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Influences of impurities on the electron density and transmission of a finite HgTe/CdTe quantum well sample
are studied numerically in the framework of the Landauer-Büttiker formula. In a geometry of a slab with finite
width, electrons in helical edge states protected by the time-reversal symmetry can tunnel through nonmagnetic
impurities at two resonant energy levels. Electrons of one side can tunnel to the other side and the quantized
conductance can be broken down. For a small sample with impurity, the transmission coefficient can even drop
to zero for the crosswalk between the helical edge states at two sample sides. The distance between helical edge
states is critical for the suppression of the transmission. The s orbital and p orbital of pseudospins affect the
quantized spin Hall current in a different way for their different energies.
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I. INTRODUCTION

Recently, topological insulators have attracted intense
attention for their novel physics phenomena in materials.1–3 A
two-dimensional (2D) topological insulator was first predicted
in 2005 and several possible materials were proposed. This
phenomenon is also called the quantum spin Hall effect and the
existence of helical edge states is a signature for the quantum
transport.4 The edge states of the quantum spin Hall effect
are helical because their spin direction and momentum are
locked with each other, and electrons of spin-up and spin-down
propagate along the opposite directions on the boundary of
the bulk for the time-reversal symmetry [Fig. 1(a)]. In clean
systems of all kinds of materials, the magnitude of the spin Hall
conductivity reaches a universal constant e/4π . In their initial
proposal, Kane and Mele proposed that the intrinsic spin-orbit
interaction within zigzag graphene nanoribbon revises the bulk
band structure and induces the Dirac cone of the edge state.
However, the intrinsic spin-orbit coupling in graphene is very
tiny5 and makes the quantum spin Hall effect difficult to be
realized or observed on graphene.6 In 2006, the quantum spin
Hall effect was predicted in a 2D HgTe quantum well with a
CdTe/HgTe/CdTe sandwich structure.7 The CdTe/HgTe/CdTe
system has a strong intrinsic spin-orbit interaction reported
experimentally.8 In a dirty system, for the protection of
fundamental physical laws, the time-reversal symmetry makes
edge states robust against nonmagnetic defect9,10 and weak
interaction.11,12 The spin-polarized electrons do not scatter
backward by the defect for the time-reversal symmetry and
thus two-terminal conductivity of the electron transmission
is 2e2/h for spin-up and spin-down branches along the
edges.10 Nonzero but not exactly quantized conductance in
a band-insulating region has been observed8 in a HgTe/CdTe
quantum well. The intrinsic spin Hall effect13,14 of a dirty
sample with nonmagnetic impurities has been intensively
studied. For an infinitesimal impurity density of a dirty sample,
the analytic calculations concluded a cancellation of the
effect.15 Numerical analysis of mesoscopic system with finite
size16,17,18 showed that the spin Hall effect persists up to a

certain impurity density (the spin Hall current is produced by
the spin-orbit interaction in 2D systems or semiconductors19).
It was also reported that the quantum spin Hall phase can
be completely destroyed due to the quantum percolation
of the impurity bands within the gap of bulk bands and
the localization-delocalization transition is accompanied by
the vanishing of the quantum spin Hall phase.20 However, the
detailed mechanism of delocalization and the nonquantization
of spin Hall conductance remains unclear.

There are several possible paths which electrons of topo-
logical insulators with impurity can possibly go through. Two
different kinds of paths are shown in Fig. 1 and all possible
paths obey the time-reversal symmetry. The first one was
discussed by Qi and Zhang.7,8,10 In Fig. 1(b), electrons from
edge states do not interact with impurity and the quantization
of spin Hall conductance should be followed for this kind
of electrons. A second possible path is that the electrons
from the edge state can interact with the impurity but cannot
crosswalk with another branch of the edge. Therefore, it will
tunnel in and out of the impurity; however, the time-reversal
symmetry requires that electrons of the helical edge state
can move forward. For the second path in Fig. 1(c) electrons
tunnel from edge states to bound states of impurity and back
to the original edge states; there is possibly a phase shift
induced from tunneling. Therefore, interference in Fig. 1(b)
and Fig. 1(c) can reduce the spin Hall conductance and the
reduction of transmission in Figs. 6(a), 6(b), 7(a), and 7(b)
should result from the interference of two different kinds of
forward electrons. The third possible path in Fig. 1(d) is a
tunneling path from one side to the other side of the sample
edges; the time-reversal symmetry requires the electrons to
tunnel backward to the different helical edge state.

