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We study the valley-dependent magnetic and transport properties of massive Dirac fermions in multivalley
systems such as transition metal dichalcogenides. The asymmetry of the zeroth Landau level between valleys
and the enhanced magnetic susceptibility can be attributed to the different orbital magnetic moment tied with
each valley. This allows the valley polarization to be controlled by tuning the external magnetic field and the
doping level. As a result of this magnetic-field-induced valley polarization, there exists an extra contribution to
the ordinary Hall effect. All these effects can be captured by a low-energy effective theory with a valley-orbit
coupling term.
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I. INTRODUCTION

Many crystalline materials have multiple energy extremum
points near the Fermi level in reciprocal space, which are
related to each other through symmetry operations and are
referred to as valleys. A well-known example is Si, which
has six valleys at its conduction-band edge in the Brillouin
zone. Similar to spin, the valley labeling constitutes a discrete
degree of freedom. Therefore, it was proposed that the valley
degree of freedom could be used for information coding and
transmission, giving rise to an active research field called
valleytronics.1–8

To have a successful valleytronics application, there are
at least two basic requirements. The first is the ability to
generate and control the valley polarization, and the second
is the ability to detect the valley polarization. For conventional
semiconductor materials such as Si, it is difficult to distinguish
different valleys. The situation changes with the advent of
novel two-dimensional (2D) materials which support massive
Dirac fermion excitations. Examples include graphene9–11

with sublattice symmetry breaking, silicene, transition metal
dichalcogenides,12–15 etc. In these systems, there are two
inequivalent valleys K and K ′ located at the corners of the
hexagonal Brillouin zone. The special feature of the massive
Dirac fermion-type excitation is that each valley has a definite
chirality arising from its strong pseudospin-orbit coupling.2

More importantly, the chiralities of the two valleys are
opposite to each other, which is imposed by the time-reversal
and inversion symmetries. This leads to possible practical
ways to differentiate the two valleys and to address them
individually.2,4

Of the examples mentioned above, 2D transition metal
dichalcogenides (TMDs) are especially interesting and have
attracted a lot of attention recently.16–31 It has been found that
when thinned down to a single layer, several members of this
class of materials undergo a transition from an indirect band
gap to a direct band gap with a gap size of 1–2 eV, which is
suitable for optical manipulations.16–18 It has been successfully

demonstrated that the excitonic valley polarization and coher-
ence in 2D TMDs can be generated by pumping with circularly
polarized light and linearly polarized light, respectively.19,21–25

The optically generated excitonic states could be manipulated
electrically,26,27 and have a long spin coherence time due to
the large valley separation and the large spin splitting in the
valence band.19,25 The field-effect transistors with a single
layer of MoS2 have also been fabricated, and the mobility
can be enhanced to 500 cm2/Vs,29–31 with an excellent current
on/off ratio.

Motivated by this recent progress, we explore the possibility
of controlling the valley degree of freedom in TMDs through
magnetic means. We show that the zeroth Landau level
anomaly, which was found previously in MoS2 (Ref. 32), and
the enhanced magnetic susceptibility can be attributed to the
valley-contrasting orbital magnetic moments. With this prop-
erty, we could generate valley polarization of carriers by using
an external magnetic field. Furthermore, this induced valley
polarization would in turn produce an extra contribution to the
ordinary Hall effect which can be detected experimentally. A
simple effective theory is proposed to describe the dynamics
of such valley-orbit coupled systems. These findings may open
a new route for valleytronics applications.

This paper is organized as follows. In Sec. II we discuss
the simplest model of massive Dirac fermions, which serves
as the generic building blocks for the more realistic models.
In Sec. III we apply the results from Sec. II to study the
TMD materials and discuss their Landau level structures and
magnetic susceptibility. In Sec. IV we show that the magnetic
field can be used to control the valley polarization. In Sec. V
we predict that this valley polarization leads to an extra
contribution in the charge Hall transport. Some discussions
and a summary are presented in Sec. VI.

