annihilation. In such a steady state at a given stress level (which leads to 

production at a particular rate), eqns. (2), (4) and (5) give      𝜎   , i.e. a longer mobile 

lifetime would correspond to more mobile dislocations remaining in the pillar. From eqns. (6) 

and (8), as the pillar size D increases, the mobile lifetime   first increases, since dislocations take 

longer time to travel out of a larger specimen. Beyond a critical value of D, which is 

approximately         ,   drops towards an asymptotic value of     ̅ representing the bulk 

behavior, due to the fact that now the dislocations have higher chance of becoming pinned by the 

precipitates and no longer contributing to the strain rate, before they can travel out of the pillar. 

There is therefore an optimal value of D of            at which the mobile lifetime of 

dislocations is the longest, and, according to eqns. (9) and (10), the mobile dislocation density 

and the creep rate are also the highest. Using the parameters concluded above, such a critical 

value of D is ~90m in the present peak-aged alloy, which is much larger than the pillar sizes 

from 1.0 μm to 6.5 μm used in the present experiments. For this reason, the creep rate in the 

present experiments increases monotonically with D, as Figure 2(b) shows.     

Equation (6) also shows that, for pillar size D ranging from 1.0 μm to 6.5 μm, the value 

of      is larger than 0.88, revealing that in the peak aged duralumin micro-pillars, most of the 

mobile dislocations can overcome the precipitates and keep on gliding even when the precipitate 

particles are densely distributed. The counted dislocation densities presented in Figure 8 should 

therefore be mobile densities contributing to the creep rate. As the experiments were carried out 

at room temperature (0.3Tm), one possible mechanism of overcoming obstacles is cross-slip of 

screw dislocations, which is known to play an important role in creep of aluminum at 

intermediate temperatures (0.25Tm-0.5Tm) (Poirier, 1985). Another point from Equation (10) is 

that m in the power law form is only 0.55, which is much lower than the 3~8 for bulk creep 
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(Nabarro and Villiers, 1995). The difference may be due to the dislocation nucleation rate in 

Equation (4). In a small crystal, dislocations are likely to nucleate from the free surface under 

stress, then glide and finally eliminate at a free surface on another side. Therefore, the stress 

dependence of the creep rate can be entirely different in the case of micro-crystals.  

 

5 Conclusions 

In this work, the size dependent creep behavior of precipitate-hardened duralumin micro-

pillars was studied at RT. Significant creep was observed in peak-aged micro-pillars, with creep 

rate on the order of          and increases with the pillar size, while RT-aged micro-pillars did 

not show any obvious creep under the same test conditions.  The effect of an introduced grain 

boundary was also investigated on bi-crystalline duralumin micro-pillars, which exhibit even 

faster creep. TEM characterization on the deformed micro-pillars revealed that their steady-state 

dislocation density correlates well with the creep rate, indicating that dislocations are the agents 

for creep. Higher dislocation densities are noted in the bi-crystalline micro-pillars, suggesting 

that the grain boundary may not only produce dislocations but also act as a barrier to prevent 

them leaving the crystal. These results suggest that the presence of strong precipitates or an 

internal grain boundary can effectively retain dislocations especially in larger micro-pillars, and 

the resultant increased dislocation density then speeds up creep under constant stress. A 

theoretical model suggests that for specimen sizes in the microns range, dislocations are not 

easily pinned by the precipitates, but in a larger specimen, they spend longer time traveling 

across the specimen. The retained dislocation density is therefore higher in a larger specimen, 

which leads to a higher creep rate according to the Orowan equation. It is expected that the trend 

of creep rate vs specimen size will be reversed for larger specimens, probably in the tens of 

microns range, when dislocations experience a higher chance of being pinned and immobilized 

by the precipitates. 
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 Figure Captions 

Figure 1. Collective stress-strain curves of (a) RT-aged and (b) peak-aged single crystalline 

micro-pillars from uniaxial compression tests. The holding time at peak value is 200 seconds for 

all the tests. (c) The increased strain with applied stress during holding stage.  

