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Recent observation of zero bias conductance peaks in semiconductor wire/superconductor heterostructures
has generated great interest, and there is a hot debate on whether the observation is associated with Majorana
fermions (MFs). Here we study the local and crossed Andreev reflections of two normal leads attached to the two
ends of a superconductor-semiconductor wire. We show that the MFs induced crossed Andreev reflections have
significant effects on the shot noise of the device and strongly enhance the current-current correlations between
the two normal leads. The measurements of shot noise and current-current correlations can be used to identify
MFs.
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I. INTRODUCTION

The search for Majorana fermions (MFs) in condensed
matter systems has been an important topic in recent years
as MFs are non-Abelian particles1,2 and have potential
applications in quantum computations.3,4 Recent proposals
suggest that MFs can appear as zero energy end states in
superconducting wires constructed by inducing superconduc-
tivity on semiconductor wires with Rashba spin-orbit coupling
through proximity effect.5–11 Remarkably, several experimen-
tal groups12–15 recently reported the observation of zero bias
conductance peaks (ZBCPs) in Andreev reflection experiments
by coupling a normal lead to the end of the aforementioned
semiconductor/superconductor heterostructure. These ZBCPs
were possibly due to the MF induced Andreev reflections.16,17

However, the origin of these ZBCPs remains a subject of
debate.18–25

In this work, instead of studying MF induced local Andreev
reflections,18–25 we explore the nonlocal properties of MFs.
We show that shot noise, which can be used to probe the
fractional charges,26–29 and their anyonic statistics30,31 in
fractional quantum Hall states, can also be used to probe
MFs in superconducting wires due to MF enhanced crossed
Andreev reflections (CARs).32 To be specific, an experimental
setup depicted in Fig. 1(a) is studied, in which two normal
leads are attached to the two ends of a semiconductor wire
with Rashba spin-orbit coupling, proximity induced s-wave
superconductivity, and a magnetic field parallel to the wire.
In the topological regime, MFs emerge as end states of the
superconducting wire.

In the following sections we show that when MF end states
from the two ends of the wire are strongly coupled, local
Andreev reflection processes [as depicted in Fig. 1(b)] can
be suppressed and the MF end states induce crossed Andreev
reflections (CARs), in which an electron from one lead is
reflected as a hole in a different lead [as depicted in Fig. 1(c)].
Therefore, each normal lead tunnels one electron with charge
e into the superconductor in each tunneling event instead of
2e as in local Andreev reflection processes. As a result, the
Fano factor of a normal lead, which is the ratio of the shot
noise to the average current of the lead, is reduced from 2e

to e in the CAR regime. Moreover, the current of the two

FIG. 1. (Color online) (a) A schematic setup of experiment,
two normal leads are coupled to the two ends of a semiconductor
wire/superconductor heterostructure which supports MFs. (b) A local
Andreev reflection process. An electron from one lead is reflected as
a hole in the same lead. (c) A crossed Andreev reflection process. An
electron from one lead is reflected as a hole in another lead and a
Cooper pair is injected into the superconductor.

spatially separated normal leads are perfectly correlated in the
CAR regime since the two electrons from the two leads have
to form a Cooper pair in order to tunnel into the fully gapped
superconductor.

It has been pointed out that several effects such as disorder
induced Andreev bounded states,18 Kondo effect,15,33 weak
antilocalization,20 and reflectionless tunneling34,35 may cause
ZBCPs in tunneling experiments. However, all these effects
are essentially the enhancement of local Andreev reflections
due to various mechanisms at the interface between a normal
lead and a superconductor. These effects cannot cause perfect
current-current correlations between two spatially separated
leads. Therefore, the measurement of Fano factors and current-
current correlations can be used to identify MFs.

Moreover, an experimental setup similar to Fig. 1(a) has
been fabricated recently14,15,36 and the shot noise of the set up
in the topologically trivial regime is measured.36 Therefore, the
measurements of the shot noise in the topologically nontrivial
regime is experimentally feasible.

