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Abstract

A number of centrality measures are available to determine the relative importance of a node in a complex network, and
betweenness is prominent among them. However, the existing centrality measures are not adequate in network percolation
scenarios (such as during infection transmission in a social network of individuals, spreading of computer viruses on
computer networks, or transmission of disease over a network of towns) because they do not account for the changing
percolation states of individual nodes. We propose a new measure, percolation centrality, that quantifies relative impact of
nodes based on their topological connectivity, as well as their percolation states. The measure can be extended to include
random walk based definitions, and its computational complexity is shown to be of the same order as that of betweenness
centrality. We demonstrate the usage of percolation centrality by applying it to a canonical network as well as simulated
and real world scale-free and random networks.
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Introduction

Networks are ubiquitous in today’s world. Communication

networks such as world wide web, telephone networks and mobile

phone networks are changing the way we live and we interact with

other people. Social networks built on top of these, such as

Facebook and Twitter, are redefining ways of keeping in touch.

Vast airline and rail networks have given us access to the remotest

parts of the world and reduced travel times by orders of

magnitude. Our survival depends on the functioning of a number

of biological and ecological networks. The energy needed for our

domestic and industrial use is supplied by electric power networks.

Indeed, the interest and awareness about networks are not only a

trend in scientific research but also a social and cultural

phenomenon of this age [1–5].

Percolation of a ‘contagion’ occurs in complex networks in a

number of scenarios. For example, viral or bacterial infection can

spread over social networks of people, known as contact networks.

The spread of disease can also be considered at a higher level of

abstraction, by contemplating a network of towns or population

centres, connected by road, rail or air links. Computer viruses can

spread over computer networks. Rumours or news about business

offers and deals can also spread via social networks of people. In all

of these scenarios, a ‘contagion’ spreads over the links of a complex

network, altering the ‘states’ of the nodes as it spreads, either

recoverably or otherwise. For example, in an epidemiological

scenario, individuals go from ‘susceptible’ to ‘infected’ state as the

infection spreads. The states the individual nodes can take in the

above examples could be binary (such as received/not received a

piece of news), discrete (susceptible/infected/recovered), or even

continuous (such as the proportion of infected people in a town), as

the contagion spreads. The common feature in all these scenarios

is that the spread of contagion results in the change of node states

in networks.

Indeed, in the epidemiological domain, a few studies have

successfully modelled epidemic spread as a specific example of

percolation in networks [6–11]. The percolation theory is

attractive because it provides connections to several well-known

results from statistical physics, in terms of percolation thresholds,

phase transitions, long-range connectivity, and critical phenomena

in general. For instance, Newman and Watts [6] suggested using a

site percolation model for disease spreading in which some fraction

of the population is considered susceptible to the disease, and an

initial outbreak can spread only as far as the limits of the

connected cluster of susceptible individuals in which it first strikes.

An epidemic can occur if the system is at or above its percolation

(epidemic) threshold where the size of the largest (giant) cluster becomes

comparable with the size of the entire population. Similarly,

Moore and Newman [12] used a general model with two simple

epidemiological parameters: (i) susceptibility, the probability that an

individual exposed to a disease will contract it, and (ii)

transmissibility, the probability that contact between an infected

individual and a healthy but susceptible one will result in the latter

contracting the disease. They pointed out that if the distribution of

occupied sites or bonds is random, then the problem of when an

epidemic takes place becomes equivalent to a standard percolation

problem on the graph: what fraction of sites or bonds must be

occupied before a ‘‘giant component’’ of connected sites forms

whose size scales extensively with the total number of sites [12]. It

has been noted [13] that the percolation of disease through a

network depends on both the level of contagion and the structure
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of the contact network. Similarly, in other contexts such as virus

spreading in a computer network or information spreading in a

social network, it could be deduced that percolation is determined

by both network topology and amount of the contagion spreading.

In any context, if we need to stop the contagion from spreading

further, we need to supply nodes with certain resources. For

example, during a disease outbreak affecting a network of towns,

medical staff, medicine and other resources need to be rushed to

each town to stop the infection from spreading to other towns as

well as to treat people in that town. Generally, there are limited

resources (vaccines, drugs, medical staff, transport, etc.) to respond

in time. Therefore, choices for early intervention in the affected

network need to be precise. However, ‘nodes’ that are individually

at the highest risk are not necessarily those which will contribute

most to the contagion transmission. Hence, there is a need to

identify nodes that are ‘central’ in terms of their impact on the

spread. Moreover, we need to interpret the node’s impact both in

terms of their topological connectivity and their current infected

(percolated) state. Intuitively, an infected node makes a higher

impact than a non-infected one even if their topological

connectivity is identical. Furthermore, different levels of risks,

susceptibility, etc. can bring about non-binary node states making

the assessment of the impact even less trivial.

We may formulate the scenarios described above into a general

problem: In a given complex network, to what extent the

individual percolated (or partially percolated) nodes impact on

the percolation process at any given time? A measure quantifying

this extent needs to not only account for topological connectivity

but consider the node’s percolation state (including partial

percolation). The existing centrality measures are not adequate

for this purpose because they do not account for changing

percolation states of individual nodes, and are static. Therefore a

suitable centrality measure which also takes into account the

percolation states of nodes is needed, which should be general

enough to be applicable in all the contexts described above.

In this paper, we introduce a new centrality measure, percolation

centrality, capturing relative impact of nodes during (possibly

partial) percolation. The proposed measure subsumes betweenness

centrality by explicitly accounting for percolated nodes on relevant

shortest paths. When all nodes are in the percolated state this

measure is shown to be equivalent to betweenness centrality. We

also briefly analyze the computational complexity of percolation

centrality showing that it is of the same order as that of

betweenness centrality. Furthermore, we succinctly discuss possible

extensions to random walk based definitions of this measure. We

employ generic scale-free networks to analyze percolation centrality,

since it has been shown that a great number of real world

networks, including contact networks, social networks of people in

general, transport networks, and large scale computer networks

(including Internet), tend to be scale-free [1,2,14–21]. We also

analyze random networks for comparison. We employ a simula-

tion approach to illustrate how the measure of percolation

centrality could be used as a tool in intervention strategies, by

comparing it to betweenness centrality and shortest distance from

percolated nodes. Finally we present our observations and

conclusions.

Analysis

Review of centrality and network evolution measures
A host of centrality measures have been proposed to analyze

complex networks, especially in the domain of social network

analysis. The simplest of these perhaps is the degree centrality,

sometimes just called degree, of a node. A node’s degree is simply

the number of links it has with other nodes in the network, and

therefore gives some indication about how important that node is

to the network.

A family of betweenness measures have been proposed [22–28]

to measure a node’s importance as a conduit of information flow in

a network. The first and perhaps most well known measure of

these is the classical betweenness centrality measure proposed by

[22]. Betweenness Centrality measures the fraction of shortest

paths that pass through a given node, averaged over all pairs of

node in a network. It is formally defined, for a directed graph, as

BC(v)~
1

(N{1)(N{2)

X

s=v=t

ss,t(v)

ss,t
ð1Þ

where ss,t is the number of shortest paths between source node s

and target node t, while ss,t(v) is the number of shortest paths

between source node s and target node t that pass through node v.