 

Figure 2 Correlation of (a) strain versus holding time and (b) quasi-steady strain rate versus 

applied stress during creep tests for peak-aged duralumin micro-pillars of different sizes. 

 

Figure 3 The variation of quasi-steady creep rate with stress for peak-aged single crystalline 

6.5µm pillars during the holding regime. 

 

Figure 4 (a)Stress-strain curves of bi-crystalline 6.5µm pillars fabricated on RT-aged and peak-

aged duralumin bulk. The holding time at peak loading is 200 seconds for all the tests. (b) Quasi-

steady strain rate versus applied stress during creep tests. 

                  

Figure 5 Deformed SEM images of duralumin bi-crystalline 6.5µm pillars, aged at (a) RT and (b) 

peak condition respectively, which were undertaken at 30° tilting. Both of the micro-pillars were 

deformed after creep tests  at ~ 100MPa.  

 

Figure 6 (a) Bright-field TEM montages of a single crystalline 6.5µm duralumin pillar aged at 

RT. (b) and (c) are high magnification, localized TEM images of single crystalline 6.5µm pillars 

aged at RT and peak conditions respectively, and the corresponding final strain are 0.013 and 

0.056 for (b) and (c). 
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Figure 7 (a) and (c) are bright-field TEM montages of bi-crystalline 6.5µm pillars aged at RT 

and peak conditions respectively, with corresponding final strain of 0.035 and 0.134. (c) and (d) 

are high-magnification, local TEM images of the top grain close to pillar’s top, corresponding to 

(a) and (c) respectively. 

 

Figure 8 Estimated dislocation densities in duralumin 6.5µm pillars crept at ~100MPa, in 

comparison with the quasi-steady creep rate.   
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Figures  

  

         (a)                                                                   (b)        

 

(c) 

Figure 1. Collective stress-strain curves of (a) RT-aged and (b) peak-aged single crystalline 

micro-pillars from uniaxial compression tests. The holding time at peak value is 200 seconds for 

all the tests. (c) The increased strain with applied stress during holding stage.  
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(a)                                                          (b) 

Figure 2 Correlation of (a) strain versus holding time and (b) quasi-steady strain rate versus 

applied stress during creep tests for peak-aged duralumin micro-pillars of different sizes. 

 

Figure 3 The variation of quasi-steady creep rate with stress for peak-aged single crystalline 

6.5µm pillars during the holding regime. 
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(a)                                                                        (b) 

Figure 4 (a)Stress-strain curves of bi-crystalline 6.5µm pillars fabricated on RT-aged and peak-

aged duralumin bulk. The holding time at peak loading is 200 seconds for all the tests. (b) Quasi-

steady strain rate versus applied stress during creep tests. 

 

                  

(a)                                         (b) 

Figure 5 Deformed SEM images of duralumin bi-crystalline 6.5µm pillars, aged at (a) RT and (b) 

peak condition respectively, which were undertaken at 30° tilting. Both of the micro-pillars were 

deformed after creep tests  at ~ 100MPa.  
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(a)                                                    

       

(b)                                                    (c)        
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Figure 6 (a) Bright-field TEM montages of a single crystalline 6.5µm duralumin pillar aged at 

RT. (b) and (c) are high magnification, localized TEM images of single crystalline 6.5µm pillars 

aged at RT and peak conditions respectively, and the corresponding final strain are 0.013 and 

0.056 for (b) and (c). 

            

          

(a)                                                (b)    
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(c)                                                (d)           

Figure 7 (a) and (c) are bright-field TEM montages of bi-crystalline 6.5µm pillars aged at RT 

and peak conditions respectively, with corresponding final strain of 0.035 and 0.134. (c) and (d) 

are high-magnification, local TEM images of the top grain close to pillar’s top, corresponding to 

(a) and (c) respectively. 
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Figure 8 Estimated dislocation densities in duralumin 6.5µm pillars crept at ~100MPa, in 

comparison with the quasi-steady creep rate. 
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