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Abstract
This work was motivated by the analysis of the extremal behavior

of buoy and satellite data describing wave conditions in the North
Atlantic Ocean. The available datasets consist of time series of sig-
nificant wave height (Hs) with irregular time sampling. In such a sit-
uation, the usual statistical methods available for analyzing extreme
values cannot be used directly. The method proposed in this paper is
an extension of the peaks over threshold (POT) method, where the
distribution of a process above a high threshold is approximated by a
max-stable process whose parameters are estimated by maximizing a
composite likelihood function. The efficiency of the proposed method
is assessed on an extensive set of simulated data. It is shown, in par-
ticular, that the method is able to describe the extremal behavior
of several common time series models with regular or irregular time
sampling. The method is then used to analyze Hs data in the North
Atlantic Ocean. The results indicate that it is possible to derive re-
alistic estimates of the extremal properties of Hs from satellite data
despite its complex space-time sampling.

1. Introduction. Extreme events are a major concern in statistical modeling and
appropriate statistical methods are needed to derive estimations of the extremal properties
of various phenomena from complex observations. For example, the 100-year return level
of significant wave height is often used in the design of marine structures as a criterion to
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characterize the extreme waves that a structure may face during its lifetime. Significant
wave height, generally denoted Hs, can be interpreted as a measure of an average wave
height in a sea state. Three main sources of data can be used to assess the statistical
properties of Hs:

• Reanalysis data provide long time series (typically a few decades) everywhere in the
oceans at a regular time step and without missing values, but tend to smooth out
extreme values.

• Buoy data are generally more accurate, but cover shorter time periods (typically a
few years with missing values) and have a poor spatial distribution.

• Satellite data are also accurate observations and are available on the last 20 years.
However, the time series obtained by selecting all satellite data available at a given
location exhibits complex irregular time sampling depending on the number and
tracks of the operating satellites.

A typical example of the data coverage over a 24-hour time window in the North Atlantic
is given in Figure 1. The motivation for the work presented here was to develop statistical
methods for analyzing the extremal properties of Hs based on such datasets. In particu-
lar, our proposed method can be used to estimate various characteristics of the extremal
behavior of processes (e.g. high quantiles, return periods, storm durations, etc.) observed
at regular or irregular time steps, whereas most existing methods are inappropriate in the
latter case.

Two methods are commonly used for estimating extreme quantiles (see e.g. Embrechts,
Klüppelberg and Mikosch (1997), Coles (2001); Beirlant et al. (2004); de Haan and Fer-
reira (2006), and the references therein). The first one, generally referred as the block
maxima method, relies on probabilistic results, which suggest the use of the generalized
extreme-value (GEV) distribution for modeling the maximum of a large number of iden-
tically distributed random variables. The main drawback of this approach is the waste of
data induced by taking the maximum over a large block, typically one year for meteoro-
logical applications, before fitting the GEV distribution. The second approach, generally
referred to as peaks over threshold (POT), involves keeping only the observations above a
certain threshold chosen to be sufficiently high to ensure that the distribution of excesses
above that threshold is well approximated by a generalized Pareto distribution (GPD). A
problem that arises in using the POT approach for time series is that clusters of consecu-
tive dependent exceedances are generally observed, particularly when the time-lag between
successive observations is smaller than the characteristic duration of extreme events. In
this case a "declustering" step is generally applied before fitting the GPD distribution to
the sample of cluster maxima. This method also leads to waste data since only one value
per cluster is kept to fit the GPD, and it relies on arbitrary rules for declustering the data.
Those rules are even more difficult to choose in the presence of missing values or irregular
time sampling.
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Figure 1. 3D representation of the available data for 12/16/2002. The 2D fields at times 0, 6, 12 and
18 correspond to reanalysis data, the 24 observations at the same location correspond to buoy data (hourly
data), and the other data to the various satellite tracks.

