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Multi-state current switching by voltage controlled coupling of crossed
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The interlayer transport between two semi-infinite crossed graphene nanoribbons (GNRs) is

governed by the quantum interference between the standing waves of the individual GNRs. An

external bias applied between the GNRs controls the wavelength and hence the relative phase of

these standing waves. Sweeping the applied bias results in multiple constructive and destructive

interference conditions. The oscillatory nature of the voltage controlled interference gives rise to

an oscillatory current-voltage response with multiple negative differential resistance regions. The

period of oscillation is inversely proportional to the length of the finite ends of the GNRs. Quantum

interference is explicitly shown to be the physical mechanism controlling the interlayer current by

direct evaluation of the interlayer matrix element using analytical expressions for the

wavefunctions. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4826264]

I. INTRODUCTION

One remarkable property of graphene is that the individ-

ual layers in misoriented or twisted bilayer graphene (TBG)

are electronically decoupled.1–10 The decoupling results

from the destructive quantum interference between the elec-

tron wave functions of the top and bottom graphene layers.5

Between two misoriented sheets of graphene, the coherent

interlayer resistance has been found to vary between 8 and

16 orders of magnitude as the rotation angle is varied

between 0� and 30�.11,12 Contact resistances resulting from

the coherent coupling between two rotated graphene layers

have been calculated to vary between �107 Xcm2 and

�10�9 Xcm2 as a function of the rotation angle.12 The inter-

layer coupling is increased13 and the Fermi velocity is

reduced14 in presence of a vertical electric field, and negative

differential conductance is predicted at small biases.12 Since

the coherent interlayer coupling can be so small, the inter-

layer, room-temperature conductance for all but the smallest

misorientation angles is dominated by phonon-assisted trans-

port mediated by an out-of-plane beating mode of the bilayer

with phonon energies ranging from 10 meV to 30 meV as the

misorientation angle varies from 0� to 30�.11

The coherent electronic decoupling between two-

dimensional (2D) misoriented bilayers is still present in

lower dimensions, when the overlap region is reduced to the

nanometer scale.15 The crystallographic misorientation angle

of two overlapping armchair nanoribbons placed at a 90�

angle with respect to each other is 30�. The coherent inter-

layer transmission between two crossed, 1.8 nm, armchair,

graphene nanoribbons was suppressed by 5 orders of magni-

tude. Applying a 0.15 V, voltage between the nanoribbons

increased the transmission by 4 orders of magnitude.15 The

graphene nanoribbons (GNR) crossbar in Ref. 15 consisted

of two infinite nanoribbons in which the electron states were

propagating waves.

This work investigates the electronic coupling between

two semi-infinite armchair GNRs (aGNRs) in which the elec-

tron states are standing waves. Despite the equivalence of

the atomistic geometry of the overlap regions, the inter-layer

transport properties of the crossed infinite GNRs (IxGNR)

and the crossed semi-infinite GNRs (SxGNR) differ due to

the difference of the electronic wavefunctions. Unlike the

current-voltage response of the IxGNR, sweeping a two-

terminal voltage applied between the two crossed semi-

infinite GNRs results in an oscillatory current-voltage (I–V)

characteristic with multiple negative differential resistance

(NDR) regions. Since the vibrational modes of such struc-

tures have not yet been calculated, only the coherent inter-

layer current will be considered. Estimates of the relative

magnitudes of the coherent current and the phonon-assisted

current will be given at the end.

The occurrence of transmission resonances and antireso-

nances in single layer graphene structures is not

uncommon.16–23 Such structures would display many fea-

tures in the low-bias conductance as a function of gate volt-

age. In contrast, the individual features in the transmission

spectra of the rotated graphene nanoribbons are not of pri-

mary importance. The average magnitude of the transmis-

sion and the dependence of the average magnitude on the

applied two terminal voltages are of primary interest.