Closeness Centrality [23,29] is a measure of how close a

network is, on average, to the rest of the nodes in terms of shortest

paths. It essentially measures the average geodesic distance

between a given node and all other nodes in the network. It is

defined as

CC(v)~
1P

i=v dg(v,i)
ð2Þ

where dg(v,i) is the shortest path (geodesic) distance between nodes

v and i. Note that the average is ‘inverted’ so that the node which

is ‘closest’ to all other nodes will have the highest measure of

closeness centrality.

The Eigen vector centrality measure [30] is based on the

assumption that a node’s centrality is influenced by the centrality

scores of its neighbours - that the centrality score of a node is

proportional to the sum of the centrality scores of the neighbours.

As such, it is defined iteratively. If the centrality scores of nodes are

given by the matrix X and the adjacency matrix of the network is

A, then we can define x iteratively as

x!Ax ð3Þ

i.e

lx~Ax ð4Þ

The centrality scores are obtained by solving this matrix

equation. It can be shown that, while there can be many values for

l, only the largest value will result in positive scores for all nodes

[31].

The classical betweenness centrality measure assumes that

information flow is through the shortest paths in a network. This

is, in many instances, not a realistic assumption [24,26,27]. For

example, in a transport network, the traffic will likely go through

alternative paths if the shortest path is traffic-jammed. Rumours or

infections in social networks are likely to follow random paths. A

number of centrality measures based on betweenness address this.

The flow centrality measure [22] measures the proportion of the

‘flow’ that goes through a given node, when maximum flow is

‘pumped through’ a pair of nodes. A random walk based

betweenness measure proposed by Newman [26] considers a

network to be like an electric circuit with unit resistance at any

link, and measures the ‘current’ that goes through a node when

Percolation Centrality
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unit current passes through a pair of nodes (In fact, the random

walk based betweenness is not formally defined in this way.

However, as mentioned in [26], it is the easiest way to intuitively

understand this betweenness measure.).

There are a number of other centrality measures based on

random walks as well, such as those described in [32,33]. There is

also the information centrality measure [27] based on closeness

centrality, which measures the harmonic mean length of paths

ending at a vertex v. The power centrality [26,33] of a node v is

the number of times a random walk is expected to pass through

the node v, averaged over all possible starting points of the random

walk. The random-walk centrality introduced by [32] measures

the average speed with which, a randomly walking message from a

node reaches the target node v, averaged over all source nodes.

A number of weighted betweenness measures, such as [28],

where weights are given to links, have also been proposed recently.

Klemm et al. [34] introduced another measure, dynamical influence,

to assess the role of an individual in collective dynamics within a

system of interacting elements. Dynamical influence quantifies the

extent to which an initial condition of a specific node affects its

final state, given the system dynamics. The new measure was

applied in an epidemiological scenario, and was shown to be a

good predictor of spreading efficiency in a social network

(spreading efficiency measures the expected fraction of nodes

reached by an epidemic outbreak initiated with a specific infected

node). Dynamical influence, however, estimates the influence of a

node on a potential spread before the contagion begins — it is a

measure of inherent dynamics of which the system is potentially

capable. It is not, however, a time-dependent measure of actual

dynamics which is affected by current state of a node.

Another method to efficiently approximate the number of

infections resulting from a given initially infected node in a

network of susceptible individuals is described by Bauer and Lizier

[35]. While this method directly considers the spreading process

and provides an estimation of actual numbers of infections, it is

also aimed at estimating the impact of the initial infected node on

the infection spreading, rather than a time-dependent impact of

any other node on the percolation in the network.

There are a number of measures that do characterise individual

nodes at every step of network evolution. For example, a

prominent approach to modelling cascading failures is based on

a study of Goh et al. [36] and Crucitti et al. [37]. The model

proposed by the latter group, Crucitti-Latora-Marchiori (CLM)

model, has also been extended [38–40] to studies of cascading

failures in power grids. In these studies, a power grid is represented

as a weighted graph, and each node is characterised by a load (e.g.,

electrical load) which varies over time and has a fixed limited

capacity. The load is defined as the number of most efficient paths

(e.g., from generators to distribution substations) that pass through

that node. Original CLM model considered paths between all

node pairs, and the load was equivalent to weighted betweenness

centrality. Consequently, the more shortest paths pass through a

node, the higher is its load. A cascading failure scenario is

triggered by a (random) failure of a single node, affecting its

neighbours as well as relevant shortest paths, and therefore

redistributing the load. When capacity of any affected node is

exceeded by its new load, the overloaded node also fails, and the

cascade of failures may continue. In short, the node’s load is a

time-dependent property. It is important to point out that

overloaded nodes are not removed from the network (apart from

the very first point of failure) — instead, the efficiencies of links

connecting to each overloaded node are reduced in proportion to

the overload. This in turn changes weighted shortest paths. That

is, the changes in loads (i.e., their weighted betweenness

centralities) are brought about by recalculation of shortest paths.

In other words, the changes are topologically-driven, rather than

being reflections of new states of nodes which remain connected in

the same way.

In addition, a particular probabilistic routing scheme may be

assumed instead of shortest path routing or Newman’s random

walk routing. This notion is generalized in another study that

discussed Routing Betweenness Centrality [41]. In these variants

betweenness centrality calculations assume that traffic flows over

shortest paths, but use a different routing mechanism. These

variants are time-independent: e.g., routing betweenness centrality

of a node does not change over time, and hence does not

characterise an impact that a percolated/infected node has on the

network.

Further classification of measures was carried out by Borgatti

and Everett [42]. In particular, their review distinguished between

radial and medial measures. For example, measures that assess

walks that emanate from or terminate with a given node are called

radial, while the measures which are based on the number of walks

that pass through a given node are called medial measures.

Percolation centrality
As described in the previous section, a slew of centrality

measures exist to determine the ‘importance’ of a single node in a

complex network. However, these measures quantify the impor-

tance of a node in purely topological terms, and the value of the

node does not depend on the ‘state’ of the node in any way. It

remains constant regardless of network dynamics. This is true even

for the weighted betweenness measures [28]. However, a node

may very well be centrally located in terms of betweenness

centrality or another centrality measure, but may not be ‘centrally’

located in the context of a network in which there is percolation.

With this in mind, we propose percolation centrality (PC), which

specifically measures the importance of nodes in terms of aiding

the percolation through the network.

Let us denote the percolation state of node i at time t by xt
i .

When the temporal context is clear we shall simply use xi.

Specifically, xt
i~0 indicates a non-percolated state at time t, xt

i~1

indicates a fully percolated state at time t, while a partially

percolated state corresponds to 0vxt
iv1 (e.g., in a network of

townships, this would be the percentage of people infected in that

town). The higher the value xi, the higher is the degree of

percolation of node i. In this study, we do not discuss how precisely

the node states are assessed or assigned, since that is context-

dependent, and assume that a mechanism for quantifying the

levels of partial percolation exists. Rather we focus on determin-

ing, at any time, how important is the node to the overall process

of percolation.