II. MODEL AND FORMALISM

To model the quasi-one-dimensional s-wave superconduc-
tor with Rashba spin-orbit coupling as shown in Fig. 1(a), we
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FIG. 2. (Color online) (a) The energy eigenvalues of a short
quasi-1D wire versus chemical potential, the lowest energy states are
indicated in red. The topological region is marked out. (b) Contour
plot of differential conductance G1 of the left lead as a function of
chemical potential and electron incident energy E. The inset shows
G1 versus incident energy at a fixed chemical potential denoted by
the vertical dashed line in (b). The height of the peak at E = EM is
2e2

h

t2
L

t2
L
+t2

R

. (c) The ground state wave function |�R|2 in the topological

regime, with chemical potential denoted by the dashed line in (b),
projected onto the x-y plane. The fermionic ground state is formed
by two MF end states.

use the following tight-binding model11,18 with Nx , Ny , and
Nz sites in the x, y, and z directions, respectively:

Hq1D =
∑

R,d,α

−t(ψ†
R+d,αψR,α + H.c.) − μψ

†
R,αψR,α

+
∑

R,d,α,β

−iURψ
†
R+d,αẑ · (�σ × d)αβψR,β

+
∑

R,α,β

ψ
†
R,α[(Vxσx)αβ + Vimp(R)δαβ]ψR,β

+
∑
R,α

�ψ
†
R,αψ

†
R,−α + H.c. (1)

Here R denotes the lattice sites, and d denotes the three unit
vectors dx, dy, and dz which connect the nearest neighbor sites
in the x, y, and z directions, respectively. The spin indexes
denoted by α,β, t denotes the hopping amplitude, μ is the
chemical potential, UR is the Rashba coupling strength, and
Vx is the Zeeman energy caused by a magnetic field along the
wire in the x direction. The pairing amplitude is denoted as �

and Vimp(R) is the on-site random impurity which is Gaussian
distributed with variance Vimp(R)Vimp(R′) = ω2δR,R′ . In this
work, we set Vx = 2� such that the superconducting wire can
support MF end states by tuning the chemical potential.

The parameters in the tight-binding model are chosen to
match the corresponding values in a recent experiment as done
in Ref. 18. Here � = 250 μeV, t = 25�, and UR = 2.5�.
The dimensions of the wire are Nxa ≈ 1 μm, Nya ≈ 100 nm,
and Nza ≈ 60 nm. The length of the wire is about twice the
superconducting coherence length ξ0 ≈ ta/� and about half
the length of the experimental value in Ref. 12. Due to the
short length of the wire, as shown in Fig. 2(a), the energy of the
in-gap states versus the chemical potential exhibits oscillatory
behavior in the topologically nontrivial regime as the two MF
end states can couple to each other and the coupling strength is

an oscillating function of the chemical potential.24,37 However,
as shown in Fig. 2(c), the ground state is a nonlocal fermion
formed by two MF end states.

To study the current-current correlation mediated by the
MF end states, two semi-infinite normal leads are attached
to the two ends of the superconductor as shown in Fig. 1(a).
The two normal leads are described by Eq. (1) by setting �

to zero. The tunneling barriers are simulated by the reduced
hopping amplitudes tL = tR = 0.4t between the leads and the
superconductor where tL (tR) denotes the hopping amplitude
from the left (right) lead to the superconductor. However, tL/R

controls the width of the conductance peak and it is chosen that
the width of the conductance peak is about 0.05� as shown in
the inset of Fig. 2(b), which is larger than thermal broadening
width kBT ≈ 0.02� such that the conductance peak cannot be
washed out by finite temperature effects.

We use the recursive Green’s function method to calculate
the scattering matrix of the model38 where the scattering matrix
is related to the Green’s functions of the superconducting wire
by

S
αβ

ij = −δi,j δα,β + i
[
�α

i

]1/2 ∗ Gr ∗ [
�

β

j

]1/2
. (2)

Here S
α,β

ij is an element of the scattering matrix which denotes
the scattering amplitude of a β particle from lead j to an
α particle in lead i, where i,j = 1 or 2. 1 and 2 denote the
left and the right lead, respectively. The electron (e) or hole
(h) channels are denoted by α,β, ∈ {e,h}. Gr is the retarded
Green’s function of the superconducting wire. �α

i = i[(�α
i )r −

(�α
i )a], where (�α

i )r(a) is the α particle retarded (advanced)
self-energy of lead i.