Sweeping an external two-terminal bias applied between the

GNRs alters the relative phases of the two standing waves

resulting in a periodic modulation of the average interlayer

transmission and an oscillatory I–V characteristic with multi-

ple NDR regions. The voltage period of oscillation is inver-

sely proportional to the length of the truncated ends of the

GNRs.

A GNR device with oscillatory I–V characteristics and

multiple NDR regions is complementary to numerous gra-

phene field effect transistors.24–29 Such a non-linear I–V
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response can provide increased functional density in all-

carbon based electronics.30–32

II. METHOD

Three different types of calculations are performed. (i)

The geometry of the graphene nanoribbons are optimized

using density functional theory (DFT). (ii) The electronic

transport is calculated using the non-equilibrium Green’s

function (NEGF) formalism. The Hamiltonian matrix ele-

ments used in the NEGF calculations are generated using the

extended H€uckel theory (EHT). (iii) The physics governing

the electron transport is explained by direct evaluation of the

interlayer matrix element using analytical expressions for the

wavefunctions.

A. Device structure and transport

The structure, as shown in Fig. 1, consists of two overlap-

ping, semi-infinite, armchair GNRs. The GNRs are

H-passivated, and their structure is relaxed using a projector

augmented wave method within the framework of the Perdew-

Burke-Ernzerhof type generalized gradient approximation of

the density functional theory as implemented in the software

package VASP.33 The relaxed GNRs are placed one above the

other to create the crossbar, and no further relaxation is per-

formed. The vertical separation between the GNRs is taken to

be 3.35 Å, which is the separation between the graphene layers

observed in graphite.34 Recent atomic force microscopy meas-

urements of crossed single layer graphene used statistical fitting

to determine an interlayer distance of d � 4 Å.10

Each GNR has one truncated end with a zigzag edge. To

minimize the bandgap resulting from the finite width, the

number of atoms across the width of the GNRs is chosen to

be Nw¼ 3pþ2, where p is an integer. The analysis is carried

out for Nw¼ 14 with a calculated bandgap of 136 meV. The

bandgap is a consequence of the reduced C-C bond lengths

at the armchair edges of the relaxed GNR.35,36 Different and

unequal widths are also numerically simulated.

The top and bottom contacts are modeled as infinite

leads using self-energies Rt and Rb on the top GNR (tGNR)

and the bottom GNR (bGNR), respectively, as shown in

Fig. 1. An external bias V is applied between the tGNR and

the bGNR such that the electrostatic potential energies are

U(r)¼�eV/2 for atoms on the tGNR and, U(r)¼ eV/2 for

atoms on the bGNR. The Hamiltonian matrix elements used

in the NEGF calculation are generated from the EHT using

non-orthogonal Slater-type orbitals. The EHT graphene pa-

rameters are taken from Ref. 37. The Hamiltonian matrix

elements are used in the NEGF algorithm to calculate the

transmission coefficient, T(E), as described in Ref. 15. The

current is calculated from

I ¼ 2e

�h

ð
dE

2p
TðEÞ½fbðEÞ � ftðEÞ�; (1)

where fb(E) and ft(E) are the Fermi distributions of the

bGNR and tGNR contacts, respectively. In all current calcu-

lations, the temperature of the Fermi distributions is 300 K.

B. Analytical model

The analytical expression for the inter-layer transmis-

sion obtained using Fermi’s Golden Rule is given by15

TðEÞ ¼ 4p2
X
m;n

jMm;nj2NnðE� eV=2ÞNmðEþ eV=2Þ; (2)

where the subscripts m and n index a mode on the top and bot-

tom GNR, respectively, Nm(E) and Nn(E) are the correspond-

ing single-spin density of states, and Mm;n ¼ hwmky
jHintjwnkx

i
is the matrix element between the states on the top and bottom

GNRs. Here, jwmky
i is the injected state at the top contact, and

jwnkx
i is the collected state at the bottom contact. Both states

are at energy E. Since the low energy transport of the SxGNR

is governed by the fundamental modes, we will only consider

the wavefunctions of the conduction and valance bands and

drop the subscripts of M below.