The robustness of quantum helical edge states of spin-up
and spin-down electrons is expected to be useful for the
new generation of nanodevices. In particular, the quantum
spin Hall effect changes a topological insulator into an
intrinsic spin filter without magnetic field. Therefore, the
topological insulator enables several novel applications in both
spintronic devices and quantum computers. Recent studies
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FIG. 1. (a) Helical edge-state currents of the topological insulator.
(b) The edge-state current does not interact with impurity. (c) The
edge-state current tunnels to the impurity bound state and tunnels
back to the original edge. (d) The edge-state current tunnels to the
impurity bound state and tunnels to the opposite edge state. To
clear the picture, we only show the one-channel spin-up electron
path with impurity; the other channel and spin follow the symmetry
path.

also reveal that Majorana fermions can possibly exist at the
interface between topological insulators and superconductors
with ferromagnetism.21 Nevertheless, transport measurement
of the edge current is an important signature in the experiment.
Until now most experimental evidences reported in 2D and
3D topological insulators are mostly focused only on energy
spectrum,22–25 and only a few experimental evidences are
reported related to the transport of spin current.8 Some analysis
indicated that the impurities within a topological insulator can
induce a bound state near the helical edge states and thus affect
the transport of the electron spins.20

In this paper we applied the Green’s function technique26

to study electron transport in the HgTe quantum well. A HgTe
quantum well is a reported topological insulator with both edge
energy dispersion and transport phenomenon.8 In Sec. II, we
briefly introduce the Green’s function method combined with
tight-binding approaches to the 2D Hamiltonian of HgTe/CdTe
quantum well.27 We introduce a localized nonmagnetic impu-
rity to study the size effect of the 2D topological insulator
in Sec. III. Two bound states of localized impurity are found
from the superposition of s orbitals and p orbitals of electrons
for either an attractive or a repulsive impurity potential. For
a large size of HgTe/CdTe, the two branches of helical edge
states at two sides of a sample act independently and also
does not interact with localized impurity and the two-terminal
conductance is always quantized to be 2e2/h. However,
for a small size of HgTe/CdTe, even a single nonmagnetic
impurity affects the transport properties for the crosswalk
between two different branches of helical edge states. The
bound state induced by the impurity provides a tunneling
channel between the helical edge states on different sides. The
localization-delocalization transition at two resonance bound
states accompany the loss of quantization of the conductance.
It is worth pointing out that the attractive impurity potential
usually induces a more significant influence on the dislocation

than repulsive impurity potential. We conclude in our analysis
that defect can cause loss of quantization of quantum spin Hall
conductance via the crosswalk between helical edge states.
Localized bound states with two bound energies of attractive
and repulsive impunity potentials are identified. When the
resonance tunneling between the helical edge states occurs,
the nonquantization of the conductance can be observed.