With the scattering matrix, the average current Īi of lead
i, the differential shot noise Pij and shot noise Cij can be
calculated as39,40

Īi = e

h

∫ eV

0

∑
j,α

Tr
[
I−sgn(α)Seα

ij (E)†Seα
ij (E)

]
dE,

Pij (E) = 2e2

h

∑
α,kβ �=lβ ′

sgn(α)Tr
[
S

eβ ′

il

†Seβ

ik S
αβ

jk
†Sαβ ′

j l (E)
]
, (3)

Cij =
∫ eV

0
Pij (E)dE,

where sgn(α) = 1 if α = e and sgn(α) = −1 if α = h. In this
work we set the chemical potential of the two normal leads
to be the same and the voltage bias between the leads and the
superconductor to be V . Physically, Cij = ∫ +∞

−∞ δIi(0)δIj (t)dt

measures the current fluctuation of leads i and j , where δIi =
Ii(t) − Īi denotes the deviation of the current at time t with
respect to the average current Īi . At low temperatures with
kBT 	 eV , the current fluctuation is dominated by the shot
noise41 and Cij is reduced to the shot noise. On the other hand,
dCij

dV
= ePij is the differential shot noise caused by electrons

with incident energy E. In this work, the current and noise are
calculated at zero temperature.

III. CURRENT

In this section we focus on the tunneling current near
the topological regime where only one transverse subband
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is occupied and there are MF end states. Due to the oscillatory
nature of the MF wave functions, the coupling strength of
the MFs oscillate and the resulting coupling energy oscillates
as EM ≈ h̄2kF

m∗ξ0
e−2Nxa/ξ0 cos(kF Nx), where kF is the Fermi

momentum which is a function of chemical potential and
magnetic field and m∗ is the effective band mass.37 The energy
spectrum of the superconducting wire is shown in Fig. 2(a).
The topological regime is marked out in Fig. 2(a). As the
chemical potential increases and a second transverse sub-
band is occupied, the superconductor becomes topologically
trivial.3,11

To study the MF end states, we calculate the differential
conductance dĪ1/dV using Eq. (3). The contour plot of the
differential conductance of the left lead G1 = dĪ1/dV as a
function of electron incident energy E = eV and the chemical
potential is shown in Fig. 2(b). As expected, the MFs manifest
themselves by inducing conductance peaks. However, in the
presence of the second lead, the height of the conductance

peak is reduced to G1(EM ) = dĪ1/dV |eV =EM
≈ 2e2

h

t2
L

t2
L+t2

R

as
shown in the inset of Fig. 2(b). The numerical calculations
in Fig. 2(b) correspond to the case with tL = tR . As a result,
G1(EM ) = 0.5 2e2

h
.

Another interesting point for tunneling into a supercon-
ductor with two strongly coupled MFs is that at low inci-
dent energy E 	 EM , the differential conductance G1(E) ∝
2e2

h

t2
Lt2

R

E2
M

depends on the product of tL and tR . This means
that an electron from a normal lead cannot tunnel into the
superconductor unless a second normal lead is present. This
is a manifestation of the fact that local Andreev reflection
processes are suppressed and the current is purely caused by
CAR processes.

IV. DIFFERENTIAL SHOT NOISE

To probe the MF induced CAR processes, we note that the
local and CAR processes can be distinguished experimentally
by measuring the Fano factors41 of the normal leads. The
Fano factor is the ratio of the shot noise to the average
current. Physically the Fano factor measures the electric charge
leaving a lead at each tunneling event given that the tunneling
amplitude is small.

In this section we first study the energy dependence of
the Fano factors for electrons with incident energy E. The
contour plot of the Fano factor F (E) = P11(E)/G1(E) is
shown in Fig. 3(a). Here P11(E) is the differential shot noise
1
e

dCii

dV
. Here P11(E) is caused by electrons with incident energy

E from the left normal lead and G1(E) is the differential
conductance of the left normal lead. Similarly, the crossed
current-current correlator P12(E), normalized by the average
differential conductance Ḡ(E) = 1

2 (G1 + G2), is shown in
Fig. 3(b). P12(E) measures the current-current correlations
between the left and the right leads. Even though Pij are more
difficult to measure experimentally than Cij , they give detailed
information about different tunneling processes as a function
of E as shown below.

From Figs. 3(a) and 3(e) it is evident that the Fano factor
F (E) = P11(E)/G1(E) at E = 0 is the electron charge e in
the topological regime. Similarly, it can be shown that the
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FIG. 3. (Color online) (a) Contour plot of Fano factor P11/eG1

for electrons with incident energy E at chemical potential μ.
(b) Contour plot of P12/eḠ. (c) Contour plot of C11/eĪ1 as a function
of voltage bias eV and chemical potential. (d) Contour plot of C12/eĪ .
(e) The P11/eG1 (blue line) and P12/eḠ (green line) as a function
of incident energy E at a fixed chemical potential denoted by the
dashed lines in (a) and (b), respectively. (f) The C11/eĪ1 (blue line)
and C12/eĪ (red line) as a function of voltage bias at fixed chemical
potential denoted by the dashed lines in (c) and (d).