Within the framework of the continuum model, the

wavefunction of mode n of the semi-infinite aGNR shown in

Fig. 2 can be written as38,39

jwnky
i ¼ jwnkyAi þ jwnkyBi (3)

with

jwnkyai ¼
X
Ra

ðeiK:Rawna � eiK0:Raw0naÞjaRai; (4)

where jaRai is the pz orbital of the carbon atom located at Ra

with a 2 fA;Bg, wna and w0na are envelope wave functions at

K � ð�4p=3a0; 0Þ and K0 � ð4p=3a0; 0Þ valleys, respec-

tively. The envelope wave functions of p-electrons can be

written as a four components spinor38,39

FIG. 1. The structure consists of two crossed semi-infinite, armchair nano-

ribbons. To minimize the bandgap due to quantization, the number of atoms

across the width is chosen to be 3pþ 2, where p is an integer. The length of

the top and bottom truncated ends are Ltop and Lbot, respectively. The coordi-

nate system is chosen such that the origin is at the center of the overlap

region.

153710-2 Habib, Zahid, and Lake J. Appl. Phys. 114, 153710 (2013)
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wnA

wnB

�w0nA

�w0nB

2
66664

3
77775 ¼ C1

sinðkyyAÞeiknxxA

s

kn

�
�knxsinðkyyBÞeiknxxB þ kycosðkyyBÞeiknxxB

�

�sinðkyyAÞe�iknxxA

s

kn

�
knxsinðkyyBÞe�iknxxB � kycosðkyyBÞe�iknxxB

�

2
666666664

3
777777775

(5)

with

kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

nx þ k2
y

q
; (6)

where s¼þ1 and �1 for the conduction and valance bands,

respectively. The quantized wavevector knx is given by

knx ¼ ~knx �
2p
3a0

; (7)

where n ¼ 0;61;62;… and ~knx ¼ 2np
ðNwþ1Þa0

. The dispersion

relationship of the electron associated with the wavefunction

in Eq. (3) is

EnðkyÞ ¼ sckn ¼ s�hvkn; (8)

where c ¼
ffiffi
3
p

a0t0
2
¼ �hv; t0 ¼ 2:7 eV is the nearest neighbor

tight binding parameter40 and v is the velocity of electron

near the Dirac point of graphene. One difference between the

wavefunction of a semi-infinite aGNR given by Eq. (5) and

the wavefunction of a graphene quantum dot (GQD) derived

in Ref. 38 is that in a GQD, ky is discrete due to the fourth

hard-wall boundary imposed on the GQD.

For a Nw¼ 3p þ 2 atomic layer wide metallic aGNRs,

the band index for the conduction and valance band is given

by n¼ pþ1. Hence, knx¼ 0 and the dispersion relationship

for these bands is linear

EnðkyÞ ¼ scky ¼ s�hvky: (9)

The corresponding wavefunction components obtained from

Eqs. (4)–(6) are given by

jwnkyai ¼ C
XNw

i

XNu

j

/kyaðjÞsinð~knxxai
Þjaiji; (10)

where the envelope wavefunctions along y

/kyAðjÞ ¼ sinðkyyAj
Þ (11)

and

/kyBðjÞ ¼ s cosðkyyBj
Þ (12)

are standing waves. Here, the normalization constant C ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð 2
ðNwþ1ÞNu

Þ
q

; ~knx ¼ 2p
3a0

and jaiji is the pz orbital of the atomic

site a in the atomic layer i and the unit cell j of the aGNR.