II. SIMPLE MODEL OF MASSIVE DIRAC FERMIONS

In this section, we first present a heuristic discussion of the
simplest model for a massive Dirac fermion with valley degrees
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of freedom. In the absence of external fields, the model can be
written as

HD = h̄v(τzkxσx + kyσy) + �σz, (1)

where v is a material-specific Fermi velocity, kx and ky are
the two components of the wave vector measured from the
Dirac point, σ ’s are the Pauli matrices typically representing a
pseudospin from the sublattice or orbital degrees of freedom,
and τz = ±1 is the valley index labeling the two inequivalent
valleys. The form of the Hamiltonian is generic for several 2D
materials we are interested in, including the TMD materials.
These materials usually have a honeycomb lattice structure
when viewed from the top. The two valleys occur at K and
K ′ points at the corners of the hexagonal Brillouin zone, and
are related to each other by the time-reversal and inversion
symmetries.

The first term in H0 shows a strong pseudospin-orbit
coupling and the second term is the mass term. If � → 0,
the particle becomes massless and the Hamiltonian can be
used to describe the graphene. For a finite �, it opens a gap of
2� in the spectrum.

The two valleys have different chiralities. This can be
understood by tracking the pseudospin orientation when an
electron moves around a fixed energy contour enclosing a
Dirac point. Consider an electron going around the states
(counterclockwise) with a fixed energy ε > 2� and returning
to its starting point. Its pseudospin σ would rotate by +2π

for the K valley (τz = +1), while it would rotate by −2π for
the K ′ valley (τz = −1). This difference in the chirality or
the winding numbers manifests in many important electronic
properties such as the Berry curvature and the orbital magnetic
moment.2,6

A. Asymmetric Landau levels

The effect of an external magnetic field (oriented in the
z direction, i.e., perpendicular to the plane) can be taken
into account through the Peierls substitution of k by π =
k + eA/h̄, where A is the vector potential. Here we neglect
the Zeeman energy term, which is at least one order of
magnitude smaller than the cyclotron energy.32 Hence in
the remaining part of this section, we shall neglect the spin
degeneracy. Following the standard procedure for the Landau
level quantization, we define the operators π± = πx ± iπy

which satisfy the commutation relation [π−,π+] = 2eB/h̄,
where B is the magnitude of the magnetic field. Hence we
could define the bosonic ladder operators b† and b as b† =
(lB/

√
2)π+, b = (lB/

√
2)π−, where lB = √

h̄/(eB) is the
magnetic length. These ladder operators satisfy the relations
b|n〉 = √

n|n − 1〉, b|0〉 = 0, where |n〉 (n = 0,1,2, . . .) are
the Landau level eigenstates for a conventional 2D electron
gas.

The spectrum can be easily solved on the basis of |n〉’s. The
resulting Landau levels are

εn,± = τz�δn,0 ±
√

�2 + nh̄2ω2
c (1 − δn,0), (2)

where ωc = √
2v/lB , δ is the Kronecker delta function, and n

is an integer �0.

FIG. 1. (Color online) The Landau levels from exact quantum
calculations for the conduction band of the two valleys, shown as
solid horizontal lines. The original band dispersion in the absence
of fields is shown as dashed blue curves. The solid curves show
the band dispersion shifted by the Zeeman-like coupling between
magnetic moment m(k) and the magnetic field. It can be seen that the
first Landau level is at h̄ω0/2 above the bottom of the shifted band,
where h̄ω0 is the cyclotron energy of the first Landau level.

We observe that the Landau level spacing is not uniform
(see Fig. 1). The Landau levels with n � 1 are aligned between
the two valleys. However, the zeroth Landau level with n = 0
is not located at the zero energy, and for different valleys
its position shifts in opposite directions. Note that the zeroth
Landau level for the τz = +1 valley is at the same energy of
the original conduction-band bottom at zero field, while for
the other valley there is no Landau level at this energy. The
spacing between the zeroth and the first Landau level in the
τz = +1 valley is

δε =
√

�2 + h̄2ω2
c − � ≈ eh̄v2

�
B, (3)

where in the second step we assume the gap is much larger
than the cyclotron energy.