Another approach, initially proposed in Smith, Tawn and Coles (1997), retains all of
the exceedances and models them as a first-order Markov chain whose transition kernel is
derived from bivariate extreme value theory. A concurrent strategy, adopted for example in
Bortot and Gaetan (2013), consists of modeling the exceedances conditionally on a latent
process. Both approaches have been successfully applied to various meteorological time
series (see e.g. Ribatet et al. (2009)), but they cannot be adapted straightforwardly to time
series with irregular sampling (see also Reich, Shaby and Cooley (2013)). In this paper,
we propose an alternative approach in which the time series of exceedances above a high
threshold is assumed to be a realization of a censored max-stable process. This model
is motivated by probabilistic results from extreme value theory. Since the full likelihood
cannot be obtained analytically, we follow recent works on spatial and space-time extremes,
and base the statistical inference on a composite likelihood approach. The proposed model
can be easily simulated, thereby allowing estimation of various quantities of interest for
the applications, such as quantiles, return periods or the characteristics of sojourns above
high thresholds using Monte-Carlo simulations. Parametric bootstrap can also be used to
assess the accuracy of the estimators.

The model is introduced in Section 2. Section 3 introduces the composite likelihood ap-
proach and discusses the properties of the estimators using simulations. Section 4 describes
simulation results to validate our approach on classical time-series models and Section 5
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discusses its application to Hs data.

2. Censored max-stable process.

2.1. Threshold models and censoring in the independent case. Probably the most clas-
sical approach to modeling the extremal properties of an independent and identically dis-
tributed (iid) sample (X1, ..., Xn) consists in using the "block maxima" approach. It relies
on the probabilistic results originating in Fisher and Tippett (1928) which suggest ap-
proximating the distribution of Mn = max

i=1,...,n
Xi by a GEV distribution with the following

cumulative distribution function (cdf):

(1) F (x; µ, σ, ξ) =

{
exp{−[1 + ξ x−µ

σ ]
− 1

ξ } (ξ 6= 0)

exp{− exp[−x−µ
σ ]} (ξ = 0)

,

defined for x such that
(
1 + ξ x−µ

σ

)
> 0 with parameters µ ∈ R, σ > 0, and ξ ∈ R.

For practical applications, the data are grouped into blocks of equal length, and a GEV
distribution is fitted to the sample of block maxima. The choice of block size is critical
in practice. For environmental time series, the GEV distribution is generally fitted to
the time series of annual maxima to remove seasonal effects. This leads to an important
waste of data, and the sample size used to estimate the three parameters of the GEV
distribution is the number of years with no or few missing values (a few decades in the
best-case scenario). Although many methods have been proposed in the literature to provide
estimates which exhibit a good behavior on small samples (see e.g. Ailliot, Thompson and
Thomson (2011) and references therein), such estimation remains an important issue in
practical applications.

The POT approach is the classical alternative to the block maxima approach. It is less
wasteful of data since it keeps all data above a high threshold u which is chosen such that
the conditional distribution P[Xi ≤ x|Xi > u] is well approximated by a GPD with cdf

G(x; µ, σ, ξ) =





1 −
(
1 + ξ x−µ

σ

)−1/ξ
(ξ 6= 0),

1 − exp[−x−µ
σ ] (ξ = 0),

defined for x ≥ µ such that
(
1 + ξ x−µ

σ

)
≥ 0 with µ = u and parameters σ > 0 and ξ ∈ R.

Again, the use of the GPD is motivated by probabilistic results, and various methods have
been proposed in the literature for estimating the two parameters of the GPD based on the
sample of exceedances and the choice of u, although the latter is a more difficult problem
to handle (see Davison and Smith (1990)). Once u is chosen, the standard method for
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estimating the unknown parameters is to maximize the likelihood function

L(λ, σ, ξ; X1, ..., Xn) = λNu(1 − λ)n−Nu
∏

i∈{1...n}|Xi>u

g(xi; u, σ, ξ)