We define percolation centrality for a given node, at a given

time, as the proportion of ‘percolated paths’ that go through that

node. A ‘percolated path’ is a shortest path between a pair of

nodes, where the source node is percolated (e.g., infected). The

target node can be percolated or non-percolated, or in a partially

percolated state. As an extension, we will later consider the case

where the target node has to be specifically non-percolated (e.g.,

non-infected). Formally, percolation centrality of node v at time t

is:

PCt(v)~
1

(N{2)

X

s=v=r

ss,r(v)

ss,r

xt
s

½
P

xt
i �{xt

v

ð5Þ

where ss,r and ss,r(v) are defined as usual.

Percolation Centrality
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Let us examine the fraction

wt
s,v~

xt
s

½
P

xt
i �{xt

v

ð6Þ

in more detail, as it captures the relative contribution (weight) of

each percolated path originated in the source node s to the

percolation centrality PCt(v).

The percolation state associated with a source determines how

much importance is given to the potential percolation paths that

originate from it. The sum in the denominator is the total extent of

percolation in the network, ranging from zero when there are no

percolated nodes, to N when all nodes are fully percolated. The

state of node v is subtracted from the total to ensure the proper

normalisation (Since each percolated node can have (N{1)
targets, we need to normalize the weights of these nodes so that

they will add up to N{1, and the average path has a weight of

unity.):

X

s=v

wt
s,v~1 ð7Þ

The node v itself can be either counted or not counted as a source/

target node in the definition of betweenness centrality [26] and

consequently, in the definition of percolation centrality. We have

adopted the convention of not counting v as a source or target

node.

Obviously, if xt
s~0 the contribution wt

s,v is zero, and the source

s is not contributing to PC. In particular, when there are no

percolated nodes, the percolation centrality is trivially zero. The

first percolated node, however, will affect the PC of multiple

nodes, resulting in the average PC of these nodes being

significantly higher than the average betweenness of these nodes.

In fact, it is possible to show that if only one node s is infected (or

partially percolated to the extent mƒ1) then for any other node v

wt
s,v~

xt
s

½
P

xt
i �{xt

v

~1 ð8Þ

and hence

PCt(v)~
1

(N{2)

X

s=v=r

ss,r(v)

ss,r
ð9Þ

This in turn means that if we iterate over all possible single nodes s

infected to the same level m (that is, consider all possible contagion

sources one by one), and then average over all these scenarios, we

obtain the average percolation centrality of the node v in the face

of all (N{1) possible contagion origins:

SPCt(v)T~
1

(N{1)(N{2)

X

s=v=r

ss,r(v)

ss,r
~BC(v): ð10Þ

That is, percolation centrality averaged over all possible single

contagion sources reduces to betweenness centrality.

Finally, if all nodes are fully percolated (or partially percolated

to the same extent mƒ1) and xt
s~m for all possible sources as well

as the node v itself, the contribution wt
s,v~

1

N{1
is constant at that

time, resulting in

PCt(v)~
1

(N{1)(N{2)

X

s=v=r

ss,r(v)

ss,r
~BC(v) ð11Þ

In this case all shortest paths become percolated paths, since all

nodes are potential ‘sources’ of percolation. It is evident then that

during the process of percolation, the PC is significantly different

from betweenness at T~1 for nodes near the infection, and

converges to BC(v) over time. It may be conjectured that on

average (across the nodes) such a convergence will undergo a sharp

transition, resembling a phase transition expected during network

percolation. That is, when the size of the giant percolated cluster

becomes comparable with the size of the entire population, the

average PC becomes comparable with average BC.

We would like to note that the matrix of weights ws,v is easily

obtainable, at any time, as

W~xTy ð12Þ

where x~½x1,x2, . . . ,xN �, and elements of the N-dimensional

vector y are defined as

yi~
1

½
PN

k~1 xk�{xi

ð13Þ

In other words, the rows of W correspond to the source nodes, and

the columns correspond to the nodes for which the percolation

centrality is being calculated.

We attached weights to the percolation paths depending on the

percolation levels assigned to the source nodes, based on the

premise that the higher the percolation level of a source node is,

the more important are the paths that originate from that node.

Nodes which lie on shortest paths originating from highly-

percolated nodes are therefore potentially more important to the

percolation. One may then ask whether the percolation level of

target nodes need to be accounted for. Does the percolation level

of a target node also determine the importance of shortest paths

leading to it? This depends on the context of the application. For

example, in the case of spread of infection, over social networks of

people or networks of towns, one may argue that if the source node

and target node have equal levels of percolation (infection), then

the paths connecting them are insignificant. Indeed, in some

contexts, a path is meaningful as a potential path of percolation

(infection) spread only if the source node is at a higher level

compared to the target node.

With this in mind, we may extend our definition of percolation

centrality to include target node weights. In this case, we have to

calculate path weights as a difference of source node weights and

target node weights, and we set the path weight to zero if this

difference is negative. Therefore, there will be (N{1)(N{2) pairs

of nodes, and the total weights of paths between all nodes have to

sum up to (N{1)(N{2) so that the average path weight will be

unity. Thus our definition for percolation centrality, at time t,

taking into account both source and target node weights, becomes

PCt(v)~
X

s=v=r

ss,r(v)

ss,r
wt

v,s,r ð14Þ

where the weights are given by

Percolation Centrality

PLOS ONE | www.plosone.org 4 January 2013 | Volume 8 | Issue 1 | e53095



wt
v,s,r~

R½xt
s{xt

r�P
s=v=r R½xt

s{xt
r�

ð15Þ

using the Ramp function R, defined as R(x)~x for positive x and

R(x)~0 for negative x. The scaling factor (N{2) has

disappeared (compared to equation (5)) because it has been

absorbed into the weights.

Further analysis of PC in this study is based on the weights of

source node states alone. Source-target weight based percolation

centrality will be discussed in a follow-up paper.

Let us note here that, while a number of weighted betweenness

centrality measures already exist, such as [28], the measure we

propose here is subtly different. We do not compute importance of

paths based on weights of links, but based on states of nodes. As

such, our measure is dynamic, whereas the existing weighted

centrality measures are static. Even though links in our context

could be interpreted as having weights, these weights are inherited

from node states of source and target, do not depend on the

intermediate nodes, and will change with time.

Revisiting some of the measures briefly reviewed in previous

section, we note the following differences. Dynamical influence

[34] assesses the influence of a node on a potential spread before

the percolation begins. Hence it is not a time-dependent measure

of actual dynamics, unlike the proposed percolation centrality

which is affected by current states of a node.

The family of CLM models introduced time-dependence.

However, the changes in the weighted betweenness centralities

of nodes (their loads) occur because shortest paths are recalculated

at each step due to new link efficiencies (edge weights). As pointed

out in previous section, these changes do not account for dynamics

of new nodes’ states: betweenness centrality changes because

shortest paths are different. On the contrary, percolation centrality

changes because the nodes’ states are updated while the shortest

paths remain the same.

It is interesting to point out at this stage that percolation

centrality is a hybrid measure in terms of Borgatti and Everett

classification [42]: it is a medial measure because it utilises shortest

paths, following betweenness centrality, and it is also a radial

measure because it assesses the state of the sources (and targets).