This peculiar asymmetric behavior can be traced to the
chirality difference between the two valleys and can be easily
explained in the semiclassical theory of Bloch electrons. If
we construct an electron wave packet near the valley center,
due to the pseudospin-orbit coupling, it is self-rotating, hence
producing an intrinsic orbital magnetic moment. The general
expression is given by33–35

m(k) = −i
e

2h̄
〈∇ku| × [H (k) − ε(k)]|∇ku〉, (4)

where |u〉 is the periodic part of the Bloch eigenstate, H (k) is
the Bloch Hamiltonian, and ε(k) is the band energy. Generally
speaking, the orbital magnetic moment is large for states near
gaps caused by (pseudo-)spin-orbit coupling. For our present
case, a direct calculation yields

m(k) = τz

eh̄v2�

2(�2 + h̄2v2k2)
ẑ. (5)

This moment is largest at the band edges ±�. For example, at
the conduction-band bottom, it is given by

m = τz

eh̄

2m∗
e

ẑ with m∗
e = �

v2
. (6)
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Here we express the moment in a form similar to that for the
Bohr magneton. The difference is that now the bare electron
mass is replaced by an effective mass m∗

e determined by
the band parameters. It is noted that the magnitude of this
moment is proportional to �−1, i.e., the moment becomes
larger when the gap is smaller. The most important feature for
our purpose is that it takes different signs for the two valleys.
This is a manifestation of the valley-dependent chirality of
the two valleys we mentioned before, because chirality can be
viewed as representing a sense of rotation of the carrier. It is
an important property of the electronic band structure.

In the presence of an external magnetic field, the wave-
packet energy would be shifted by −m · B.33 We plot the
shifted bands in Fig. 1. The bands at the two valleys are shifted
in opposite directions. In particular, the band edges are shifted
by

εm = −τz

eh̄v2

2�
B. (7)

Its magnitude is equal to δε/2, i.e., half the spacing between
the zeroth and the first Landau levels. Now we can see that with
respect to the shifted bands, the Landau levels at both valleys
start at half of the cyclotron energy above the band edges,
which is just the familiar result for the 2D free-electron gas.
This implies that the behavior of the present system under a
magnetic field can be understood using a 2D electron gas with
a valley-contrasting intrinsic magnetic moment. This point of
view will be further supported in the next subsection when we
study the magnetic susceptibility. In fact, the entire Landau
level spectrum could be obtained in the semiclassical theory
through the semiclassical quantization procedure as outlined
in the Appendix.

B. Enhanced magnetic susceptibility

The magnetic susceptibility captures the collective response
of the system to the external magnetic field. It can be calculated
from the thermodynamic potential

F = − 1

β

eB

h
Tr{ln[1 + eβ(μ−Ĥ )]}, (8)

where β = 1/(kBT ) is the inverse temperature and h is the
Planck constant. The magnetic susceptibility can be extracted
as χ = −(∂2F/∂B2)μ,B→0. Substituting in the Landau level
spectrum, we can expand F as a power series in the
field strength B and obtain an analytical expression of
susceptibility:36

χ0(μ; �) = −e2v2

6π

sinh(β�)

�[cosh(βμ) + cosh(β�)]
. (9)

In the limit of zero gap � → 0, we have

lim
�→0

χ0 = −e2v2

6π

β

1 + cosh(βμ)
, (10)

which recovers the old result discussed in the context of
graphene.37,38 We observe that the χ0 in the zero gap case
has a large negative peak at μ = 0, and it diverges as T → 0.
The divergence is removed when the gap opens up, but the
large diamagnetic dip is still visible and it gets broadened in
energy as the gap increases (see Fig. 2). It is interesting to note