II. NONEQUILIBRIUM TRANSPORT FORMALISM FOR
TOPOLOGICAL INSULATOR

The Hamiltonian for the HgTe quantum well can be
expressed in a block-diagonal form:7

H =
[

h 0

0 h∗

]
. (1)

In this Hamiltonian, the upper 2 × 2 block is expanded by
two pseudo-spin-up states |s, ↑〉 and |px + ipy, ↑〉, and
the lower block is for pseudo-spin-down states |s, ↓〉 and
|−px + ipy, ↓〉. In the tight-binding approximation, the
Hamiltonian can be expressed as

HT B =
∑

i

ϕ†
i

⎡
⎢⎢⎢⎣

Eis 0 0 0

0 Eip 0 0

0 0 Eis 0

0 0 0 Eip

⎤
⎥⎥⎥⎦ϕi

+
∑

i

ϕ†
i

⎡
⎢⎢⎢⎣

Vss Vsp 0 0

−V ∗
sp Vpp 0 0

0 0 Vss V ∗
sp

0 0 −Vsp Vpp

⎤
⎥⎥⎥⎦ϕi+δx + H.c.

+
∑

i

ϕ†
i

⎡
⎢⎢⎢⎣

Vss iVsp 0 0

iV ∗
sp Vpp 0 0

0 0 Vss −iV ∗
sp

0 0 −iVsp Vpp

⎤
⎥⎥⎥⎦ϕi+δy + H.c.

(2)

by introducing the spinor ϕ = [c↑
s,i,c

↑
p,i,c

↓
s,i,c

↓
p,i]T . Here the

index i represents the lattice site in the real space and δx and
δy are unit vectors along the x and y directions, respectively.
Those parameters for on-site energy are Es = C + M −
4(B + D)/a2 and Ep = C − M − 4(D − B)/a2. For the
hopping energy term Vsp = −iA/2a, Vss = (B + D) = a2,
Vpp = (D − B)/a2. Here a is the lattice constant chosen
as 5 nm and the other parameters are A = 364.5 meV nm,
B = −686 meV nm2, and C = 0, D = −52 meV nm2. The
value of M is a function of thickness of the quantum wells
which decides whether the material is topologically trivial or
nontrivial.27 Here we choose M = −10 meV for a topological
insulator. These parameters are controllable in experiment.8

The impurity potential in a sample is introduced by
including

W =
∑

i

ϕ†
i

⎡
⎢⎢⎢⎣

Wi 0 0 0

0 Wi 0 0

0 0 Wi 0

0 0 0 Wi

⎤
⎥⎥⎥⎦ϕi, (3)
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where Wi = W is on the lattice site i in the potential area;
otherwise, Wi = 0.

In this paper, we only consider the upper block matrix
for the two pseudo-spin-up states. The contributions from the
states for the pseudo-spin-down states are their counterpartners
of the upper block matrix under the time reversal.

Landauer formalism for nonequilibrium transport

In this study, the geometry is infinite and it is not a
periodic system because the single impurity exists. Instead
of the Bloch theorem, the Landauer formalism is suitable
for this calculation. First, we consider a sample connect two
semi-infinite leads. The effective Hamiltonian can be written
as follows.26 Here �R(L) is the self-energy matrix for the right
(left) lead, which includes the lead effect on the sample we
want to take into account, the real part makes the energy spectra
shift, and the imaginary part make it broadening. The formula
of the self-energy matrix is �R(L)(E) = τR(L)gs,R(L)(E)τ †

R(L),
where τ is the hopping matrix between the lead and the device
and gs is the surface Green’s function matrix that is calculated
by the recursive relation

gs(E) = [(E + iη)I−Hlayer − τgs(E)τ †]−1, (4)

where the Hlayer is a one-layer Hamiltonian for the lead; the
imaginary part of the value η is a very small positive number
for numerical convergence. This formula is convenient to
operate but it is hard to make convergent for all systems for
a computation, so the most highly convergent scheme for the
calculation should be used.28 The retarded Green’s function
matrix for the device connecting to two leads is given:

Gr (E) = [(E + iη)I − Heffect(E)]−1. (5)

The local density of states is obtained from the retarded
Green’s function matrix

〈Nm;σ,n(E)〉 = − 1

π
Im

[
Gr

m,m;σ,n(E)
]

(6)

for electrons with spin σ and the orbital n for the energy E in
the site m. The transmission coefficient (or conductance) can
be calculated from the Landauer-Büttiker formalism:

TLR(E) = Tr[	L(E)Gr (E)	RGr†(E)]. (7)

The conductance is obtained by multiplying the transmission
TLR(E) by the conductance unit e2/h. Here 	L(R) is the
broadening matrix for the right (left) lead. This matrix is
related the imaginary part of the self-energy matrix; the
formula is

	L(R) = i
[
�R(L) − �

†
R(L)

]
. (8)

III. TOPOLOGICAL INSULATOR WITH IMPURITY

In this study, we consider an infinitely long sample (along
the x direction) of a finite width Ly with a nonmagnetic
impurity of 5 × 5 nm2 located at x = 0. The position of the
impurity along the y axis can be different: at the center of the
sample or closer to one of the side boundary. In the practical
calculation, we divide the sample into three parts: The central
part contains the impurity potential with a width Lx larger than
the potential regime, and the left and right parts are regarded

FIG. 2. An impurity located in the HgTe quantum well sample.
(a),(b) Ly = 2005 nm; (c),(d) Ly = 295 nm.

as two semi-infinite leads as introduced in Sec. II B. After
numerical calculations we found that the numerical results
in the present study are insensitive to the values of Lx , as
anticipated, and thus we take Lx = 15 nm in the calculations.
The Fermi energy is set to be EF = 8.74 meV at the Dirac
cone of helical edge states if there is no specific indication.

We first plot the transmission with a series of different width
Ly by means of the Landauer-Büttiker formalism[Eq. (7)] and
decide the width for the further calculation in the absence of
the impurity, i.e., W = 0. Then we add a single nonmagnetic
impurity with dimension of 5 × 5 nm2 to the sample region.
We decide the impurity affect by varying the impurity potential
W in Eq. (3). In the calculation we take several specific values
within the range of (−0.5 � W � 0.5) and show the nontrivial
range in Figs. 4–7. Two samples with different dimensions
are analyzed to study the size effect on the defect-induced
localization-delocalization transition. For simplicity we study
two cases of Ly = 2005 and 295 nm. We also take into
additional account the locations of the impurity. Two different
situations are considered within all samples: a central defect
between two edges and an edge defect near the upper edge (see
Fig. 2). Two clean samples are also calculated for comparison.
Thus, direct tunneling between the helical edge states at two
sides from the finite-size effect and the indirect tunneling
through the impurity can be easily distinguished.

A. Clear limit of two samples

We first study two samples without the impurity. Here we
studied several different widths to understand the size effect in
the clean case and we did not observe loss of quantization spin
Hall conductance until a width of less than 120 nm, as shown
in Fig. 3(a). There was a sharp transition from one to zero in
the clean limit for narrow-width sample, which is expected
as the finite-size effect.29 In this calculation the Fermi level is
fixed at EF = 8.47 meV. If we plot the transmission coefficient
as a function of the Fermi energy as shown in Fig. 3(b), for
Ly = 295 nm, the transmission coefficient drops to zero at
a finite range near EF = 7.5 meV; for Ly = 120 nm, the
transmission is equal to zero at EF = 7.5 meV in a rather wide
energy interval. This demonstrates an energy gap opening near
the crossing point of energy dispersion of helical edge states.
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FIG. 3. (a) The transmission coefficient as a function of the
sample width for the Fermi energy is EF = 8.74 meV. (b) The
transmission coefficient as a function of the Fermi energy EF for
Ly = 295 and 120 nm.

B. In-gap bound states induced by the impurity

In the calculation, we found the formation of two in-gap
bound states induced by the impurity. The two bound states
have positive and negative energies, respectively. This result
is computed by the local density of state (6), and the unit is
(1/eV).