Finally, one may argue that percolation centrality is a routing

betweenness centrality variant in which time-dependence is added

via percolating states of (infected) nodes, rather than updating

efficiencies of links.

In addition, the proposed measure accounts for partial

percolation (a node state may take any value between, say 0 and

1), and can be applied with an immunization focus: which nodes

need to be immunized first, rather than with the focus on the

spreading efficiency: what is the average outbreak size if the

contagion originates at a specific node.

Let us also define ‘Hop distance’ while we discuss percolation

centrality. Hop distance of a node v regarding node state x,

Dhop(v,x), is simply the shortest distance from a given node v to

any node with a particular state x. For example, if we have binary

node states, hop distance of any node regarding state ‘1’ is the

smallest number of hops needed from that node before we can find

a node with state ‘1’. If the considered node itself has state ‘1’, then

its hop distance is zero. Therefore, in a scenario where contagion

spreads, the immediate neighbours of the percolated nodes will

have smaller hop distances with respect to the percolation state.

We will use hop distance Dhop(v,x) as a simple contrasting

measure to percolation centrality in our simulations.

Percolation centrality based on random walks
As mentioned above, it is not always likely that contagion will

spread along shortest paths in networks. Indeed, pathological

infection is more likely to spread randomly, where a person who is

a ‘contact’ to an infected person is vulnerable to infection with a

certain probability. Therefore, following the definition of be-

tweenness centrality based on random walks [26], percolation

centrality can also be defined in terms of random walks:

PCt(v)~
1

(N{2)

X

s=v=r

is,r(v)wt
v,s ð16Þ

where wt
v,s are the normalised weights (equation 6), and is,r(v) is

the ‘current’ that flows through node v when the unit current is

pumped between nodes s and r and all links are considered to have

unit resistance. Note that the ‘current’ through node v is to be

calculated only to determine the fraction of shortest paths between

nodes s and r that, on average, pass through node v, and as such

this calculation will not affect the way the weight matrix is

calculated (Alternatively, we can interpret the weights as the

conductance of each link, and define percolation centrality then as

simply the proportion of current between nodes s and r that passes

through v.). Similarly, percolation centrality based on source and

target weights, following equation 14, may be defined as

PCt(v)~
X

s=v=r

is,r(v)wt
v,s,r ð17Þ

where wt
v,s,r are the normalised weights (equation 15). We shall

leave a detailed study of random walk based definitions of

percolation centrality to future work.

Implementation and computational complexity
The ‘straightforward’ implementation of a betweenness central-

ity algorithm would run in O(N3) time [25,26]. We implemented

our percolation centrality measure as shown in equation 5 by

modifying Brandes’ fast algorithm for BC [25], which runs in

O(NM) time. It can be shown that the extra calculations do not

result in an order of magnitude increase in time complexity, and

the algorithm still runs in worst case time O(NM). However, the

definition of percolation centrality including target nodes (14)

cannot be calculated in O(NM) time. Brandes’ algorithm achieves

O(NM) efficiency by iteratively counting the shortest paths from a

given source node, and does not keep track of the targets.

Therefore, calculating the percolation centrality with target nodes

(equation 14) takes O(N3) worst case time.

An example with a simple model network
Let us now consider a simple example to illustrate the

calculation of percolation centrality. Let us assume this is a

network where partial percolation states are possible. Consider the

Fig. 1 (a) where a simple network of eight nodes is shown, with

percolation states ranging from 0:1 to 0:5 for each node. The same

topology is repeated in Fig. 1 (b), with different percolation states.

By inspection we could see that in Fig. 1 (a), the nodes at the right

side, i.e the nodes v7 and v8, have the highest (partial) percolation

state values, whereas in Fig. 1 (b), it is the nodes at the left side, i.e

the nodes v1, v2 and v3 which have the highest percolation state

values.

Now consider nodes v4 and v6. Both of these nodes are centrally

located in terms of network ‘traffic’ and would have high

betweenness centrality. If we calculated their percolation centrality

based on Fig. 1 (a) (the calculation, which can be done manually
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but quite tedious, is left to the reader), we will see that node v4 has

the percolation centrality of RC(4)~0:625 and v6 has the

percolation centrality of RC(6)~0:667. Even though their

percolation centrality is also influenced by their topological

placement, node v6 has slightly higher percolation centrality by

virtue of being close to the nodes with higher values for percolation

states (nodes v7 and v8). Whereas if we consider Fig. 1 (b), we will

find that v4 has the percolation centrality of RC(4)~0:825 and v6

has the percolation centrality of RC(6)~0:4. Here, while the

topology remains the same, node v4 has much higher percolation

centrality because it is now closer to the nodes with higher

percolation state values (nodes v1, v2 and v3).

This example demonstrates that percolation centrality of nodes

in a fixed topology can vary significantly based on the percolated

states of nodes in the network, and therefore the percolation

centrality measure is quite dynamic unlike the centrality measures

we have reviewed earlier.

Results and Discussion

Simulation of contagion spread using a simple real world
network

We will use scale-free networks with hundreds of nodes to

validate and exemplify the concepts presented so far, since, as

mentioned earlier, most real world networks are scale-free

networks. However, let us first look at a smaller real world

network (with N~39) where tracking individual nodes as the

contagion spread is possible and illustrative (The topology of the

network we utilize is taken from the largest component of the

Gonorrhoea outbreak study in Alberta, Canada [43], however we

will use it here as a generic sample network, since our focus is not

on developing centrality measures for epidemiology as such. It is

rather on developing a generic centrality measure for contagion

spread.). The network is shown in Fig. 2. We analysed percolation

centrality of nodes in this network, by simulating the contagion

spread for T~20 timesteps.

Figure 1. A simple network with N~8. Note that in (a), the nodes
in the right side of the network v7 and v8 have high percolation states,
whereas in (b), the nodes in the left side of the network v1 , v2 and v3

have high percolation states. The sizes of the nodes correspond to their
percolation centrality values.
doi:10.1371/journal.pone.0053095.g001

Figure 2. Betweenness and percolation centrality profiles of
the Alberta model network with N~39, with node sizes
matching the centrality values. (a) The betweenness centrality of
nodes; independent of time. (b) The percolation centrality of nodes at
T~1. (c) The percolation centrality of nodes at T~7. (d) Percolation
centrality of nodes at T~20. The infected nodes are highlighted in red.
doi:10.1371/journal.pone.0053095.g002
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Since our aim is to demonstrate the utility of percolation

centrality as a resource allocation tool, we will use a generic and

simple contagion spread model. More specific spread models exist

and can be used depending on the context of the application (For

e.g., see [44] for an infection spread model in epidemiological

scenarios). In our simulations, the contagion begins with a

particular peripheral node.

For example, Let us consider a specific simulation, in which a

peripheral node v61 (the node at the top left hand side of the

network in Fig. 2) is first to be fully percolated, x1(v61)~1:0, and

all other nodes are not percolated, x1(vi=61)~0:0, at time step 1.