μ

χ

FIG. 2. (Color online) Magnetic susceptibility as a function of
the chemical potential μ. Two different temperatures of T = 10 and
300 K are taken. Here we take v = 0.5 × 106 m/s.

the integral of susceptibility over the chemical potential,∫ +∞

−∞
χ0(μ)dμ = −e2v2

3π
, (11)

which is independent of both the gap size and the temperature.
At the zero-temperature limit, the susceptibility becomes a
square well shape, and completely vanishes outside the gap.39

The sudden jump of magnetic susceptibility at the band
edges in fact signifies a large paramagnetic response from the
carriers. Indeed, if we calculate the magnetic susceptibility
from the Landau levels above the gap, then the contribution
from the conduction-band carriers can be obtained as

χc
0 (μ) = e2v2

6π

1

�

1

1 + e−β(μ−�)
, (12)

which shows a large paramagnetic response from the
conduction-band electrons.

The large paramagnetic response at the band edge can
also be understood in our semiclassical picture mentioned
before. At the conduction-band bottom, the system can be
viewed as a 2D gas of electron wave packets with magnetic
moments m. In the presence of an external magnetic field,
the resulting magnetic response is well known. It has a net
paramagnetic response from the difference between the Pauli
paramagnetism and the Landau diamagnetism.40 We have
checked that the result just recovers Eq. (12) above. Similarly,
the large diamagnetic response in the gap can be attributed to
the orbital magnetic moments concentrated at the valence-band
top. In the zero gap limit, m∗

e → 0 and the moment diverges at
the band edges, which results in the singular behavior of the
magnetic susceptibility.37

III. MAGNETIC RESPONSE OF TRANSITION
METAL DICHALCOGENIDES

In this section, we apply the knowledge obtained from
the preceding section to study the magnetic response of
a monolayer TMD material. Physically interesting TMD
materials have the form of MX2 (M = Mo,W; X = S,Se).20

As we mentioned earlier, these materials have direct band gaps
at K and K ′ points. They also have a large spin-orbit coupling
induced spin splitting in the valence band. The electronic
properties near the band edges can be described by the effective
Hamiltonian19

H = h̄v(τzkxσx + kyσy) + �σz − λτzszσz + λτzsz. (13)
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Note that the first two terms are the same as those in our simple
massive Dirac model Eq. (1). Now the pseudospin σ represents
the space of two relevant orbitals dz2 and dx2−y2 + idxy . The
last two terms represent the effect of spin-orbital coupling
induced spin splitting. It splits the valence-band top into two
spin-polarized bands. λ is the coupling strength and sz = ±1
is for the z component of real spin.

We note that because of the extra spin degrees of freedom,
the model in fact consists of two copies of the simple model (1)
with different band gaps (masses) depending on the “flavor”
index τzsz. The gap is 2(� − λ) for τzsz = +1 and 2(� + λ)
for τzsz = −1. In this way, the spin and valley are coupled
together. The valence-band top in the K valley is polarized with
spin-up while in the K ′ valley it is polarized with spin-down.
Accordingly, there are two sets of Landau levels which can be
written in a compact way as32

εn,± = λτzsz ±
√

�̃2 + nh̄2ω2
c , (14)

where �̃(τz,sz) = � − λτzsz is the flavor-dependent mass and
n = 0,1,2 . . . is a non-negative integer. Again the asymmetric
Landau level structure between the two valleys can be
observed. It is also interesting to note that the Landau levels
near the valence-band top at the K ′ valley are spin-polarized
(see Fig. 3).

The magnetic susceptibility can be directly read out by
combining the contributions from the two copies of massive
Dirac bands:

χ (μ) = χ0(μ − λ; � − λ) + χ0(μ + λ; � + λ), (15)

where χ0(x; y) is defined in Eq. (9). Due to the orbital magnetic
moments of carriers at the band edges, again a sudden change
of orbital magnetic susceptibility is expected there. This
behavior is shown in Fig. 4. And because here we have two
copies of massive Dirac bands with different gap sizes, there
appears a two-step feature in the susceptibility curve plotted as
a function of the chemical potential. The steep change feature
is going to be smoothed out as temperature increases.