This continuum model does not take into account the

reduced C-C bond length at the armchair edges and therefore

Nw¼ 3p þ 2 atomic layer wide aGNRs do not show any

bandgap. Also, this model does not include the edge state

localized at the zigzag edge of the truncated end. Although it

does not include the bandgap and the edge states, in Sec. IV,

we will show that this model captures the essential physics

governing the quantum transport in the SxGNR. The missing

transmission features corresponding to the bandgap and the

edge states do not affect the conclusions drawn by this con-

tinuum description.

The coordinate system of the SxGNR shown in Fig. 1 is

chosen such that the origin is located at the center of the

overlap region. The top and bottom stubs are equal in length,

i.e., Lbot ¼ Ltop � L. In this coordinate system, the envelope

wavefunctions along y for the fundamental modes of the

tGNR are

/kyAðjÞ ¼ sin kyðyAj
þ LsÞ (13)

and

/kyBðjÞ ¼ s cos kyðyBj
þ LsÞ; (14)

where the stub length Ls is measured from the origin, i.e.,

Ls¼ L þ W/2. Here, W is the width of the GNRs. Similarly,

FIG. 2. Atomistic geometry of the model semi-infinite aGNR with a zigzag

end. The origin of the coordinate system is placed on the atom at the bottom

left corner. The edge-atoms removed from the GNR are shown in gray. The

envelope function is zero at those positions. For the analytical calculations

presented in Sec. IV, the GNR width Nw¼ 14.

153710-3 Habib, Zahid, and Lake J. Appl. Phys. 114, 153710 (2013)
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the envelope wavefunctions for the fundamental modes of

the bGNR are obtained by replacing y with �x in Eqs. (13)

and (14)

/kxAðjÞ ¼ �sin kxðxAj
� LsÞ; (15)

/kxBðjÞ ¼ s cos kxðxBj
� LsÞ: (16)

For the fundamental modes, the quantized wavevectors for

the tGNR and the bGNR are equal, i.e., qn � ~knx ¼ ~kny.

The matrix element M between a ky state of the tGNR

and a kx state of the bGNR can be resolved into four

components

M ¼ MAA þMAB þMBA þMBB; (17)

where the subscripts indicate the A or B atom of each primi-

tive unit cell. The matrix elements are given by

Mab � hwkyajHintjwkxbi; (18)

¼C2
X
i;j;i0;j0

/kyaðjÞ/kxbðj
0Þsinðqnxai

Þsinðqnybi0 Þtij;i0j0 ; (19)

where i, j, and i0; j0 are the indices of the atoms on the top

and the bottom GNRs, respectively. The inter-layer matrix

elements between the p-orbitals are obtained following Ref.

13 with tij;i0j0 ¼ �t1e�3ðdij;i0 j0�doÞ, where dij;i0j0 is the distance

between the atom on the top layer at site (i, j) and the atom

on the bottom layer at site ði0; j0Þ, and do is the distance

between the two layers (3.35 Å). The inter-layer parameter

t1¼ 0.36 eV.40

Since the site energies of the top and bottom GNRs are

shifted by þeV/2, and �eV/2, respectively, the wavevectors

for the top and bottom GNRs are given by

ky ¼
1

sc
Eþ eV

2

� �
(20)

and

kx ¼
1

sc
E� eV

2

� �
; (21)

respectively. Hence, the external bias can be used to control

the relative phase of the envelope wavefunctions inside the

overlap region. In Sec. IV, we show that this voltage

controlled phase determines the nature of the interference

between the standing waves of the tGNR and bGNR.

III. NUMERICAL RESULTS

The inter layer current in the SxGNR, calculated using

the NEGF and EHT formalism, is an oscillatory function of

the applied bias with multiple NDR regions as shown in

Fig. 3. The period of oscillations are 0.5 V, 0.35 V, 0.27 V,

and 0.18 V for SxGNRs with stub lengths 2.5 nm, 4.2 nm,

5.9 nm, and 9.3 nm, respectively. Using an analytical model,

we show below that the period of oscillation is inversely pro-

portional to the stub length.