At each time step, the nodes are further percolated with a

transmission probability p~0:2 and no node becomes percolated

without a direct contact with a percolated node (contagion spreads

through links only). As the simulation progresses, the states of the

percolated nodes are updated to xt(v)~1:0. The number of nodes

infected at each time step is shown in Fig. 3. We also trace how PC

differs from BC at each time step, by considering the ratio of the

averages between the measures for every node with non-zero

betweenness. The ratio of averages over all N such nodes,

P
v

PC(v)P
v

BC(v)
, is also shown in Fig. 3 (N divides both the numerator and

denominator and thus cancels out.).

We could see from Fig. 3 that at the beginning, T~1, the PC of

nodes, on average, is significantly different from BC. As the

contagion progresses, around time T~7, there is a sharp increase

in the number of nodes fully percolated (establishing that this point

corresponds to the well-known percolation phase transition is

beyond the scope here). After this increase, the PC of nodes, on

average, converges to the BC values. At the end of simulation,

T~20, the PC of nodes, on average, are very similar to their BC

counterparts.

This is further illustrated in Fig. 2, where we show the network

with the node sizes corresponding to their centrality values (In the

figure, the nodes with zero percolation/betweenness centrality are

assigned a minimal size.). We observe that at T~1, nodes v59 and

v60 have the highest PC. Indeed, these nodes lie directly at the

path of the potential spread of contagion, and therefore are critical

for the contagion spread. The next highest node is node v11, which

has high overall BC, and is close enough to the percolated node.

Node v75 is not so large, since, while being centrally located, it is

far from the percolated area.

Figure 3. The number of percolated nodes, as well as the ratio of average PC and BC values, over time, for the Alberta model
network. As the percolation becomes universal, this ratio settles around unity, as PC converges to BC for each node.
doi:10.1371/journal.pone.0053095.g003
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At T~7, the contagion is about to ‘break through’ and the

number of fully percolated nodes is going to rapidly increase.

There are seven fully percolated nodes, highlighted in red. Here

we could see that node v60 has lost its importance, and node v11

has the highest PC, due to its topological prominence as well as the

percolation state of its neighbours. The PC values of the nodes are

still significantly different from the respective BC values. Finally, at

T~20, the contagion has spread to all nodes in the largest

component, and nodes v12 and v75 have the highest PC values.

Indeed, the percolation centrality profile across the nodes at this

stage is identical to the betweenness centrality profile of the

network. Since all the nodes are fully percolated, the importance of

nodes is measured based purely on topology, just like in

betweenness centrality. Note that the size of nodes v59 and v60

has reduced now, since they are on the periphery and no longer

exclusively close to the contagion.

We may observe a number of interesting facts even in this

arguably simple example. Firstly, percolation centrality is the most

relevant when the spread of contagion is at its infancy, and

remains very relevant until the number of percolated nodes goes

through a sharp transition. Secondly, percolation centrality is not

directly correlated to the distance of a node from its closest

percolated neighbour: nodes which are centrally located (such as

node v75 at time T~7) may have higher PC, even though they are

further from the contagion than some other nodes. Crucially, at

the early and critical stages of the contagion spread, the

percolation centrality is not directly correlated to betweenness

centrality either. Thirdly, when the network is mostly percolated,

the percolation centrality profile across the nodes starts to closely

resemble the network’s betweenness centrality profile. Therefore,

it is clear that the percolation centrality measure conveys

information that is most relevant to a targeted early intervention.

Consequently, in order to prevent the spread of contagion, one

should target precisely the non-percolated nodes that have the

highest percolation centrality. In the next section, we will study

percolation centrality as a resource allocation tool while using

larger scale-free networks as examples.

Simulation experiments using scale-free and random
networks

Scale-free networks are those networks that display similar

topological features irrespective of scale. Such networks are

described by power law degree distributions, formally specified as

pk~Ak{cU(k=kmax) ð18Þ

where U is a step function specifying a cut off at k~kmax. The

degree distribution of scale-free networks can be specified by a

number of parameters, including maximum degree kmax, scale-

free exponent c, and the proportion of out-lier nodes A. Most real

world networks are scale-free networks, including technical,

biological and social networks [1,16,45–49]. scale-free networks

have been commonly used as model networks for infectious

dynamics modelling [44], to represent road and air traffic

networks [50] and to represent large scale computer networks,

including Internet [1,14,51,52]. Therefore, scale-free networks can

be used as a justifiable model to simulate contagion spread

scenarios.

We used a number of scale-free networks for our studies, where

the network size was up to 5000 nodes. Let us consider a typical

network with the number of nodes N~5000, the number of links

M~15000, and c~2:128. We will again use the generic spread

model described above to simulate contagion spread. The

contagion will start from a randomly selected node (either hub

or peripheral), and this node is the first to be fully percolated, and

all other nodes are not percolated, at time step 1. At each time

step, the nodes are further percolated with a transmission

probability p~0:2 and no node becomes percolated without a

direct contact with a percolated node (contagion spreads through

links only). As the simulation progresses, the states of the

percolated nodes are updated to xt(v)~1:0.

The average number of nodes percolated vs timesteps is shown

in Fig. 4 (averaged over 50 simulation runs). The ratio of averages,P
v

PC(v)P
v

BC(v)
, is also shown in the same figure. It could be seen that on

average, the percolation ‘breaks through’ between timesteps T~9
and T~14, where there is a phase transition in the number of

percolated nodes, as well as the ratio of averaged centrality

measures. Once this phase transition is achieved, the ratio

P
v

PC(v)P
v

BC(v)

becomes close to unity. However, until the network is saturated

with percolated nodes, the ratio

P
v

PC(v)P
v

BC(v)
is higher than unity,

meaning there is high diversity between percolation centrality and

betweenness centrality. We confirmed this by analysing individual

PC=BC ratio profiles. For example, Fig. 5 shows these ratios (A

network of size N~500 was used in this instance for clarity of

figure.) against node IDs for a typical simulation run at time

T~10 where we can see that, for some individual nodes, the

PC=BC ratio can be as high as 3:5, indicating significant variation

between percolation and betweenness centralities at the critical

part of contagion spread.

To demonstrate how percolation centrality could be utilized in

real world as a resource allocation tool, we simulated ‘immunizing’

a certain percentage of nodes after a certain number of timesteps.

The contagion could not spread through a node after it had been

immunized. The nodes to be immunized were chosen based on

one of the three following quantities:

1. Percolation centrality

2. Betweenness centrality

3. Hop distance

We immunized nodes after a certain percentage of nodes (a)

became fully percolated, and a certain percentage of nodes (b)

were ‘immunized’ at this timestep. The nodes to be immunized

were selected by calculating a centrality measure (one of the three

measures above) for all nodes, and ranking nodes top to bottom

based on their values. The top b percentage of nodes were then

‘immunized’ (their node-states made permanently zero). Then we

measured the number of timesteps it took, after intervention, for

the network to be ‘saturated’ by percolation. Since due to

topological effects it is possible that the network will never be

completely ‘infected’, we took the network to be saturated by

percolation if the number of fully percolated nodes passed a

certain threshold. In the experiments described below, this

saturation threshold is Ts~350 nodes (Even so, at some instances,

the immunization may be so effective that the network may never

reach this threshold. For practical purposes, therefore, we aborted

such simulations thirty timesteps after immunization.).