FIG. 3. (Color online) Landau levels for the massive Dirac
fermions in transition metal dichalcogenides. Solid (dashed) curves
represent spin-up (-down) bands, while the parallel lines represent
their Landau levels. The four red lines represent the location of the
n = 0 Landau levels.

μ

χ

FIG. 4. (Color online) Magnetic susceptibility of typical TMD
materials. Two different temperatures of T = 10 and 300 K are taken.
Here we take the spin-orbit coupling strength to be λ = 0.1� and
v = 0.5 × 106 m/s.

IV. MAGNETIC-FIELD-INDUCED
VALLEY POLARIZATION

A necessary requirement for valleytronics applications is
the ability to generate and control the valley polarization. It
has been shown that the valley polarization in TMDs can be
generated by a circularly polarized light which couples to the
orbital magnetic moment. Here we show that due to the valley-
contrasting orbital magnetic moment, we can also control the
valley polarization in TMDs by an applied magnetic field.

First analogous to the spin polarization, we can define the
valley polarization of carriers as

Pv = n+ − n−
n

, (16)

where n± is the density of electrons in the valley with index
τz = ±1, and n = n+ + n− is the total carrier density. In an
external magnetic field, n± can be calculated from the filling
of the Landau levels in the two valleys. Now it is easy to
see that a finite valley polarization must be present due to the
asymmetric Landau level structure of the two valleys.

Considering the n-doped case, because the Landau levels
(there are two levels from the spin degeneracy) at +� for
the K valley have no counterpart at the K ′ valley (and hence
for low doping only these two lowest levels are filled), we can
achieve 100% valley polarization. If we keep on increasing the
doping, higher Landau levels from both valleys are going to be
filled. The valley polarization decreases and approaches zero
as n → ∞. The situation is similar for the p-doped case. More
interestingly, because of the spin splitting at the valence-band
top, the valley polarization is also the spin polarization.
Specifically, at a low doping level, only the Landau level
at −� + 2λ at the K ′ valley is occupied by holes with
spin-up. Moreover, for both cases, the valley polarization can
be reversed by simply reversing the direction of the magnetic
field.

Let us take the simple T = 0 limit. Then the polarization
can be obtained by simply counting the Landau levels. For
the n-doped case, the variation of Pv as a function of the
conduction-band electron density ne is given by (note that
there are two spin-degenerate zeroth levels at the K valley)

Pv = (2 − νe) + 2

νe

(νe − 2), (17)
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μ

FIG. 5. (Color online) The variation of valley polarization Pv with
the chemical potential μ. Here we take v = 0.5 × 106 m/s, � = 0.5
eV, the spin-orbit coupling strength λ = 0.05 eV, and the magnetic
field B = 5 T. The red steps represent exact quantum calculations,
while the blue dashed curve represents the semiclassical results.
The chemical potential is measured from the conduction-band n = 0
Landau level.

where  is the step function, and νe = hne/(eB) counts the
filling of Landau levels. Similarly for the weakly p-doped
case, i.e., when the Fermi level is above the lower spin-split
band,

Pv = −(1 − νh) − 1

νh

(νh − 1). (18)

Here νh = hnh/(eB) with nh being the hole density.
The valley polarization as a function of the chemical

potential would show a series of steps at low temperatures.
Again taking the T = 0 limit, we have for the n-doped case

Pv = 1

1 + m
, Em � μ < Em+1, (19)

where Em is the mth Landau level energy for the conduction
band including both flavors τzsz = ±1, and E0 = +� is the
zeroth Landau level energy at the K valley. The result is plotted
in Fig. 5. For the weakly p-doped case, the valley polarization
is given by

Pv = − 1

1 + 2m
, Em+1 < μ � Em, (20)

where we count the Landau levels from μ = 0 with decreasing
energy and E0 = −� + λ is the energy of the zeroth level at
the K ′ valley. At finite temperature, the sharp changes of the
above functional dependence of Pv are going to be smoothed
out, but the main features should be maintained.