The inter-GNR transmission plots for stub length

L¼ 4.2 nm at the current minima and maxima are shown in

Fig. 4. At zero bias, the transmission shown in Fig. 4(a) is

strongly suppressed within �0:25 eV < E < 0:5 eV due to

the destructive interference between the standing waves of

the top and bottom GNR states as explained in Sec. IV

below. The dip in the transmission near E¼ 0 eV is due to

the 136 meV bandgap of the top and bottom GNRs. The nar-

row peak in the transmission at E¼ 0 eV results from the

edge states localized at the zigzag edges of the top and the

bottom GNRs.41

When the bias is increased to 0.2 V, the transmission

increases by five orders of magnitude as shown in Fig. 4(b)

and the current reaches its first maximum. The transmission

peaks at E¼ –0.1 eV and E¼ 0.1 eV are due to the edge

states of the top and the bottom GNR, respectively. This is

confirmed by the three dimensional contours of the local

density of states shown in Fig. 5. The states at E¼ –0.1 eV

and E¼ 0.1 eV are localized at the zigzag edges of the top

and the bottom GNR, respectively.

To understand the contribution of the edge states to

the total current, we have plotted the cumulative current in

Fig. 4. The expression of cumulative current is IcumðEÞ
¼ 2e

�h

Ð E
�1

dE0
2pTðE0Þ½fbðE0Þ � ftðE0Þ�, where fb and ft are the

Fermi distributions at the bottom and the top contacts,

respectively. At V¼ 0.2 V, the majority of the current is trans-

ferred through the evanescent edge states at E¼60.1 eV as

indicated by Icum in Fig. 4(b). However, at V¼ 0.52 V and

V¼ 0.88 V all of the states within the Fermi window contrib-

ute to the current as shown in Figs. 4(d) and 4(f), respectively.

FIG. 4. Transmission (solid line) and the cumulative current (dashed line) as

functions of energy for L¼ 4.2 nm at the current minima and maxima. The

vertical lines represent chemical potentials of the top and the bottom

contacts.

FIG. 3. Current voltage characteristics of a symmetric SxGNR with different

stub-lengths as shown in the legend.

153710-4 Habib, Zahid, and Lake J. Appl. Phys. 114, 153710 (2013)
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It is found that up to the first current minimum, the I–V is

governed by the interference between the edge state and the

standing wave. Since the edge state decays exponentially

inside the GNR, the matrix element between the edge state of

one GNR and the standing wave of the other GNR decreases

with increasing stub length. This explains the lowering of the

first peak in the I–V with increasing stub length.

At V¼ 0.33 V and 0.7 V, the transmission decreases due

to the destructive interference between the standing waves of

the tGNR and the bGNR and the current minima appear in

the I–V. In Sec. IV, we will show that with increasing bias

the successive appearance of the constructive and destructive

interference leads to successive enhancement and suppres-

sion of the interlayer transmission, and hence the current

oscillates.

To determine if the current-voltage response was quali-

tatively the same for variations of the symmetric geometry

shown in Fig. 1, we carried out a preliminary study of three

asymmetric structures: (a) Lbot¼ 2.5 nm, Ltop¼ 4.2 nm,

Nw¼ 14, (b) Lbot ¼ 1; Ltop ¼ 4:2 nm; Nw ¼ 14, and (c)

Nw¼ 20 (14) for the top (bottom) GNR with Ltop ¼ Lbot

¼ 4:2 nm. The current-voltage responses remain similar to

those shown in Fig. 3. The periods of oscillation for the (a),

(b), and (c) configurations are 0.4 V, 0.44 V, and 0.36 V,

respectively. For the (b) configuration with one infinite

GNR, the first current peak becomes smaller due to absence

of one of the edge states.