=
∏

i∈{1...n}|Xi≤u

λ
∏

i∈{1...n}|Xi>u

(1 − λ)g(xi; u, σ, ξ),(2)

where λ = P(Xi ≤ u), Nu is the number of observations below the threshold u, and
g(x; µ, σ, ξ) is the probability density function (pdf) of the GPD. It is well known that the
conditional distribution of the exceedances of a GPD above an arbitrary threshold is also a
GPD, which allows us to interpret (2) as the likelihood of an iid sample of a GPD censored
at the threshold u. More precisely, let (X̃1, X̃2, ..., X̃n) be an iid sample of a GPD with
parameter (µ, σ̃, ξ), and consider the censored random variable

Yi = u1[X̃i≤u] + X̃i1[X̃i>u] =

{
u if X̃i ≤ u,

X̃i if X̃i > u,

where the threshold u belongs to the support of the GPD distribution. We have P (Yi =
u) = λ with λ = G(u; µ, σ̃, ξ) and, for x > u,

P(Yi ≥ x) = P(X̃i ≥ u)P(X̃i ≥ x|X̃i ≥ u)

= (1 − G(u; µ, σ̃, ξ))
1 − G(x; µ, σ̃, ξ)

1 − G(u; µ, σ̃, ξ)

= (1 − λ)(1 − G(x; u, σ, ξ)),

with σ = σ̃
(
1 + ξ u−µ

σ̃

)
, and thus (2) is the likelihood of (Y1, ..., Yn). Finally, the assump-

tions made when using the POT approach are equivalent to assuming that the original
sample (X1, ..., Xn) satisfies

(3) u1[Xi≤u] + Xi1[Xi>u] = u1[X̃i≤u] + X̃i1[X̃i>u],

for all i ∈ {1, ..., n}, where
(
X̃1, ..., X̃n

)
is an iid sample of a GPD.

We will see below that this interpretation of the POT approach in terms of censoring
has certain advantages for modeling purposes. From a numerical point of view, it can be
viewed as a reparametrization of the likelihood function. Maximizing (2) over (λ, σ, ξ) leads
to the following estimate for λ, λ̂ = Nu

n which has the desirable properties of being easy
to interpret and of being independent of the estimates of σ and ξ. At the same time,
maximizing (2) over (µ, σ̃, ξ) leads to a more complicated three-dimensional optimization
problem and correlated estimates, which can be problematic for certain applications as
discussed in Section 5 and in Ribereau, Naveau and Guillou (2011).

Although the GPD distribution is the most common choice for modeling exceedances
over a high threshold, other tail approximations have been proposed in the literature. In
particular, we have

G(x; µ, σ, ξ) ≈ F (x; µ, σ, ξ)



6 N. RAILLARD ET AL.

for "high" values of x (see Drees, de Haan L. and Li (2006)) and this suggests that similar
results will be obtained if we model the distribution of X̃i by a GEV distribution instead
of a GPD. Various tests on simulated samples have confirmed that both approximations
lead to similar results in practice.

The tail approximations discussed above remain valid for dependent sequences under
mild conditions (see Leadbetter, Lindgren and Rootzén (1983)) which justifies the use of
both the block maxima and POT approaches for analyzing the extremes of time series.
One difficulty with using the POT approach in this context is that clusters of consecutive
dependent exceedances are generally observed, whereas the likelihood function (2) is the
joint distribution of the exceedances only if they are independent. The most common POT
method thus includes a declustering step, with the maxima within each cluster kept only
to obtain a sample of approximately independent exceedances. It also leads to waste data
and thus degrades the quality of the estimates. Alternative strategies, which keep all the
exceedances in the fitting procedure but correct the estimation of the uncertainty of the
estimators to account for dependence, are proposed in Fawcett and Walshaw (2007, 2012).