The valley polarization can also be calculated using the
semiclassical theory, in which the electron density from a given
valley is obtained by integrating the Berry curvature modified
density of states,41

n(μ,τz,sz) =
∫ μ d2k

(2π )2

(
1 + B · �

h̄

)
f (k,τz,sz), (21)

where the Berry curvature �(k) = i〈∇ku| × |∇ku〉 is also an
intrinsic band property like the orbital magnetic moment, and
f is the Fermi distribution function. The effect of the external
field is in the shift of the bands f = f [ε(k) − m(k)B] (ε and m

also depend on τz and sz). The resulting valley polarization is a
smooth curve going through all the steps of the exact quantum
result Eq. (19) (see Fig. 5). It is a good approximation in the

low-field regime, as it should be from the condition of validity
of the semiclassical theory.

V. HALL TRANSPORT FROM VALLEY POLARIZATION

It is now clear that even in the absence of the external
magnetic field, transverse motion of the carriers could be
induced due to the Berry curvature, which acts like an
effective magnetic field in reciprocal space.42,43 Like the
orbital magnetic moment, the Berry curvature is also related to
the chirality of the band. For the present model of TMDs, the
broken inversion symmetry leads to a nontrivial momentum-
space Berry curvature which reads19,32

�c(k,τz,sz) = −τz

h̄2v2�̃

2(�̃2 + h̄2v2k2)3/2
. (22)

The appearance of the factor of τz indicates it is also a valley-
contrasting property. For the valence band, the Berry curvature
has the opposite sign, �v(k,τz,sz) = −�c(k,τz,sz).

In the presence of an in-plane electric field, this Berry
curvature leads to the transverse motion of the carriers. Its
integral over the occupied states gives an intrinsic contribution
to the Hall conductivity,42,43

σ int
H = e2

h̄

∑
τz,sz

∫
d2k

(2π )2
f (k,τz,sz)�(k,τz,sz), (23)

where f is the Fermi-Dirac distribution function. Disorder
scattering also contributes to the Hall transport. There is an
important side-jump contribution which is proportional to the
Berry curvature at the Fermi surface.44 In the following, we
assume the scattering is of Gaussian white-noise type45 and
we disregard the intervalley scattering, which requires a large
momentum transfer.

We first consider a single copy of a massive Dirac fermion as
in Eq. (1). For the n-doped case (μ > �), the Hall conductivity
for each valley has been obtained before as2,6,32

σ 0
H = −τz

e2

2h

[
1 − �

μ
− �(μ2 − �2)

μ3

]
. (24)

Notice that the appearance of the valley index τz indicates that
the Hall conductivity also takes different signs between the
two valleys. In the absence of a magnetic field, the net effect is
a pure valley Hall current with a vanishing charge Hall current.

When a magnetic field is turned on, from our discussion
in the preceding section, there will be a field-induced valley
polarization. Therefore, the Hall current from the two valleys
cannot completely cancel each other and a net charge current
would appear. In the low-field regime, we can calculate the
charge Hall conductivity as

σ
0;c
H = −e2

h

�

μ2

(
1 − 3�2

2μ2

)
δμ, (25)

where δμ (�μ) is the energy shift due to the magnetic field
(the difference between the shifted band bottoms). From our
discussion in Sec. II A,

δμ = 2mB ≈ eh̄v2

�
B. (26)

Let us focus on the Hall coefficient, which is an ex-
perimentally relevant physical quantity. It is defined as
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γ = −ρH/B. The Hall resistivity ρH is usually much less than
the longitudinal resistivity ρ. Hence we can write ρH = ρ2σH.
Apart from the ordinary Hall coefficient from the Lorentz force
γOH, now we have an extra contribution δγ 0 from the valley
polarization. From Eqs. (25) and (26), we have

δγ 0(μ; �) = 1

eμD(μ)

(
1 − 3�2

2μ2

)(
e2

h
ρ

)2

, (27)

where D(μ) = |μ|/(2πh̄2v2) is the density of states for a single
valley at energy μ. Note that this extra contribution has a sign
change at μ = √

3/2�, which can be traced back to Eq. (24)
due to the different μ dependence of the intrinsic contribution
and the side-jump contribution.

