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Intracellular Ca2+ mobilization plays an important role in a 
wide variety of cellular processes, and multiple second messen-
gers are responsible for mediating intracellular Ca2+ changes.1, 

2 Nicotinic adenine acid dinucleotide phosphate (NAADP) is 
one of the most potent endogenous Ca2+ mobilizing messengers. 
NAADP mobilizes Ca2+ from acidic lysosome-related stores, which 
can be subsequently amplified by calcium-induced calcium release 
(CICR) from the endoplasmic reticulum (ER). It has been shown 
that many extracellular stimuli can induce NAADP production 
leading to Ca2+ mobilization, which establishes NAADP as a 
second messenger.3 Recently, 2 pore channels (TPCs) have been 
identified as a novel family of NAADP-gated calcium release chan-
nels in endolysosomes. The TPC2 forms NAADP receptors that 
release Ca2+ from lysosomes, which can subsequently trigger global 
Ca2+ signals via the ER.4-8 Yet several recent papers suggest that 
NAADP binds to an accessory protein to activate TPC2.9,10 The 
Ca2+-signaling pathway mediated by NAADP is ubiquitous and 
the functions it regulates are equally diverse, including fertiliza-
tion,11,12 receptor activation in lymphocytes,13 insulin secretion in 
pancreatic islets,14 hormonal signaling in pancreatic acinar cells,15 
platelet activation,16 cardiac muscle contraction,17 blood pressure 
control,18 neurotransmitter release,19 neurite outgrowth,20 and neu-
ronal differentiation.21 Therefore, decoding the molecular mecha-
nisms involved in this novel signaling pathway is important not 
only for scientific reasons but also has clinical relevance.

Autophagy, an evolutionarily conserved lysosomal degradation 
pathway, has been implicated in a wide variety of cellular processes, 
yet the underlying mechanisms remain poorly understood. Recent 
vigorous research efforts have led to the identification of the core 
molecular machinery for autophagy, powered by the discovery of 
35 ATG genes via yeast genetics. However, even after extensive 

research, the regulation and mechanisms of autophagy induction, 
autophagosome formation and maturation, and autophagosomal-
lysosomal fusion remain elusive in mammalian cells.22-27 Since 
the completion of autophagy depends on lysosomal activity, any 
defect in autophagosomal-lysosomal fusion can lead to the accu-
mulation of autophagosomes, ultimately damaging cells or result-
ing in cell death. Despite that autophagosomal-lysosomal fusion 
is poorly understood, many popular autophagy modulators, e.g., 
bafilomycin and hydroxychloroquine, actually inhibit this pro-
cess by targeting lysosomal activity. Hydroxychloroquine has even 
been applied in several human anticancer clinical trials. Yet most 
of these inhibitors either lack specificity or potency.28,29 Thus, in 
order to identify potent and specific modulators of autophagy for 
future human disease therapy, it is essential to fully understand the 
molecular mechanisms underlying this process.

Intracellular Ca2+ has already been established as one of the 
regulators of autophagy induction, either positively or negatively 
depending upon the context of time, space, Ca2+ source, and cell 
state.30-32 Yet, the effects of Ca2+ on autophagosomal-lysosomal 
fusion have not been determined. Thus, we examined the role of 
the NAADP/TPC2/ Ca2+ signaling in this process in mammalian 
cells. We found that overexpression of a wildtype, not an inactive 
mutant, TPC2 in HeLa cells that lack detectable level of endog-
enous TPC2 protein inhibited autophagosomal-lysosomal fusion. 
Treatment of TPC2 overexpressing cells with a cell permeant-
NAADP agonist, NAADP-AM, further inhibited fusion, whereas 
Ned-19, a NAADP antagonist, promoted fusion. Likewise, TPC2 
knockdown in mouse embryonic stem (ES) cells promoted 
autophagosomal-lysosomal fusion during early neural differentia-
tion. ATG5 knockdown abolished TPC2-induced accumulation 
of autophagosomes, but inhibiting mTOR activity had no effect 
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Nicotinic adenine acid dinucleotide phosphate (NAADP) is one of the most potent endogenous Ca2+ mobilizing mes-
sengers. NAADP mobilizes Ca2+ from an acidic lysosome-related store, which can be subsequently amplified into global Ca2+ 
waves by calcium-induced calcium release (CICR) from ER/SR via Ins(1,4,5)P3 receptors or ryanodine receptors. A body of 
evidence indicates that 2 pore channel 2 (TPC2), a new member of the superfamily of voltage-gated ion channels containing 
12 putative transmembrane segments, is the long sought after NAADP receptor. Activation of NAADP/TPC2/Ca2+ signaling 
inhibits the fusion between autophagosome and lysosome by alkalizing the lysosomal pH, thereby arresting autophagic 
flux. In addition, TPC2 is downregulated during neural differentiation of mouse embryonic stem (ES) cells, and TPC2 down-
regulation actually facilitates the neural lineage entry of ES cells. Here we propose the mechanism underlying how NAADP-
induced Ca2+ release increases lysosomal pH and discuss the role of TPC2 in neural differentiation of mouse ES cells.
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on it. Instead, overexpression of TPC2 alkalinized lysosomal pH, 
and lysosomal re-acidification abolished TPC2-induced autopha-
gosome accumulation (Fig. 1). Interestingly, TPC2 overexpression 
had no effect on general endosomal-lysosomal degradation but 
prevented the recruitment of Rab-7 to autophagosomes. Taken 
together, our data demonstrate that TPC2/NAADP/Ca2+ signal-
ing alkalinizes lysosomal pH to suppress the later stage of autoph-
agy progression (Fig. 2).7,8