To determine how a built-in potential difference between

the top and bottom GNRs affects the current-voltage

response, we simulated the same four structures as in Fig. 3

with a built-in potential difference of 0.25 V. A forward bias

drives the potential difference between the two GNRs to

zero. When the potential difference is zero, the transmission

is reduced several orders of magnitude as shown in Fig. 4(a).

At this bias (0.25 V), the current is reduced by several orders

of magnitude. The current-voltage curves of the 4 structures

with a built-in voltage of 0.25 V are shown in Fig. 6. The cur-

rent ratio of the first current peak to the current minimum at

0.25 V is given in parenthesis for each curve. Because of the

large reduction in transmission, when the GNRs are drive to

equal potentials, peak-to-valley ratios of approximately three

orders of magnitude are observed.

IV. ANALYSIS

Analysis based on Fermi’s Golden Rule and analytical

expressions for the wavefunctions reveals the physics of the

inter-GNR transport. The transmission is governed by both

the matrix element squared and the density of states as

shown in Eq. (2). The transmission calculated numerically

with NEGF and the matrix element squared calculated from

the analytical expressions for the wavefunctions are plotted

in Figs. 7(a) and 7(b). A comparison of the plots shows that

the energy dependence of the transmission and the overall

change in magnitude with bias are determined by the matrix

element. The mismatch between T(E) and jMðEÞj2 near

E¼ 0 eV in Fig. 7(a) is due to the fact that the bandgap and

the edge state are not included in the analytical model.

Outside of that 136 meV range, the energy dependence of

T(E) follows closely that of jMðEÞj2. Similarly, the matrix

element squared at V¼ 0.2 V shown in Fig. 7(b) captures the

enhancement of the transmission at low energies by the

applied bias. The peaks in the T(E) plot at E¼6 V/2 are due

to the edge states and are not reproduced in the jMðEÞj2 plot.

Overall, the matrix element governs the voltage dependence

of the transmission, and we shall concentrate only on M
below.

The four components of the matrix element given by

Eqs. (17) and (19) are plotted in Figs. 7(c) and 7(d). The total

matrix element, M, is well approximated by the sum of MAB

and MBA, since these two matrix elements are orders of mag-

nitude larger than either MAA or MBB. At V¼ 0 V, MAB and

MBA are approximately equal in magnitude but 180� out of

phase as shown in Fig. 7(c). Thus, the destructive interfer-

ence between the AB and the BA components of M sup-

presses the total matrix element and hence the transmission.

When the bias is increased to 0.2 V, the quantum phases of

the standing electron waves are modulated by the bias and MAB

and MBA acquire a non-zero average value as shown in Fig.

7(d). As a result, the AB and BA components do not cancel.

The nature of the voltage controlled quantum interfer-

ence can be understood by looking at the envelope wave-

functions in the long wavelength limit. At low energies,

when the wavelength k� W, the variation of the envelope

function inside the overlap region is negligible, i.e.,

/kyAðjÞ ¼ sin kyðyAj
þ LsÞ � sinðkyLsÞ. Using the dispersion

relationship given by Eq. (20), we get

/kyAðjÞ � sin
Ls

c
ðEþ eV=2Þ: (22)

Similarly, for the B sites of bGNR

FIG. 5. Three dimensional contour plots of local density of states (LDOS)

for V¼ 0.2 V and L¼ 4.2 nm at (a) E¼�0.1 eV and (b) E¼ 0.1 eV.

FIG. 6. Simulated I–V characteristics of SxGNR p-n junctions with built-in

potential, /bi ¼ 0:25 V for different stub lengths. The numbers inside the

parentheses represent the peak-to-valley current ratios.
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/kxBðjÞ � s cos
Ls

c
ðE� eV=2Þ: (23)

Using Eqs. (19), (22), and (23), we get the expression for

MAB in the long wavelength limit

MAB �
1

2
sin

2LsE

c
þ sin

LseV

c

� �
HAB: (24)

Similarly,

MBA �
1

2
sin

2LsE

c
� sin

LseV

c

� �
HBA: (25)