Now we consider the case of TMDs. Because it consists
of two copies of the massive Dirac model Eq. (1), for the
n-doped case (μ > �), the correction δγ is simply a sum of
the contributions from both copies,

δγ = δγ 0(μ − λ; � − λ) + δγ 0(μ + λ; � + λ). (28)

The situation is simpler for the weakly p-doped case
(−� + 2λ > μ > −� − 2λ), where only one copy with flavor
τzsz = 1 contributes. The result is given by

δγ = −δγ 0(−μ + λ; � − λ). (29)

In this case, the hole density can be estimated as

nh � 2
∫ −�+2λ

μ

D(ε)dε = 1

2πh̄2v2
(μ − �)(μ + � − 2λ),

(30)

where the factor of 2 appears because there are two valleys.
The ordinary Hall coefficient is given by γOH = 1

nhe
. For

comparison, we plot the dimensionless quantity

Q = δγ

γOH

/(
e2

h
ρ

)2

= − (μ − �)(μ + � − 2λ)

(μ − λ)2

[
1 − 3(� − λ)2

2(μ − λ)2

]
(31)

in Fig. 6 as a function of the chemical potential. The sign
change we noted before can be observed. Because Q has a
magnitude on the order of ∼(λ/�) for low doping levels (μ ∼
−�), the correction from the valley polarization would be
more important with a decreasing gap � and an increasing

FIG. 6. (Color online) The variation of the dimensionless quantity
Q [see Eq. (31)] with the chemical potential μ. Here, we take the
spin-orbit coupling strength to be λ = 0.1� and v = 0.5 × 106 m/s.

spin splitting. And it should be more pronounced for dirty
samples with a large resistivity.

VI. DISCUSSION AND SUMMARY

From the above discussions, we see that due to the valley-
contrasting orbital magnetic moments and Berry curvatures,
the carriers at the two valleys respond differently to the external
fields. In particular, the extra contribution to the Hall transport
is conceptually similar to what is happening in the anomalous
Hall effect in a ferromagnet.46,47 In that case, the carriers have
a net spin polarization and the transverse motion is induced by
the spin-orbit coupling. In comparison, the valley here plays
a similar role to the spin. A population imbalance between
the two valleys is induced by the external magnetic field. We
can then ask: is it possible to construct an effective coupling
between the valley and the orbit motion that mimics the spin-
orbit coupling for the Hall transport?

On a phenomenological level, there is indeed a valley-orbit
coupling, because the electrons in two valleys do have opposite
transverse velocities due to the opposite Berry curvatures. The
analogy with spin-orbit coupling can in fact be made more
precise by a systematic and rigorous procedure for deriving
an effective single-band Hamiltonian.48 There are three basic
ingredients for this procedure: the band energy, the magnetic
moment, and the Berry curvature. The valley explicitly comes
into the effective Hamiltonian at two places. The magnetic
moment carries the valley index and shifts the band energy
in a magnetic field by a Zeeman-like coupling term. There is
also a dipolelike term proportional to the electric field: eE · R,
where R is the Berry connection which represents a shift of the
wave packet center.48 For the conduction band of the simple
model Eq. (1), it is

R = − τz

2k2

(
1 − �√

�2 + h̄2v2k2

)
k × ẑ. (32)

Therefore, the low-energy effective Hamiltonian near the
conduction-band edge can be written as

Heff = ε(k) − τzμ
∗
B(k) B · ẑ − eφ(r)

− τz

eh̄2

4m∗2
e v2

ẑ · (k × E), (33)

where we denote the magnitude of m(k) as an effective Bohr
magneton μ∗

B(k). We can see that the preceding term has a
similar form to the spin-orbit coupling, which is just the valley-
orbit coupling. The effective Hamiltonian closely resembles
the Pauli Hamiltonian for an electron in the nonrelativistic
limit derived from the Dirac equation. Taking this effective
Hamiltonian as the starting point, all the physical effects we
discussed above could be addressed.