Fano factor for the right lead is P22(E = 0)/G2(E = 0) = e.
This indicates that for each tunneling event, each normal lead
contributes one electron in the tunneling process. Moreover,
it is evident from Figs. 3(b) and 3(e) that P12(E = 0)/Ḡ = e.
As pointed out in Ref. 32, the cross correlator P12 is bound by
the relation 2|P12| � P11 + P22 for any stochastic process. At
E = 0 we have 2|P12(E)| = P11(E) + P22(E). This indicates
that the two leads are perfectly correlated with each other such
that a Cooper pair is injected into the superconductor at each
tunneling event. It is important to note that the almost perfect
current-current correlation persists as long as E � EM . This is
in sharp contrast to the topologically trivial regime as shown in
Fig. 3(a) in which local Andreev reflection processes dominate
and the Fano factor for each lead is 2e. The tunneling currents
of the two leads are only weakly correlated in the absence of
MFs as shown in Fig. 3(b).

V. SHOT NOISE

In this section we study the shot noise Cij , which is the
integration of the differential shot noise over the incident
energy as defined in Eq. (3). The contour plots of C11 and
C12, normalized by Ī1 and Ī = 1

2 (Ī1 + Ī2), respectively, as a
function of chemical potential and voltage bias, are shown in
Figs. 3(c) and 3(d). The Fano factor Cii/Īi gives the charge
leaving lead i at each tunneling event. As expected, in the
CAR regime with E � EM , Cii/Īi ≈ e. In this case, the two
leads are almost perfectly correlated as C12/Ī ≈ e as shown
in Fig. 3(f).
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FIG. 4. (Color online) Random disorder with ω = 16� is present
for all the figures. (a) and (b) The contour plots of the conductance
G1 and G2, respectively. (c) and (d) The Fano factors C22/eĪ2 and
C12/eĪ , respectively. (e) The ground state wave function |�R|2 in the
topological regime with μ = −129.4� [indicated by dashed line A in
(a)]. The dimensions of the wire are Nx = 50a and Ny = 5a. (f) The
ground state wave function in the trivial regime with μ = −120.8�

[indicated by dashed line B in (a)].

Outside of the topological regime, Cii/Īi ≈ 2e as local
Andreev reflection processes dominate. Moreover, the cross
correlation between the two leads C12 is significant only
when the incident energy of electrons satisfies E 	 EM in
the topological regime as shown in Fig. 3(d).

VI. DISORDER EFFECT

The observation of the ZBCPs in recent tunneling experi-
ments is an important step in the search for MFs.12–15 However,
as argued in Ref. 18, fermionic end states formed by two MF
end states in the topologically trivial regime can also induce
ZBCPs in the presence of disorder. Therefore, it is important
to distinguish the fermionic end states from the true MF end
states. In this section we show that the shot noise caused by a
localized fermionic end state and the shot noise caused by two
spatially separated MF end states are different.

To study the disorder effect,42 on-site random disorder
with Gaussian distribution with ω = 16� is added to the
superconducting wire. The disorder strength are chosen such
that nearly zero energy Andreev bound states can be induced
in the topologically trivial regime.18 The contour plots of the
differential conductance G1 and G2 for the left and right
leads are shown in Figs. 4(a) and 4(b), respectively. It is
important to note that in the topologically trivial regime
where two transverse subbands of the wire are occupied, a
fermionic end state which has energy close to zero is induced
by disorder at μ ≈ −122�. The ground state wave function
at μ = −121.8� (projected onto the x-y plane) is shown in
Fig. 4(f) and it is evident that the ground state is localized
at the right end of the wire. As expected, this zero energy
fermionic end state induces a strong conductance peak for the

right normal lead as shown in Fig. 4(b). Therefore, it is difficult
to distinguish this fermionic state from a true MF end state by
measuring the conductance alone.

However, since the fermionic end state at μ ≈ −122� is
a localized state, the cross current-current correlation C12/eĪ

induced by this state is small as shown in Fig. 4(d). On the
contrary, C12/eĪ is close to 1 in the topological regime at
E 	 EM as shown in Fig. 4(d).