Upon withdrawal of self-renewal stimuli, mouse ES cells spon-
taneously enter neural lineages in monolayer adherent monocul-
ture.33 Interestingly, the expression of TPC2 was significantly 
decreased in ES cells during their initial entry into neural progeni-
tors, which was accompanied by the gradual induction of autoph-
agy. TPC2 knockdown accelerated mouse ES cells entry into early 
neural lineages, whereas TPC2 overexpression in ES cells mark-
edly inhibited it. We speculate that TPC2 downregulation during 

Figure 1. TPC2 signaling inhibited autophagy by increasing lysosomal pH in HeLa cells. (A) TPC2 overexpression induced an increase of lysosomal pH 
in Hela cells as determined by microplate reader measurement of Lysosensor DND-189 stained cells. Extracellular acidification decreased lysosomal pH 
in both control and TPC2 overexpressing cells. (B) Extracellular acidification reversed the accumulation of LC3-II and p62 in TPC2 overexpressing HeLa 
cells. The densitometric analyses of LC3-II and p62 represent data from 2 independent experiments.

Figure 2. Schematic of the NAADP/TPC2/Ca2+ pathway-mediated inhibition of autophagosomal-lysosomal fusion in mammalian cells. NAADP, likely 
via accessory protein(s), activates TPC2 to trigger Ca2+ release from lysosomes. This is accompanied with lysosomal pH increase, which subsequently 
prevents the recruitment of Rab-7 to autophagosomes, thereby inhibiting the fusion between autophagosome and lysosome.
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early neural differentiation of ES cells facilitates the fusion between 
autophagosome and lysosome, thereby enabling faster energy recy-
cling to be utilized for target differentiation. On the other hand, 
TPC2 overexpression blocks the fusion to prevent energy recycling 
and inhibits neural differentiation. Taken together, our results 
established a physiological function of TPC2-mediated autophagy 
inhibition during early neural differentiation of ES cells.8

It has previously been reported that activation of NAADP/
TPC2 signaling increased LC3-II levels,34,35 and downregulation 
of TPC2 by presenilin decreased it.36 Although these reports con-
cluded that the increased LC3-II results from induction of autoph-
agy by NAADP/TPC2 signaling, we clearly demonstrated that the 
increased LC3-II is actually due to the inhibition of autophago-
somal-lysosomal fusion, not autophagy induction, by NAADP/
TPC2 signaling (Fig. 2).7 Because of its diversified physiological 
roles, the efforts to generate NAADP analogs chemically or from 
the corresponding NADP analogs using ADP-ribosyl cyclase are 
already underway. Since NAADP antagonists accelerate autopha-
gosomal-lysosomal fusion whereas NAADP agonists inhibit it, the 
development of potent and cell permeable NAADP agonists or 
antagonists in the near future should provide a novel approach to 
specifically manipulate autophagy.

Ca2+ has long been established as an essential ion for membrane 
fusion,37,38 and a local Ca2+ increase via extracellular Ca2+ influx is 
essential for exocytosis of synaptic vesicles, in which synaptogamin 
acts as Ca2+ sensor.39 Thus we originally expected that NAADP/
TPC2-mediate Ca2+ release should facilitate autophagosomal-lyso-
somal fusion. However, whether local Ca2+ release from internal 
Ca2+ stores is required for intracellular membrane fusion events has 