In summary, we have investigated the possibility of
controlling the valley degree of freedom using an applied
magnetic field. The valley-dependent orbital magnetic moment
provides an essential ingredient which couples the valley
index with the magnetic field. It gives a nice explanation for
the asymmetric Landau level structure32 and the enhanced
magnetic susceptibility that are common in systems with
multiple massive Dirac fermions.
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We point out that by tuning the external magnetic field
and adjusting the doping level, we can efficiently control
the valley polarization. We also predict an extra contribution
to the ordinary Hall effect due to the field-induced valley
polarization.

For the pristine transition metal dichalcogenide material
MoS2, the typical values of model parameters are v ∼ 0.53 ×
106 m/s, � ∼ 0.83 eV, and λ ∼ 0.04 eV.19 The sudden change
of magnetic susceptibility at the band edge on the order
of 10−9 A/T should be detected. The two-step structure
shown in Fig. 4 is quite a unique feature of this system.
The spacing between the two steps in the valence band
corresponds to the spin-orbit splitting 4λ. Hence this feature
might be more clearly observed in WS2 and WSe2, which
have a larger spin-orbit coupling strength, λ ∼ 0.1 eV. The
magnetic-field-induced valley polarization could be detected
through circular dichroism in optical transitions.21–23 For the
weakly hole-doped case, it can also be detected by measuring
the spin polarization of the carriers because the spin and valley
are coupled in this case. As for both the field-induced valley
polarization and the resulting additional contribution to the
Hall transport, they increase as � decreases because both the
Berry curvature and the orbital magnetic moment scale as 1/�

near the band edge. Therefore, these effects could be enhanced
if the gap can be made smaller, possibly through chemical
doping, straining, or electrical gating of the two S or Se
layers.

Our results presented here are particularly relevant for the
valleytronics applications and for the study of 2D transition
metal dichalcogenides materials.

ACKNOWLEDGMENTS

The authors would like to thank D. Goldhaber-Gordon
and D. L. Deng for valuable discussions and inspirations.

S.A.Y. and X.L. are supported by SUTD-SRG-EPD-2013062,
the MOST Project of China (2012CB921300), and NSFC
(91121004). T.C. is supported by NSFC under Grant No.
11104193. F.Z. is supported by DARPA (SPAWAR N66001-
11-1-4110). W.Y. is supported by the HKSAR Research Grant
Council under Grant No. HKU706412P and the Croucher 382
Foundation under the Croucher Innovation Award. Q.N. is
supported by the Welch Foundation (F-1255) and the DOE
(DE-FG03-02ER45958, Division of Materials Science and
Engineering).

APPENDIX: SEMICLASSICAL QUANTIZATION
OF LANDAU LEVELS

The energy of Landau levels can also be obtained by
semiclassically quantizing the cyclotron orbits. The Onsager
quantization condition states that the areas enclosed by the
cyclotron orbits should be quantized according to33

πk2
n = 2πeB

h̄

[
n + 1

2
− �(kn)

2π

]
, (A1)

where n = 0,1,2, . . . labels the orbits and �(kn) is the
correction from the Berry phase of the electron which is
accumulated along the cyclotron orbit. Practically, it can be
calculated by integrating the Berry curvature over the area
enclosed by the orbit:

�(kn) =
∫

Sn

d2k �(k) · ẑ. (A2)

After we obtain the quantized values of the wave vector kn from
Eq. (A1), the Landau level energies can be directly written
down using the shifted band energy as εn = ε(kn) − m(kn)B.
We have checked that the Landau levels obtained using this
semiclassical approach agree very well with the exact quantum
result.
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