Here, the quantity Hab is the energy independent part of Mab

that depends on the atomic positions of the a atoms of the

tGNR and the b atoms of the bGNR

Hab ¼ C2
X
i;j;i0;j0

sinðqnxai
Þsinðqnybi0 Þtiji0j0 : (26)

Numerical calculations show that

HBA ¼ �HAB: (27)

The quantity, HAB (HBA) is the weighted sum of the inter-

layer hopping parameter between all the A (B) atoms of the

tGNR and all the B (A) atoms of the bGNR weighted by the

transverse sine functions of jwnkyAðBÞi and jwnkxBðAÞi. Thus,

they are sums over different matrix elements and are not

Hermitian conjugates.

Using relation (27) in Eqs. (24) and (25), we get the final

expressions for MAB and MBA

MAB �
1

2
sin

2LsE

c
þ sin

LseV

c

� �
HAB; (28)

MBA �
1

2
�sin

2LsE

c
þ sin

LseV

c

� �
HAB: (29)

Eqs. (28) and (29) clearly show that at V ¼ n pc
eLs

, where

n ¼ 0; 1; 2; :::, the AB and the BA components of the matrix

element cancel each other as indicated in Fig. 7(c). Thus, the

voltage controlled destructive interference between the A

and the B atoms results in suppression of transmission and

current minima. Similarly, at V ¼ ð2mþ 1Þ pc
2eLs

, where

m ¼ 0; 1; 2;…, the A and B atoms interfere constructively

giving rise to enhancement in transmission and current

maxima. Thus, the voltage controlled interference between

the tGNR and the bGNR is an oscillatory function of the

bias, which results in an oscillatory current voltage response

with multiple NDR regions. The period of the oscillation is

inversely proportional to the stub length

Vp ¼
pc
eLs

: (30)

The periods of the oscillations in the current-voltage

responses calculated using Eq. (30) are 0.52 V, 0.35 V,

0.26 V, and 0.18 V for the SxGNRs with 2.5 nm, 4.2 nm,

5.9 nm, and 9.3 nm stub lengths, respectively, which closely

match with the numerical results calculated using NEGF.

With an understanding of the magnitude of the coherent

current, we can compare it to an estimate of the magnitude

of the phonon assisted current. Since the phonon modes of

the structures under consideration are not known, we esti-

mate an order-of-magnitude of the phonon-assisted current

from the phonon-assisted conductivity Gph of 2D misor-

iented graphene. In 2D misoriented graphene, Gph is a

smoothly decreasing function of the rotation angle. At low

temperature (T¼ 20 K) and finite bias, V > 0:1 V, the inter-

layer conductance lies between 10�9 S/nm2 and 10�8

S/nm2.11 The overlap region of the crossbar in Fig. 3 is 3.24

nm2. Choosing a 1 V bias, the maximum estimate of the

phonon-assisted current would be 32.4 nA. The coherent cur-

rent shown in Fig. 3 is on the order of 100 nA. Thus, from

this crude estimate, the current oscillations in the coherent

current should still be observable in the presence of

phonon-assisted current.

V. CONCLUSIONS

The inter-layer transport between two crossed, semi-

infinite armchair GNRs is governed by voltage controlled

quantum interference between the standing waves of the

individual GNRs. An external bias applied between the

GNRs controls the wavelength and hence the relative phases

of these standing waves. Sweeping the applied two-terminal

bias causes multiple constructive and destructive interfer-

ence conditions resulting in a periodic modulation of the av-

erage transmission and an oscillatory I–V characteristic with

multiple NDR regions. The voltage period of the oscillation

is inversely proportional to the length of the truncated ends

of the GNRs. An estimate of the magnitude of the phonon-

assisted current based on the 2D phonon-assisted conductiv-

ity indicates that the oscillations in the coherent current will

not be masked by the phonon-assisted current.
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