Our simulation results are summarised in Appendix: Tables 1

and 2. The rows correspond to the percentage of nodes percolated

before the intervention was made (a), whereas the columns

correspond to the percentage of nodes which were immunized (b).

The number of timesteps it took, averaged over a number of

simulations, for the network to be saturated by percolation is

presented in the cells of each table. Each row has three sub-rows,
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corresponding to the centrality measure used for intervention:

percolation centrality, betweenness centrality, and hop distance, in

that order. For example, the entry of 5:8 at the top left cell means

that after two percent of the nodes were fully percolated, the top

one percent nodes, selected by ranking nodes based on percolation

centrality, were ‘immunized’, and despite this immunization, the

percolation saturated the network in 5.8 timesteps on average.

Similarly, the entry of 12:2 at the bottom right cell means that

after twenty five percent of the nodes were fully percolated, the top

twenty percent nodes, selected by ranking nodes based on hop

distance, were ‘immunized’, and despite this immunization, the

percolation saturated the network in 12:2 timesteps on average.

We investigated two topologies: scale-free networks and Erdös-

Renyi random networks. Erdös-Renyi random networks were

chosen for our experiments to contrast them with scale-free

networks, and to reflect common real-world topologies which are

not scale-free, e.g. non-scale-free networks of towns and motor-

ways [53,54]. The results for scale-free networks are presented in

Table 1 and Figure 6, while Table 2 and Figure 7 summarise

experiments with Erdös-Renyi random networks.

Figure 6 shows the matrix of a and b values used in our

simulation. For a given a and b, the colour of the matrix

Figure 4. The number of fully percolated nodes, and the ratio of average PC and BC values over time, for a scale-free network with
N~5000. As the percolation becomes universal, this ratio settles around unity, as PC converges to BC for each node.
doi:10.1371/journal.pone.0053095.g004

 

 

 

 

 

Figure 5. A typical run of the simulation, at timestep T~10, for
a scale-free network with N~500. The Figure shows the PC=BC
ratios against node ID. It could be noted that for some nodes, the PC is
more than three times higher than the BC. The ratio is shown as zero if
the betweenness of the node is zero.
doi:10.1371/journal.pone.0053095.g005

Percolation Centrality

PLOS ONE | www.plosone.org 9 January 2013 | Volume 8 | Issue 1 | e53095



Table 1. A comparison between the average timesteps taken for saturation of percolation when the intervention is PC based, BC
based or hop distance based. the network used was a scale-free network with N~500.