To further identify the topological regime, we note that the
Fano factor of the right lead C22/eĪ1 at E ≈ 0 is close to 1 only
in the topological regime as shown in Fig. 4(c). The ground
state wave function in the topological regime at μ = −129.2�

is shown in Fig. 4(e). It is evident that this fermionic end state,
which can mediate CARs, is a nonlocal fermionic state and its
wave function has significant distribution at both ends of the
wire. Therefore, the experimental signatures of C12/eĪ ≈ 1
and C11/eĪ1 ≈ 1 at E ≈ 0 can be used to distinguish MFs
from local fermions.

VII. CONCLUSION

We show that the MF induced CARs change the shot noise
and strongly enhance the cross current-current correlations
between two leads. The measurements of the Fano factor
e of the leads and the strong current-current correlation at
small voltage bias can be used to detect MFs. The effects of
different magnetic field strength and sample size as well as the
transport properties in the multisubband regime are discussed
in the Appendix. It is shown that the MF enhanced CAR effect
discussed in this work is very robust and independent of the
details of the parameters used.
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APPENDIX

1. Effective Hamiltonian

When a single transverse subband of the superconducting
wire is occupied, the wire is in the topological regime with
two Majorana end states, we expect the transport properties of
a N/TS/N junction at eV 	 � can be qualitatively described
by the effective Hamiltonian Heff = HL + HM + HT , where

HN = −ivf

∑
α∈L/R

∫ +∞

−∞
ψ†

α(x)∂xψα(x)dx,

HM = iEMγLγR, (A1)

HT = −i{t̃LγL[ψ†
L(0) + ψL(0)] + t̃RγR[ψ†

R(0) + ψR(0)]}.
Here HN is the Hamiltonian of the left and right normal leads
and ψL/R denotes a fermion operator of the left (right) normal
lead. vf is the corresponding Fermi velocity of the leads. HM

describes the two coupled Majorana fermions, where EM is
the coupling strength between the two MF end states γL and
γR . The coupling between the leads and the MFs are described
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by HT , where the coupling strengths are denoted by t̃L and t̃R ,
respectively.

This model was first introduced in Refs. 32 and 43 and the
scattering matrix of the Hamiltonian can be found easily using
the equation of motion approach.16 We denote the incoming
states of the electrons and holes with momentum k in the left
and right leads by ψL/Rk(−) and ψ

†
L/R−k(−), respectively. The

electron and hole scattering states are denoted by ψL/Rk(+) and
ψ

†
L/R−k(+), respectively. The scattering matrix S is defined as

⎛
⎜⎜⎝

ψLk(+)
ψRk(+)
ψ

†
L−k(+)

ψ
†
R−k(+)

⎞
⎟⎟⎠ =

(
See Seh

She Shh

) ⎛
⎜⎜⎝

ψLk(−)
ψRk(−)
ψ

†
L−k(−)

ψ
†
R−k(−)

⎞
⎟⎟⎠ . (A2)

Using the equation of motion method16 and following the
notations in Ref. 32, we have

S(E) ≡
(

See Seh

She Shh

)
=

(
1 + A A

A 1 + A

)
, (A3)

where

A = Z−1

⎛
⎝−i

(
E + i

2t̃2
R

vf

)
2t̃2

L

vf

−2EM t̃Lt̃R
vf

2EM t̃Lt̃R
vf

−i
(
E + i

2t̃2
L

vf

)
2t̃2

R

vf

⎞
⎠ . (A4)

and Z = E2
M − (E + i2t̃2

R/vf )(E + i2t̃2
L/vf ). From the scat-

tering matrix, the local Andreev reflection amplitude for the,

say, left lead is −i(E + i
2t̃2

R

vf
) 2t̃2

L

vf
/Z. When the two Majorana

fermions are not coupled and at zero voltage bias with
EM = 0 and E = 0, the local Andreev reflection amplitude
is 1. This is called resonant Andreev reflections in Ref. 16.
However, when the two Majorana fermions are strongly
coupled with EM � E and 4t̃2

Lt̃2
R/v2

f , the local Andreev
reflection is strongly suppressed. It is interesting to note that
when |E| = |EM | � |t̃Lt̃R/vf |, the local Andreev reflection
amplitude is t2

L/(t2
L + t2

R) and results in a conductance peak
of 2e2

h
t̃2
L/(t̃2

L + t̃2
R). All these simple analytic results match

the numerical results in the corresponding regime very well,
as shown in Fig. 2(b) of the main text. For example, in
the main text, the effective coupling between the leads to
the superconductor are set to be equal such that t̃L = t̃R
and the effective Hamiltonian predicts a conductance peak
of 0.5 ∗ 2e2/h at E = EM . This is verified in the inset of
Fig. 2(b).