2.2. Censored max-stable process. We now consider a sample (Xt1
, ..., Xtn) of a stochas-

tic process {Xt} observed at time (t1, ..., tn). It is generally assumed in the literature that
the observations are available at a regular time step (i.e. ti+1 − ti = tj+1 − tj for all
(i, j) ∈ {1, ..., n − 1}), but we are interested in a method that is sufficiently flexible to deal
with irregular time sampling. We thus propose analyzing the extremal behavior of such
a dataset by extending the POT approach and modeling the exceedances of the process
{Xt} above a high threshold u as a censored max-stable process. The theory of max-stable
processes (see de Haan (1984); de Haan and Ferreira (2006)) is a natural generalization
of the traditional univariate max-stable theory used to motivate the choice of the GEV
distribution in the iid case. Several families of max-stable processes have been proposed
in the literature (see e.g. Smith (1990); Schlather (2002)). Our focus here is on the spe-
cific Gaussian extreme value process introduced in Smith (1990) although the methodology
introduced herein can easily be adapted to other models. More precisely, we assume that

(4) u1[Xt≤u] + Xt1[Xt>u] = u1[X̃t≤u] + X̃t1[X̃t>u]

holds for all t, where u is a fixed threshold and {X̃t} is a stationary Gaussian extreme value
process with parameter θ = (µ, σ, ξ, ν) ∈ (−∞, +∞) × (0, +∞) × (−∞, +∞) × (0, +∞), as
defined below.

• The marginal distribution of {X̃t} is a GEV distribution with parameter (µ, σ, ξ).
This assumption implies that the process {Zt} obtained by applying the following
marginal transformation

(5) Zt = − 1

log(F (X̃t; µ, σ, ξ))
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is a stationary process with a unit Fréchet marginal distribution (i.e. GEV distribu-
tion with parameter (1, 1, 1)).

• We further assume that

(6) Zt = max

{
ζi

ν
√

2π
exp

(
−(si − t)2

2ν2

)}
,

where {(ζi, si), i ≥ 1} denote the points of a Poisson process on (0, ∞) × R with
intensity measure ζ−2dζ × ds.

We focus on Gaussian extreme value processes because they have a nice meteorological
interpretation (see Smith (1990)), can easily handle observations available at irregular time
steps and are quick and easy to simulate (see Schlather (2002)). The following sections also
show that these processes provide a flexible class of models which is able to describe the
extremal behavior of most standard time series models and the Hs data considered in this
work. Parameters µ, σ and ξ are related to the marginal distribution and can be interpreted,
respectively, as location, scale and shape parameters, whereas parameter ν is related to the
temporal structure of the process and may be interpreted as the typical duration of storms.
More precisely, we have (see Smith (1990)):

(7) P(Zt1
≤ zt1

, Zt2
≤ zt2

) = FZ(zt1
, zt2

; ν) = exp [−V (zt1
, zt2

; ν)] ,

where

(8) V (zt1
, zt2

; ν) =
1

zt1

Φ

(
a

2
+

1

a
log

zt2

zt1

)
+

1

zt2

Φ

(
a

2
+

1

a
log

zt1

zt2

)
,

with a = |t1−t2|
ν , and Φ is the cdf of the standard normal distribution. The limit cases

ν → 0 and ν → +∞ correspond to independence and perfect dependence, respectively.
Applying the inverse marginal transformation leads to the following bivariate cdf for the

Gaussian extreme value process {X̃t}:

FX̃(x̃t1
, x̃t2

; θ) = P(X̃t1
≤ x̃t1

, X̃t1
≤ x̃t2

)

= exp

[
− 1

zt1

Φ

(
a

2
+

1

a
log

zt2

zt1

)
− 1

zt2

Φ

(
a

2
+

1

a
log

zt1

zt2

)]
,(9)

with zti
= −1

log F (x̃ti
;µ,σ,ξ) .

The bivariate distribution of (Yt1
, Yt2

), where Yt = u1[X̃t≤u] + X̃t1[X̃t>u] is the censored
Gaussian extreme value process, has the following bivariate pdf:

(10) pY (yt1
, yt2

; θ) =





FX̃(u, u; θ), if yt1
= u and yt2

= u,
∂FX̃

∂x̃t1

(yt1
, u; θ), if yt1

> u and yt2
= u,

∂FX̃

∂x̃t2

(u, yt2
; θ), if yt1

= u and yt2
> u,

∂2FX̃

∂x̃t1
∂x̃t2

(yt1
, yt2

; θ), if yt1
> u and yt2

> u,
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with respect to the product measure m ⊗ m, where m(dx) = δu(dx) + dx is the measure
obtained by mixing the Dirac measure at u with the Lebesgue measure.