For an attractive impurity potential of W = −439.2 meV,
electrons are likely to jump into the defect region. The
bound-state energy is E− = −439.2 meV for the impurity
in the center [Figs. 2(a) and 2(c)] and E− = −328.5 meV
for the impurity on the edge [Figs. 2(b) and 2(d)]. |s, ↑〉
electrons will form an isotropic and circular in-gap bound
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FIG. 4. L = 2005 nm, the impurity in the center of the slab
(y = 0). (a) The transmission coefficient of topological insulator
with the impurity is the same with different amplitude W of the
impurity potential. (b) The charge density on the impurity site with
an attractive potential (W < 0). (c) The charge density on the impurity
site with a positive potential (W > 0). (d) The charge density around
the impurity site with attractive potential (W < 0). (e) The charge
density around the impurity site with a positive potential (W > 0).
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FIG. 5. Ly = 2005 nm, the impurity located on the edge (y =
1000 nm). (a) The transmission coefficient of topological insulator
with the impurity is the same with different amplitude W of the
impurity potential. (b) The charge density on the impurity site with
an attractive potential (W < 0). (c) The charge density on the impurity
site with a positive potential (W > 0). (d) The charge density around
the impurity site with attractive potential (W < 0). (e) The charge
density around the impurity site with a positive potential (W > 0).

state near the defect site, while |px + ipy, ↑〉 electrons are
form a ring structure outside the |s, ↑〉 electron circle. The
low energy |s, ↑〉 is within the quantum well, while the
|px + ipy, ↑〉 electrons are circulating around the potential
well [Figs. 4(b), 4(d), 5(b), 5(d), 6(c), 6(e), 7(c), and 7(e)].

For a repulsive impurity potential of W = +72.2 meV,
a new boundary is formed to attract surrounding electrons
as the formation of the edge states near the boundary.
The bound-state energy E+ = 0.0722, 0.0516, 0.0719, and
0.0516 eV for Figs. 2(a)–2(d), respectively. |px + ipy, ↑〉
electrons form a in-gap bound state with circular distribu-
tion within the defect, while the low-energy |s, ↑〉 elec-
trons accumulates as a ringlike structure outside the defect
[Figs. 4(c), 4(e), 5(c), 5(e), 6(d), 6(f), 7(d), and 7(f)]. Although
the spatial distributions of |px + ipy, ↑〉 and |s, ↑〉 are very
different in the in-gap bound states with positive and negative
energy, |px + ipy, ↑〉 and|s, ↑〉, electrons resonate at the
same energy. A similar phenomenon was reported for various
dimensions of the topological insulator including a HgTe
quantum well in a continuous model.30

From our calculations, we also noted that the position of
impurity plays an important role. When an impurity is on the
edge, as shown in Figs. 2(b) and 2(d), the localized bound state
will interfere with the helical edge state and thus the width of
the localized bound state becomes broadening [Figs. 5(b)–
5(e), 7(c)–7(f)]. However, when an impurity is in the center
of the bulk in Figs. 2(a) and 2(c), the interference between the
helical edge state and the bound state are much less than the
edge defect and thus the width broadening effect of localized
bound states drops significantly. In summary, broadening of
the localized bound state critically depends on the distance
between impurity and the boundary of the sample.
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FIG. 6. Ly = 295 nm, the impurity located in the center (y = 0).
(a) The transmission coefficient of topological insulator with the
impurity is the same with different amplitude W of the impurity
potential. (b) The charge density on the impurity site with an attractive
potential (W < 0). (c) The charge density on the impurity site with
a positive potential (W > 0). (d) The charge density around the
impurity site with attractive potential (W < 0). (e) The charge density
around the impurity site with a positive potential (W > 0).