From the scattering matrix it is evident that the crossed
Andreev reflection amplitude is 2EM t̃Lt̃R

vf
/Z. Therefore, the

crossed Andreev reflection is zero if the two Majorana
fermions are not coupled when EM = 0. As shown above,
when EM � E and 4t̃2

Lt̃2
R/v2

f , the local Andreev reflection
is strongly suppressed to the order of Et̃2

L/vf E2
M . However,

in this regime, the crossed Andreev reflection is of order
2t̃L t̃R
EM

. This results in a conductance of order 2e2

h

t̃2
Lt̃2

R

E2
M

at zero
voltage bias E = 0. Moreover, in this regime, it can be shown
using the scattering matrix and Eq. (3) of the main text that
P11/Ḡ1|E	EM

≈ e, as shown by the numerical results. It can
also be verified that at E = 0, 2|P12(E)| = P11(E) + P22(E)
such that the two normal leads are perfectly correlated to each

FIG. 5. (Color online) (a) Contour plot of C11/eĪ1 as a function
of voltage bias and magnetic field Vx . (b) Contour plot of C12/eĪ .

other. This is also consistent with the numerical simulations
as shown in Fig. 3.

It is interesting to note that the elastic cotunneling ampli-
tudes from the left lead to the right lead equal the crossed
Andreev reflection amplitude. However, since the left lead and
the right lead have equal chemical potential and electrons can
also tunnel from the right lead to the left lead, there is no
net current from the left lead to the right lead and vice versa.
Therefore, elastic cotunneling processes do not contribute to
the net current of the normal leads.

2. Current-current correlations as a function of magnetic field

It is important to note that for the short wire geometry,
EM oscillates as a functions of magnetic field and chemical
potential.24,37 The energy eigenvalues as a function of the
magnetic field strength along the wire are shown in Fig. 5.
The chemical potential is μ = −130�. It is evident that when
Vx is smaller than the superconducting gap, there are no
in-gap states. When Vx is larger than the bulk pairing gap,
the superconducting wire is tuned to the topological regime
with Majorana end states. Due to the short wire geometry,
the coupling energy oscillates as a function of magnetic field.
As expected, in when EM � eV , crossed Andreev reflection
processes dominate.

3. Current-current correlations when multiple
subbands are occupied

It is important to note that in realistic experiments it is
possible that multitransverse subbands of the superconducting
wire are occupied.12,15 In the topological regime with an odd
number of transverse subbands occupied, and if the number
of occupied subbands is larger than one, the appearance of
Majorana end states is accompanied by the appearance of
finite energy fermionic end states.11 Therefore, it is important
to show that the measurement of the shot noise and current-
current correlations can be used to probe the topological
regime even in the presence of other fermionic end states. In
this section we first identify the topological regime by plotting
the energy eigenstates of a superconducting wire. When the
chemical potential is near the band bottom, only one or two
transverse subbands are occupied as shown in the main text. As
the chemical potential increases, more transverse subbands of
the superconducting wire are occupied. When three subbands
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FIG. 6. (Color online) (a) The energy eigenvalues as a function
of chemical potential. The topological regime with Majorana fermion
end states are marked out. (b) Contour plot of C11/eĪ1 as a function
of voltage bias and chemical potential. (c) Contour plot of C12/eĪ .

are occupied, the wire is again in the topological regime.
The energy eigenvalues as a function of chemical potential
in the regime where three transverse subbands are occupied
are shown in Fig. 6(a).

The Fano factor of the left lead C11/eĪ1 and the current-
current correlations of the two normal leads C12/eĪ are shown
in Figs. 6(a) and 6(c), respectively. It is evident that in the
topological regime with eV � EM , we have C11/eĪ1 ≈ 1 and
C12/eĪ ≈ 1. Therefore, the Fano factors and current-current
correlations can still be used to probe the topological regime
even in the multisubband cases.