Similar approximations, motivated by probabilistic results from bivariate extreme value
theory, are used in Smith, Tawn and Coles (1997) and Ribatet et al. (2009) to model
the bivariate distribution of successive exceedances. Those papers further assume that
the censored process is a Markov process and the full likelihood function is derived from
the bivariate distributions. More recently, threshold versions of max-stable processes were
also proposed in a space-time context (see Huser and Davison (In press); Jeon and Smith
(2012)).

3. Parameter estimation.

3.1. Composite likelihood estimators. In this section, (yt1
, ..., ytn) ∈ (u, +∞)n denotes

a realization of a Gaussian extreme value process {Yt} with unknown parameter θ∗ =
(µ∗, σ∗, ξ∗, ν∗) censored at the threshold u ≥ 0 and observed at time (t1, ..., tn). There
is no known tractable expression for the full likelihood. However, since the marginal and
bivariate distributions have tractable expressions, the statistical inference can be based on
one of the composite likelihood functions introduced below (see also Lindsay (1988); Varin
and Vidoni (2005); Varin (2008); Cox (2004); Padoan, Ribatet and Sisson (2010)).

• The independent likelihood function is defined as

(11) IL(θ; yt1
, ..., ytn) =

n∏

i=1

pY (yti
; θ),

where pY (yt; θ) is the pdf of the marginal distribution of Yt with respect to measure
m. It is given by

pY (yt; θ) =

{
F (u; µ, σ, ξ), if yt = u,

f(yt; µ, σ, ξ), if yt > u,

where F and f denote the cdf and pdf of the GEV distribution, respectively. It
corresponds to the likelihood function of an iid sample of a censored GEV distribution
(see Section 2.1) and does not depend on parameter ν, which describes the dependence
structure of the process. We denote by MILE the estimator of (µ, σ, ξ) obtained by
maximizing this function.

• The pairwise likelihood function

(12) PL(θ; yt1
, ..., ytn) =

n−1∏

i=1

∏

j>i

pY (yti
, ytj

; θ)ωti,tj ,

with pY (yti
, ytj

; θ) given by (10) and ωti,tj
∈ {0, 1} indicates whether the pair of

observations (yti
, ytj

) contributes to the pairwise likelihood function. This approach
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has already been considered for time series with regular time sampling (see Varin
(2008) and the references therein). It is generally assumed that

(13) ωti,tj
= 1[|i−j|≤K],

such that only the pairs of observations less than K time units apart are retained
to build the pairwise likelihood function. Hereafter, PLK denotes the corresponding
pairwise likelihood function and MPLKE the estimator obtained by maximizing this
function. Retaining only the neighboring observations (i.e. using K = 1) has clear
computational benefits since it permits to significantly reduce the number of terms
in the product (12). It may also lead to more efficient estimators in practice (see
Varin (2008) and Section 3.2). Another strategy is to retain the pairs of observations
separated by a time lag smaller than K and take

(14) ωti,tj
= 1[|ti−tj |≤K].

This second strategy is similar to the first one when the process is observed at regular
time sampling but differs in the irregular case, which will be further discussed using
simulations in Section 3.2.

• The Markovian likelihood function is defined as

ML(θ; yt1
, ..., ytn) = pY (yt1

; θ)
n∏

i=2

pY (yti
|yti−1

; θ)(15)

=

∏n
i=2 pY (yti

, yti−1
; θ)

∏n−1
i=2 pY (yti

; θ)

=
PL1(θ; yt1

, ..., ytn)

IL(θ; yt2
, ..., ytn−1

)
,

and MMLE denotes the estimator obtained by maximizing this function. This esti-
mator is considered for comparison purposes. Indeed, when the process is observed
at a regular time step, we retrieve the Markovian model considered in Smith, Tawn
and Coles (1997) and Ribatet et al. (2009) for the specific bivariate max-stable dis-
tribution associated with the Gaussian extreme value process.