a(rows) b(columns) 1 2 3 4 5 6 7 8 9 10 11 12 15 20

2 5.8 6.0 6.2 7.8 10.2 10.4 11.8 15.4 15.2 17.8 22.2 24.6 27.8 30.0

4.6 5.6 5.8 7.0 8.2 9.0 10.2 11.2 13.4 13.6 18.2 21.4 26.4 28.6

6.4 6.8 7.2 10.2 14.4 18.8 22.4 25.2 28.6 28.4 30.0 30.0 30.0 30.0

3 4.6 5.8 7.0 8.8 9.6 10.6 11.0 13.4 14.2 18.8 22.6 24.2 28.4 29.2

4.8 5.2 6.0 7.2 7.8 8.4 8.6 10.2 11.4 16.4 18.2 22.4 26.6 26.4

6.2 6.4 9.2 10.8 13.0 15.6 17.6 18.8 24.4 27.6 29.2 30.0 30.0 30.0

4 4.2 6.0 6.6 7.8 9.0 10.8 11.2 13.4 15.0 16.8 19.6 24.0 27.2 29.2

4.4 5.6 5.4 6.8 7.8 8.6 8.4 10.2 11.8 12.8 17.6 21.4 26.0 26.8

4.0 5.6 6.2 8.0 8.4 11.0 10.4 14.2 14.4 18.8 22.4 27.8 30.0 30.0

5 4.8 5.0 5.8 7.0 8.6 9.4 10.0 11.2 13.2 14.8 18.6 20.2 28.6 28.8

4.2 5.2 5.6 6.4 6.6 7.4 7.6 9.2 12.4 13.0 17.4 18.0 27.4 25.4

3.8 4.2 5.4 7.2 7.8 10.2 10.4 11.0 12.2 15.2 15.8 22.6 25.4 29.6

6 3.8 4.8 6.2 7.4 8.6 9.2 10.2 11.8 14.4 16.0 19.2 25.6 27.4 28.2

4.0 4.4 5.8 5.8 7.0 6.6 8.8 10.2 10.6 12.4 15.4 17.0 26.2 27.4

3.6 4.2 6.0 6.6 7.8 9.4 10.6 11.2 14.8 15.2 17.2 20.2 28.2 28.4

7 4.0 5.8 6.4 5.2 8.8 9.4 10.2 12.6 15.0 14.8 17.6 22.2 26.8 27.4

4.4 5.2 5.6 5.4 6.2 7.8 8.2 9.6 9.4 13.2 13.4 19.2 25.6 27.0

3.4 3.6 5.4 5.2 7.6 8.8 10.0 13.2 14.2 15.0 16.6 18.6 23.2 27.8

8 3.6 4.4 5.4 6.4 7.8 9.2 10.6 11.8 12.0 16.6 18.4 23.8 28.0 28.2

4.0 4.8 5.2 5.6 7.0 7.2 8.6 10.4 10.4 14.2 14.4 20.2 27.2 25.4

3.2 4.0 5.2 6.0 7.2 8.6 9.4 10.4 11.6 13.2 14.4 18.2 20.2 28.4

9 3.4 4.8 5.2 7.8 10.4 9.4 11.6 13.4 14.0 15.6 18.8 20.6 27.4 27.2

4.2 4.6 5.6 6.6 6.4 7.8 8.2 9.2 9.6 13.0 15.2 19.0 26.2 25.8

2.4 2.8 5.0 4.4 4.2 8.4 9.2 8.8 13.0 11.0 13.4 16.8 21.8 27.4

10 3.2 3.8 4.2 5.6 7.2 7.8 7.8 9.0 10.2 13.2 16.6 16.4 26.2 26.4

4.2 4.4 4.6 5.4 6.4 5.6 7.4 8.0 9.8 12.0 13.2 15.0 26.0 26.2

2.2 2.8 3.2 4.0 4.8 5.0 4.8 7.2 8.4 10.2 11.0 12.2 13.2 18.4

11 3.0 4.0 5.0 6.4 8.8 8.4 10.2 11.8 12.0 15.6 14.8 18.2 26.4 26.6

4.0 4.8 5.4 6.0 6.8 7.8 8.2 10.2 10.4 13.2 13.0 12.0 26.2 26.0

1.8 2.0 1.8 3.4 5.6 6.4 5.8 9.8 8.4 9.8 11.8 10.4 13.4 15.2

12 2.8 3.0 4.0 4.4 5.6 5.4 7.8 8.0 9.8 10.2 11.4 13.4 25.3 26.2

3.0 3.6 4.2 4.6 5.0 5.6 6.0 6.4 7.2 9.0 10.4 12.4 23.2 26.0

1.6 2.2 1.6 1.4 4.2 2.8 2.8 4.2 3.6 8.2 9.6 10.6 12.0 15.6

15 2.6 2.8 3.0 4.2 3.8 5.2 6.0 6.8 7.8 8.8 11.2 12.0 18.2 20.0

3.2 3.2 3.4 4.6 4.4 5.6 6.4 7.0 8.2 9.2 12.4 13.4 25.4 26.6

1.4 1.6 1.6 2.8 3.0 4.2 3.8 5.8 6.0 8.0 9.2 8.8 14.2 13.8

20 2.2 2.0 3.2 3.8 4.2 4.8 5.6 5.8 6.6 7.6 9.0 11.2 14.4 17.2

3.0 3.2 3.6 4.4 4.6 5.6 6.6 7.4 7.4 9.0 10.2 12.2 17.4 23.6

1.2 1.6 1.4 1.4 2.0 3.8 3.2 3.8 4.0 6.2 5.8 8.0 10.6 14.4

25 1.6 1.8 2.2 2.8 3.2 2.8 4.4 6.6 6.6 7.2 7.8 9.6 13.4 16.8

2.2 2.4 3.0 3.2 3.4 4.6 5.4 7.2 7.6 8.2 8.0 10.4 22.6 23.2

1.4 1.2 1.2 1.2 1.6 2.0 2.6 3.8 3.4 3.6 3.2 4.4 5.8 12.2

Table 1 in this appendix summarises several thousand simulation experiments with scale-free networks and the obtained results. The rows correspond to the
percentage of nodes percolated before the intervention was made (a), whereas the columns correspond to the percentage of nodes which were immunized (b). The
number of timesteps it took, averaged over five simulations each, for the network to be saturated by percolation is presented in the cells of the table. Each row has
three sub-rows, corresponding to the measures used for intervention: percolation centrality, betweenness centrality, and hop distance, in that order. All in all, the table
presents the results of 146146365~2940 simulation experiments (14 values of a and b, 3 ways to measure centrality, repeated 5 times).
doi:10.1371/journal.pone.0053095.t001
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Table 2. A comparison between the average timesteps taken for saturation of percolation when the intervention is PC based, BC
based or hop distance based. the network used was a random network with N~500.