IV. TRANSMISSION OF ELECTRONS

For the sample with its width Ly = 2005 nm, the relation
between the transmission coefficient and the impurity potential
W is plotted in Figs. 4(a) and 5(a) for different positions of
the impurity. The charge densities within the impurity area
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FIG. 7. Ly = 295 nm, the impurity located on edge (y =
145 nm). (a) The transmission coefficient of topological insulator
with the impurity is the same with different amplitude W of the
impurity potential. (b) The charge density on the impurity site with
an attractive potential (W < 0). (c) The charge density on the impurity
site with a positive potential (W > 0). (d) The charge density around
the impurity site with attractive potential (W < 0). (e) The charge
density around the impurity site with a positive potential (W > 0).

near the edge are quite different from those at the center.
The energy for the bound states will shift with the location
of impurities. Even though there are in-gap bound states of
impurity, the transmission coefficients of electrons along the
helical edge states are not influenced by the bound states at all.
The behavior of transmission is exactly identical with that in
a clean HeTe quantum well.

For the sample of Ly = 295 nm, we observe the finite-size
effect with impurity, which is actually consistent with the
results of the clean case. The interacting range of helical edge
states are around 120 nm [Fig. 3]. The transmission reduces
at two specific impurity potentials [Figs. 6(a), 6(b), 7(a),
and 7(b)]; the effect is more apparent especially when the
impurity locates at the center [Figs. 6(a) and 6(b)].

The transmission reduction also depends on the sample
width. Both the edge states and the bound states of impurity
have finite spatial distributions. If the wave functions of
two states have overlap in space, electrons in these states
have the probability to move from one state to another. In
our calculation with adapted model parameters, if the width
Ly < 1005 nm, the impurity at the center may provide
transverse channels connecting between helical edge states
at two different sites, and thus the electrons of edge states
can tunnel from one side to the other side of the sample and
the backscattering occurs. This effect is quite similar to the
quantum percolation in quantum spin Hall antidot systems.20

It is worth noting that the backward scattering here does not
violate the general argument from the time-reversal symmetry:
The symmetry does not prohibit in the backward scattering
within two helical edge states through the impurity.10

Therefore, the transmission of a small topological insulator
sample with impurity can even drop to zero at the specific
energy of the impurity band [Figs. 6(a) and 6(b)]. The local
density of states for the L = 295 nm HgTe quantum well is
plotted in Fig. 8; it is consistent with the result of Fig. 6.

FIG. 8. (Color online) The local density of state for the Ly =
295 nm HgTe QW, EF = 8.74 meV. (a) |s, ↑〉 state in a clear system.
(b) |px + ipy, ↑〉 state in a clear system. (c) |s, ↑〉 state at W =
−439.2 meV. (d) |px + ipy, ↑〉 state at W = 71.9 meV. (e) |s, ↑〉
state at W = −439.2 meV. (f) |px + ipy, ↑〉 state at W = 71.9 meV.
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V. DISCUSSIONS AND CONCLUSIONS

Our studies indicate that even though the helical edge
states are robust against small nonmagnetic impurity from the
protection of time-reversal symmetry, the quantized spin Hall
conductance is quite sensitive to the impurity in a finite-size
sample. Transmission of the robust helical states can be
reduced from the crosswalk between helical edge states at two
sides. The finite-size effect of topological insulator is not only
observed in the clean case, but also is significant with impurity
inside the sample. Loss of quantized conductance of edge
electrons depends on either the amplitude of impurity potential
or the width of the sample. From our analysis, we know that
nonmagnetic impurity will not destroy the helical edge states
but it will induce tunneling between two helical edge states.
The finite-size effect can open an energy gap on the helical edge
state and direct overlapping of wave function from two helical
edge states, which may let the nondissipative conducting quan-
tum spin Hall channel disappear. Another possible reduction

mechanism of quantized spin Hall conductance is from the
impurity within topological insulator; impurity-induced bound
states provide a crosswalk channel of helical edge states. In
summary, for a quantum spin Hall nanodevice, the impurity
in a 2D CdTe/HgTe/CdTe system of topological insulators can
change the electronic structure and also the transport features
within sample. The electrons within the helical edge states can
trasverse through impurity and crosswalk to other branches and
this transition induces the reduction of quantization spin Hall
conductance.
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