From a numerical point of view, we find it useful to use a two-stage procedure, where
the parameters (µ, σ, ξ) of the marginal distribution are first estimated by maximizing
the independent likelihood function, and the dependence parameter ν is then estimated
by maximizing the pairwise likelihood function in ν with the parameters of the marginal
distribution kept fixed to the values obtained in the first step. Doing so permits us to reduce
the computational time (the independent likelihood function can be evaluated quickly
compared to the pairwise likelihood function) and avoid the divergence problems which may
occur when optimizing the pairwise likelihood function simultaneously over all parameters
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with an inappropriate starting point. Then, we can perform a global optimization of the
pairwise likelihood function over the four parameters with the estimates obtained after
the two-stage procedure being used as the starting point. We performed various numerical
experiments, which confirmed that the estimators obtained from the two-stage procedure
are suboptimal compared to full optimization (see dos Santos and Lopes (2008) for a
discussion in the context of copulas).

The asymptotic properties of the composite likelihood estimators for max-stable pro-
cesses have been studied in several recent papers. In Padoan, Ribatet and Sisson (2010) it
is shown that they are consistent and asymptotically normal when the sample consists of iid
replicates of max-stale fields. Two recent papers (Huser and Davison (In press); Jeon and
Smith (2012)) consider the general case of temporally and spatially dependent max-stable
processes. Although the asymptotic results developed in Jeon and Smith (2012) apply to
the estimators considered in this paper, for the sake of completeness, an alternative proof
of the consistency of the MPL1E is provided in the supplementary article Raillard, Ailliot
and Yao (2013). That proof is provided in an idealized situation with no censoring and
known marginal distributions. Moreover, since the asymptotic covariance of the estimator
is too complicated to compute for practical applications, we use parametric bootstrap (see
e.g. Benton and Krishnamoorthy (2002)) to approximate the distribution of the estimators
and provide confidence intervals, as discussed in greater details in Section 5.

3.2. Simulation study. A simulation study was undertaken to assess the accuracy of
the estimators introduced in Section 3.1. Random samples were generated from a Gaussian
extreme value process with parameters µ = 0, σ = 1 and ξ = 0.3, which correspond
to realistic values for environmental applications. We performed various experiments to
investigate how the accuracy of the estimators is affected by sample size n, dependence
parameter ν, the threshold u ,and, finally, by the strategy used to select the pairs of
observations that contribute to the pairwise likelihood function. For each experiment, 1000
independent sequences of a Gaussian extreme value process were generated, and the various
estimators of (µ, σ, ξ, ν) computed for each sequence.

Let us first focus on the case in which the time step between successive observations is
constant. According to the left plots of Figure 2, all of the estimators seem to be consistent.
We also checked empirically that, when multiplied by

√
n, the errors are almost constant,

demonstrating that we retrieve the usual speed of convergence. The MILE is clearly the
least efficient estimator, whereas the MPL1E, MPL5E and MMLE produce similar results.
A closer look reveals, however, that the MPL5E is the least accurate of these three esti-
mators. The MMLE slightly outperforms the MPL1E in estimating scale parameter σ and
shape parameter ξ whereas the MPL1E provides the best estimator of dependence param-
eter ν. The second column of Figure 2 shows that the root-mean-square error (RMSE) of
all the estimators decreases with dependence parameter ν and that it is more difficult to
obtain reliable estimates when the dependence between successive observations is strong.
The efficiency of the MMLE generally deteriorates quicker when ν increases. It provides
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the worst estimation of µ, σ and ν when ν ≥ 1 but provides the best estimation of ξ for all
the values of ν considered in this experiment. These results indicate that the Markovian
likelihood may not be appropriate when the dependence is strong. The third column of Fig-
ure 2 depicts the behavior of the different estimators when censoring occurs. As expected,
they all worsen when the threshold increases and the number of non-censored observations
decreases. It can be seen that the estimator which suffers most from censoring is the MILE,
whereas the MMLE outperforms both the MPL1E and MPL5E in estimating the param-
eters of the marginal distribution. The MPL1E again provides the best estimator of the
dependence parameter ν.