actually not been determined. NAADP can induce Ca2+ release 
from lysosomes, and we found that NAADP treatment actually 
inhibited autophagosomal-lysosomal fusion. These data argue that 
local Ca2+ release from lysosomes does not facilitate autophago-
somal-lysosomal fusion. On the other hand, BAPTA-AM, a Ca2+ 
chelator, quickly blocked autophagosomal-lysosomal fusion, indi-
cating that Ca2+ itself is required for this process (Fig. 3). Therefore, 
these data suggest that the basal cytosolic Ca2+ level, not a local 
Ca2+ increase, is permissive for autophagosomal-lysosomal fusion, 
which is supported by the fact that membrane fusion can be recon-
stituted in an in vitro system that only contains the basal Ca2+ con-
centration.40,41 Notably, the accumulation of both LC3-II and p62 
induced by BAPTA-AM was transient (Fig.  3), suggesting that 
Ca2+ differentially regulates autophagy at different levels. Along 
this line, numerous studies indeed have already documented that 
intracellular Ca2+ can differentially modulate autophagy within 
the context of time, space, Ca2+ source, and cell status.31,42

Importantly, our findings added TPC2 to a handful of trans-
porters, including V-ATPase and chloride channels, which can 
modulate lysosomal pH. V-ATPase, a multi-subunit protein com-
plex, pumps protons into the lysosomal lumen against an electro-
chemical gradient at the expense of ATP hydrolysis to generate the 
acidic milieu in lysosomes. 43The positive lysosomal membrane 
potential, created by the influx of protons, reciprocally, could pre-
vent the V-ATPase from continuing to pump protons. Obviously, 
efflux of cations, or influx of anions, or both, is needed to main-
tain the balance of acidic pH and membrane potential inside lyso-
somes.44 Along this line, Cl – influx has already been proposed 
to dissipate the restrictive electrical gradient for maintaining 

Figure 3. The effects of BAPTA-AM on the accumulation of LC3-II and p62 in control and TPC2 overexpressing HeLa cells. Cell lysates were harvested 
at indicated time points after BAPTA-AM (20 μM) treatment in both control and TPC2 overexpressing HeLa cells, and analyzed for expression of LC3, 
p62, and GAPDH by western blot analyses. The densitometric analyses of LC3-II and p62 represent data from 2 independent experiments.
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acidic lysosomal pH.45,46 Yet, whether Cl – is the main counter ion 
remains to be determined, let al.ne the identity of Cl – transporters 
in lysosomes.43 Ca2+, whose concentration in lysosomes is high,47,48 
is another potential counter ion, yet the channels for Ca2+ release or 
refilling in lysosomes also remain elusive. Interestingly, NAADP 
induced Ca2+ release via TPC2 from lysosomes is accompanied 
by an increased lysosomal pH, indicating proton efflux with Ca2+ 
release. These data suggested that Ca2+ is not the counter ion for 
maintaining acidic pH in lysosomes.

How NAADP/TPC2-induced Ca2+ release alkalizes lysosomal 
pH remains mysterious. One explanation is that Ca2+ and protons 
are simultaneously released from lysosomes via TPC2, or TPC1, 
or other unidentified channels upon NAADP treatment (Fig. 4A). 
Yet, whether TPCs are proton permeable and the identity of other 
proton channels remain to be determined. On the other hand, 
lysosomal alkalization might be the result of proton efflux accom-
panied by Ca2+ refilling after its release from lysosomes. A puta-
tive vacuolar Ca2+/H+ counter-exchanger,49 like the one in yeast 
or plant, can be activated to refill the lysosomal Ca2+ pools at the 
expense of proton efflux upon Ca2+ release from lysosomes via 

TPC2 (Fig. 4B). Alternatively, an unidentified lysosomal P-type 
Ca2+ ATPase,48 similar to SERCA in ER, can also refill Ca2+ in 
exchange of luminal protons at the expense of ATP hydrolysis 
(Fig. 4C). Another possible way for Ca2+ to enter lysosomes is the 
coupling of several lysosomal proton-cation counter-transporters, 
such as the sequential action of Ca2+/Na+ exchangers and Na+/H+ 
exchangers (Fig. 4D). Unfortunately, except for the V-ATPase, ion 
channels or transporters responsible for the creation of the unique 
ionic environment inside lysosomes have not been identified.49 We 
anticipate that an ongoing lysosomal proteomics study in the lab 
will help identify the respective transporters.
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Figure 4. Models of NAADP/TPC2/Ca2+ signaling induced lysosomal alkalization in mammalian cells. (A) NAADP induces the release of Ca2+ and H+ 
from lysosomes via TPCs or an unknown channel. (B), (C), and (D) After Ca2+ release from lysosomes via TPC2, Ca2+ refilling via a putative Ca2+/H+ 
counter-exchanger (B), or a P-type Ca2+ pump (C), or the sequential coupling of several cation counter-exchangers, e.g., Ca2+/Na+ and Na+/H+ (D), 
could also lead to lysosomal alkalization.
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