4. The effect of the sample length

It is shown in the main text that the enhanced crossed
Andreev reflection regimes occur when the coupling energy
between the Majorana fermions is larger than the voltage bias
such that EM � eV . Moreover, the voltage bias has to be larger
than the temperature scale eV � kBT such that the shot noise
can dominate the thermal noise. Fortunately these conditions
can be easily satisfied in the semiconductor/superconductor
heterostructure. As shown in Figs. 2 and 3 of the main text,
the maximum coupling energy can be in the order of 0.1�,
which is much larger than kBT . Assuming that � = 0.25
meV as shown experimentally and T = 20 mK, we have
kBT ≈ 0.01�.

Since the coupling strength of the two Majorana end states
has the form EM ≈ h̄2kF

m∗ξ0
e−2Nxa/ξ0 cos(kF Nx), the maximum

EM decreases exponentially as a function of the distance
between the Majorana end states. The localization length is
the superconducting coherence length ξ0 ≈ ta/� ≈ 25a. In
the main text, a wire length of Nxa = 50a is assumed. In
this section, results using wires with lengths Nxa = 40a and
Nxa = 70a are presented. As expected, the maximum EM is
increased when the wire is shortened. When Nxa = 40a, the
maximum EM ≈ 0.15�. When Nxa = 70a, the maximum EM

is reduced to about 0.05� and the crossed Andreev reflection
regime is more difficult to observe. Nevertheless, the length of
the wire should not be much shorter than the superconducting
coherence length. Otherwise, the current-current correlations

FIG. 7. (Color online) Nx = 40 for (a) and (b). Nx = 70 for
(c) and (d). (a) and (c) Contour plots of C11/eĪ1 as a function of
voltage bias eV and chemical potential. (b) and (d) Contour plots of
C12/eĪ .

between the two leads can be significant even in the absence of
Majorana fermions. For example, it is evident from Figs. 7(b)
and 7(d) that C12/Ī in the topologically trivial regime of the
shorter wire with Nxa = 40a is much larger than C12/Ī in the
topologically trivial regime of the wire with Nxa = 70a.

5. Discussion on mechanisms which can enhance
local Andreev reflections

As mentioned in the main text, several effects such as
disorder induced Andreev bounded states,18 Kondo effect,15,33

weak antilocalization,20 and reflectionless tunneling34,35 may
cause zero bias conductance peaks in tunneling experiments.
However, all these effects are essentially the enhancement of
local Andreev reflections due to various mechanisms at the
interface between a normal lead and a superconductor. In this
section we argue that these effects cannot enhance crossed
Andreev reflections.

First, reflectionless tunneling is due to the disorder induced
constructive interference between time-reversal invariant scat-
tering paths at the normal lead. The constructive interfer-
ences enhance the local Andreev reflection amplitude. This
enhancement happens at a local section of the normal lead.
Therefore, they cannot enhance crossed Andreev reflection
processes.

Second, weak antilocalization effect at a N-S junction is
another candidate for inducing zero bias conductance peaks.
Weak antilocalization at a N-S junction is caused by the
destructive interference effect between multiple scattering
paths of electrons and holes near the N-S interface. In the weak
antilocalization regime, the local Andreev reflection amplitude
is increased causing an increased ZBCP as shown in Ref. 20.
Since only local Andreev reflection processes are involved,
there is no enhancement of nonlocal correlations between
leads.

Third, ordinary fermionic Andreev bound states caused
by nonmagnetic disorder or magnetic disorder, localized at
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the end of a superconducting wire, can induce conductance
peaks. If the Andreev bound states have nearly zero energy,
the conductance peak appears at near zero bias. It is shown in
the main text that these disorder induced Andreev bound states
cannot induce crossed Andreev reflections, even though they
can induce almost resonant local Andreev reflections.

Finally, Kondo effect can also give rise to zero bias conduc-
tance peaks. Kondo effect is the enhancement of the effective
coupling between two leads induced by a magnetic impurity as
the temperature is lower than the Kondo temperature. Kondo

effect is usually suppressed if one of the leads becomes
superconducting. However, in the presence of a magnetic
field, the proximity induced pairing gap � can be reduced.
In the regime where � is smaller than the Kondo temperature
kBTKondo, a conductance peak can emerge.

However, similar to other effects discussed above, Kondo
effects are local processes induced by a local mag-
netic impurity/quantum dot, which cannot enhance the
current-current correlations between two spatially separated
leads.
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