The last column of Figure 2 shows the influence of the windows considered in defining
the neighborhood, which are taken into account in the pairwise likelihood functions. The
Gaussian extreme value process was simulated using an irregular time sampling (the time
lag between successive observations was drawn from a uniform distribution on [0, 2]) to
allow comparison between the two strategies discussed in Section 3.1: the first involves the
use of the K closest observations (see Equation (13)), whereas the second takes into account
all observations falling within K time steps (see Equation (14)). We found the first strategy
always to be the best. The evolution of RMSE with K differs according to the strategy used.
It is increasing for the first strategy, meaning that the best estimators are obtained with
K = 1, but generally decreasing for the second and the difference between both strategies
decreases when K increases. Comparison with the MILE and MMLE indicates again that
even when the time sampling is irregular the MMLE slightly outperforms the MPL1E in
estimating µ, σ and ξ but the MPL1E provides the best estimation of ν.

The results given in this section suggest that the MMLE or MPL1E are more favorable
for practical applications since their RMSE are generally the lowest. The two estimators
have a similar computational cost. Although the former may provide a slightly better
estimation when the dependence between successive observations is small, it is clearly less
efficient when the dependence is strong. Finally, it seems reasonable to use the MPL1E in
practical applications and we will mainly focus on this estimator in the sequel.

4. Performance on classical time series models. The lack of data makes it gen-
erally difficult to validate models for extreme values when facing real applications. In this
section, we perform a simulation study to check whether the proposed methodology is
able to capture the extremal properties of several widely used time series models. In Sec-
tion 4.1, we simulate large samples to obtain estimators with a low variance and to check
whether the Gaussian extreme value process provides an appropriate approximation of the
extremal behavior of the time series models under consideration. Then, in Section 4.2, we
simulate shorter time series to validate the overall methodology in a more realistic context
for practical applications.

4.1. Model validation. We focus on the following time series models:

• IID: {Xt} is an iid sequence of a standard normal distribution.
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Figure 2. RMSE (y-axis) as a function of sample size n (first column), dependence parameter ν (second
column), threshold u (third column) and neighborhood size K (last column). Results obtained using 1000
simulations of a Gaussian extreme value process. Unless otherwise specified the time sampling is regular
and the values µ = 0, σ = 1, ξ = 0.3, ν = 0.5, u = −∞ and n = 300 were used. Solid line: MILE ; dotted
line: MMLE ; dashed line: MPL1E ; dashed-dotted line: MPL5E. For the last column, the time step between
successive observations is drawn from a uniform distribution on the interval (0, 2) and the dashed [resp.
dashed-dotted] line corresponds to the MPLKE with the first [resp. second] weighting strategy (see (13))
[resp. (14)].
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• AR(1): {Xt} is a discrete time stationary process which satisfies

Xt = αXt−1 +
√

1 − α2ǫt

for all t, where α ∈ (−1, 1) describes the dependence between successive observations,
and {ǫt} is an iid sequence of a standard normal distribution. The marginal distri-
bution of {Xt} is a standard normal distribution, and the extremal index (see Coles
(2001)) is equal to one (no clustering of extremes). We use the value α = 0.2.

• logARMAX(1): {Xt} is a discrete time stationary process which satisfies Xt =
log(Ut), where {Ut} is an ARMAX(1) process defined as

Ut = max{(1 − α)Ut−1, αǫt}

for all t, where α ∈ (0, 1) describes the dependence between successive observations
and {ǫt} is an iid sequence of a unit Fréchet distribution. The logarithmic transforma-
tion is used to avoid the numerical problems which occur when estimating quantities
related to heavy tail distributions by simulation. The marginal distribution of {Ut}
is unit Fréchet, whereas the one of {Xt} is Gumbel. The extremal index is α. We use
the value α = 0.2.