a(rows)b(columns) 1 2 3 4 5 6 7 8 9 10 11 12 15 20

2 4.42 4.64 4.12 4.34 4.42 4.64 4.56 4.32 4.78 4.12 5.12 6.24 5.82 7.24

3.02 3.30 3.36 3.42 3.78 3.98 4.00 4.12 4.04 4.08 4.96 5.04 5.24 6.08

5.64 5.84 5.92 5.96 6.04 6,32 6.86 6.78 6.96 7.02 6.98 7.34 9.22 10.36

3 4.32 4.64 4.84 5.26 4.48 5.24 4.48 5.62 6.24 7.18 6.28 6.84 7.22 7.04

3.42 3.72 3.56 3.92 3.90 4.44 4.46 4.88 5.22 5.68 6.00 6.42 6.78 6.66

4.28 4.92 4.82 5.50 4.36 5.38 5.58 5.92 6.36 8.42 8.00 6.76 8.48 10.22

4 4.16 4.22 4.82 5.04 4.84 4.26 4.44 4.58 5.02 5.04 5.18 5.26 5.54 5.98

3.86 3.98 4.12 4.04 4.22 4.12 4.08 4.22 4.48 4.78 4.88 5.02 5.24 5.30

4.10 4.04 4.36 4.80 4.82 4.22 4.08 4.34 4.56 5.28 5.16 6.34 5.22 7.88

5 4.04 4.22 4.18 4.32 4.44 4.56 4.66 4.68 4.62 4.76 4.80 4.82 4.98 4.86

4.14 4.18 4.24 4.28 4.36 4.40 4.48 4.52 4.58 4.66 4.70 4.78 4.84 4.86

3.88 4.14 4.04 4.22 4.34 4.26 4.58 4.60 4.60 4.72 4.94 4.78 4.80 4.84

6 3.8 3.92 4.10 4.08 4.24 4.72 4.46 4.52 4.78 4.80 4.82 4.86 4.90 4.94

3.74 3.96 4.04 4.06 4.18 4.38 4.44 4.50 4.62 4.74 4.78 4.82 4.86 4.90

3.76 3.84 3.98 3.96 4.06 4.14 4.44 4.32 4.52 4.60 4.76 4.72 4.86 5.88

7 3.68 3.74 3.80 3.84 4.20 4.14 4.32 4.36 4.56 4.60 4.72 4.68 4.78 4.80

3.60 3.76 3.78 3.80 3.92 4.04 4.20 4.28 4.44 4.56 4.54 4.66 4.74 4.78

3.24 3.32 3.38 3.40 3.62 3.58 3.88 3.78 3.96 4.04 4.08 4.22 4.18 4.34

8 3.24 3.64 3.68 3.70 3.72 3.88 3.92 3.98 4.22 4.42 4.34 4.48 4.56 4.60

3.44 3.56 3.70 3.68 3.70 3.92 3.90 3.94 4.12 4.28 4.32 4.44 4.50 4.54

3.04 2.98 3.06 3.12 3.24 3.46 3.48 3.58 3.66 3.70 3.84 3.92 4.02 4.06

9 3.26 3.28 3.34 3.46 3.42 3.56 3.88 3.78 4.18 4.28 4.34 4.46 4.50 4.52

3.28 3.34 3.38 3.44 3.48 3.52 3.68 3.74 3.86 3.96 4.26 4.48 4.42 4.48

2.68 2.74 2.86 2.74 3.02 3.00 3.06 3.18 3.08 3.24 3.38 3.40 3.64 3.88

10 3.2 3.18 3.24 3.46 3.50 3.66 3.68 3.72 3.88 4.06 4.18 4.22 4.36 4.40

3.12 3.20 3.22 3.48 3.46 3.58 3.64 3.76 3.80 3.92 4.20 4.18 4.26 4.34

2.44 2.46 2.58 2.64 2.72 2.80 2.66 2.96 3.12 3.16 3.42 3.34 3.58 3.48

11 2.92 3.10 3.12 3.28 3.42 3.46 3.58 3.66 3.70 3.82 3.92 3.96 4.02 4.22

2.98 3.14 3.16 3.24 3.48 3.42 3.60 3.62 3.68 3.70 3.88 3.90 3.96 4.34

2.22 2.32 2.34 2.48 2.50 2.68 2.64 2.62 2.78 2.80 2.92 2.94 3.06 3.16

12 2.60 2.66 2.78 3.02 3.08 3.12 3.24 3.44 3.48 3.56 3.60 3.64 3.88 3.86

2.56 2.70 2.82 2.94 3.12 3.08 3.16 3.52 3.46 3.54 3.58 3.60 3.72 3.84

2.02 2.04 2.18 2.26 2.38 2.34 2.44 2.54 2.62 2.78 2.86 2.90 2.94 2.96

15 2.26 2.40 2.52 2.68 2.76 2.84 2.90 2.98 3.04 3.08 3.14 3.16 3.24 3.32

2.36 2.44 2.56 2.74 2.74 2.78 2.92 2.96 3.08 3.06 3.24 3.10 3.18 3.30

1.86 1.80 1.88 1.98 2.04 2.22 2.12 2.34 2.94 2.46 2.58 2.60 2.12 2.64

20 2.02 2.14 2.08 2.16 2.18 2.34 2.26 2.66 2.64 2.76 2.80 2.90 2.96 2.94

2.06 2.18 2.20 2.24 2.28 2.22 2.36 2.70 2.66 2.80 2.78 2.92 2.94 2.90

1.46 1.48 1.50 1.68 1.54 1.76 1.84 1.92 1.96 2.08 2.10 2.34 2.24 2.40

25 1.80 1.84 1.86 1.90 1.92 1.90 1.94 1.92 2.02 1.98 2.12 2.24 2.30 2.38

1.84 1.88 1.90 1.94 1.96 1.98 1.92 2.00 2.06 2.08 2.18 2.30 2.44 2.48

1.40 1.34 1.64 1.58 1.70 1.86 1.84 1.90 1.96 1.98 2.04 2.00 2.12 2.14

Table 2 summarises several thousand simulation experiments with random networks and the obtained results. In this case, given random nature of the experimental
networks, we repeated the experiment for each combination of a, b, and a centrality measure 50 times. The rows denote the percentage of nodes percolated before
intervention was made (parameter a), whereas the columns denote the percentage of nodes which were ‘immunized’ against the spread (parameter b). The first,
second, and third sub-rows denote timesteps related to PC based, BC based and hop distance based intervention respectively.
doi:10.1371/journal.pone.0053095.t002
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corresponds to the measure which returned the best performance.

For example, if a~2 and b~1, we could see from Table 1 that

percolation centrality based intervention resulted in an average 5:8
timesteps before the network was saturated. Similarly, betweenness

centrality based intervention resulted in an average 4:6 timesteps,

and hop distance based intervention resulted in an average 6:4

timesteps. Therefore, hop distance was the intervention method

which delayed the saturation of percolation furthest, and the

corresponding cell in the matrix is shown in blue to indicate this. A

green cell shows that percolation centrality was the most useful

measure, and a red cell shows that betweenness centrality was the

most useful measure. Intermediate colours show there is a tie

Figure 6. Scale-free network: the ranges of a and b for which the various centrality measures show the best performance. This figure
corresponds to Table 1. Red: best performance by betweenness centrality based intervention (31%). Green: best performance by percolation
centrality based intervention (41%). Blue: best performance by hop distance based intervention (27%). Intermediate colours represent ties (1%).
doi:10.1371/journal.pone.0053095.g006

Figure 7. Random network: the ranges of a and b for which the various centrality measures show the best performance. This figure
corresponds to Table 2. Red: best performance by betweenness centrality based intervention (27%). Green: best performance by percolation
centrality based intervention (57%). Blue: best performance by hop distance based intervention (16%).
doi:10.1371/journal.pone.0053095.g007
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(same highest average time was obtained for more than one

centrality measure).

It could be seen from Table 1 (Appendix) and Fig. 6 that, there

are certain circumstances in which percolation centrality becomes

a useful resource allocation tool, resulting in longer times for the

network to get completely percolated. Particularly, if
a

b
ratio is high

(this means either a is high or b is low, and it is easier for the

contagion to spread further), then betweenness centrality is the

most effective tool for resource allocation. This makes intuitive

sense because if we are too late to intervene (high a) or have too

few resources (low b), protecting the ‘core’ of the network from

contagion will be our best strategy. On the other hand, if
a

b
ratio is

low (this means either a is low or b is high, and it is hard for the

contagion to spread further), then hop distance becomes the most

effective tool for resource allocation. Again this is not surprising,

since if we have sufficient resources (high b) and sufficient time

(low a), we can ring-vaccinate all the nodes around percolated

nodes.

It is when the ratio
a

b
is in the medium ranges, that percolation

centrality becomes the best resource allocation tool. Indeed, it can

be seen that in the ‘critical’ middle realms of both a and b, in

which the percolation is often realistically detected, percolation

centrality based intervention has the longest saturation times, and

thus the highest chance of slowing down the percolation process.

This is the case for 41% of the cells in Fig. 6, for the range of a and

b that we have selected. While this percentage is subject to the

selection of a and b, the general pattern is clear. As such, the

measure of percolation centrality of nodes can be effectively used

as a resource allocation tool.

It can be easily seen that our conclusions hold for ER random

topology as well: Figure 7 and Table 2 show that for the middle

range of ratio
a

b
allocating the resources according to the

percolation centrality is again the most effective way to delay

percolation.

Conclusions

We introduced a new centrality measure (percolation centrality)

to analyze the importance of nodes during percolation in

networks. We demonstrated that when a network is fully

percolated (that is, all nodes have the same state), our measure

reduces to betweenness centrality. However, when only some

nodes are (partially or fully) percolated, betweenness and other

existing centrality measures can be ineffective in identifying the

relative impact of nodes on further percolation (e.g., on the spread

of infection). On the contrary, percolation centrality becomes a

useful measure precisely in these scenarios when an early

intervention is warranted. Percolation centrality in its basic form

can be calculated in O(NM) time, thus including no significant

increase in time complexity from standard betweenness centrality.

We stress that percolation centrality is introduced here as a generic

measure applicable in the context of any contagion spread, ranging

from computer virus proliferation to information spread in social

networks. We also note that, unlike weighted betweenness

measures, percolation centrality is dynamic and has relatively

low computational complexity. We have also analytically derived

some simple relationships between percolation centrality and

betweenness centrality for extreme cases. Firstly, percolation

centrality averaged over all possible single contagion sources was

shown to reduce to betweenness centrality. Secondly, it was shown

that if all nodes are infected (or partially percolated to the same

extent), then percolation centrality also reduces to betweenness

centrality.

We used a simple network of 39 nodes obtained from a contact

network study to demonstrate how percolation centrality could be

utilised. We simulated a contagion spread, and used percolation

centrality to identify critical nodes. Since most contact networks

could be modelled as scale-free networks, we also utilized scale-free

networks to demonstrate the measurement of percolation central-

ity, and compared this with results from ER random topologies.

We demonstrated that percolation centrality can be used as a

resource allocation tool. Particularly, using simulated scale-free

and random networks, we showed that allocating resources

according to the percolation-centrality based ranking is most

effective when the stage of percolation and the amount of

resources available are at a medium level. It was shown that when

the percolation process is at its infancy, hop-distance based

measures, such as ring vaccination, are most effective to contain

the percolation. If the percolation process has affected the node

states of a majority of nodes, then betweenness centrality based

ranking is most effective. Similarly, if we have extremely limited

resources to ‘immunize’ nodes to percolation, betweenness

centrality based choices are most effective, and on the other

hand, if we have considerable resources, hop distance based

choices are most effective. Percolation centrality based ranking

becomes an effective tool at the critical stage where the percolation

is just about to break through, and we have a considerable but

limited amount of resources to immunize nodes against the spread.

Percolation centrality lends itself to the many extensions to

which betweenness centrality has been subjected in the past. For

example, a definition of percolation centrality based on random

walks can be proposed, where the ‘walking agents’ could be given

weights based on source node states. Furthermore, percolation

centrality could be analyzed for both source and target node states.

As such, the concept has great potential for further research.
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