• OU : {Xt} is a continuous time stationary process which satisfies

dXt = −αXtdt +
√

2αdWt,

where α > 0 describes the dependence structure, and {Wt} is a standard Brownian
motion. The marginal distribution of {Xt} is a standard normal distribution, and we
retrieve the AR(1) model when the process is sampled at a regular time step. We use
the value α = 0.05 in the sequel, and the time lags between successive observations
are drawn from a uniform distribution on [0, 2].

For each of these models, we first generate a long realization (equivalent to 1000 years
with one observation per day) and fit a Gaussian extreme value process to the simulated
sequence censored at the 95% quantile by computing the MPL1E. We then compare the
following characteristics of the reference model and the fitted censored Gaussian extreme
value process :

• mean number of up-crossings during a given time period (one year) as a function of
the threshold;

• mean length of the sojourns above a varying threshold; and
• mean length of the sojourns below a varying threshold.

These quantities were selected because they summarize important properties of the ex-
tremal behavior of the processes and are important for practitioners. All quantities were
computed using long simulations of both the original time series model (IID, AR(1), log-
ARMAX(1) or OU generated using standard algorithms) and the fitted Gaussian extreme



14 N. RAILLARD ET AL.

value process. This is illustrated on Figure 3 which shows realizations of both the AR(1)
model and the fitted Gaussian extreme value process, whereas the second column of Fig-
ure 4 permits a more systematic comparison of the extremal behavior of both processes.
The fitted model is able to reproduce both the frequency of the up-crossings and the dura-
tions between successive up-crossings, even for high thresholds, but it slightly overestimates
the mean length of the clusters above high thresholds. Indeed, for the AR(1) model, the
mean length of the clusters tends to one when the threshold increases, as expected from
the theory (no clustering of extremes), whereas the fitted Gaussian extreme value process
exhibits small extremal dependence and thus clustering of extremes. Using a higher thresh-
old for censoring before fitting the Gaussian extreme value process helps to improve these
results and to retrieve extremal independence (not shown). According to the first column
of Figure 4, the results are better for the IID model, which is a particular case of the AR(1)
model with no dependence between successive observations. It is not surprising to obtain
similar results for the OU (see the last column of Figure 4) and AR(1) models since they
are equivalent when the time sampling is regular.

In contrast to the other models, the extreme values of the logARMAX(1) process tend
to cluster. Figure 4 shows that the fitted model seems to be able to reproduce both the
frequency of the up-crossings and the mean length of the clusters that tend to a limit
greater than one, as expected from the theory. However, it seems to overestimate the mean
length of the sojourns below high thresholds, although the erratic behavior of the curves
suggests that the observed differences may be due to sampling error.

These simulation results indicate that the Gaussian extreme value process is able to cap-
ture important properties of the extremal behavior of several common time series models,
and similar results were obtained for various other models we have tested (not reported).

50 100 150 200 250 300 350
−3

−2

−1

0

1

2

3

Figure 3. Short samples of the AR(1) model (solid line) and fitted Gaussian extreme value process (dashed
line). The horizontal dotted line is the threshold used for censoring.
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Figure 4. Comparison of the extremal behavior of classical processes (solid line) against the fitted Gaussian
extreme value process (dashed line). From top row: mean number of up-crossings per year, mean length of
clusters and mean time between consecutive up-crossings as a function of the threshold (x-axis). Results
obtained by simulating 1000 years of each model (one observation per day).

4.2. Simulation results in a realistic context for practical applications. In this section,
we validate our proposed methodology on shorter synthetic time series that better corre-
spond to the amount of data typically available in environmental applications (i.e. a few
years of data). For each of the time series models introduced in the previous section, we
repeated the following numerical experiment 1000 times:
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Table 1

Mean value of the estimated 100-year return level with 90% fluctuation intervals in parentheses.
Simulation results based on 200 independent five-year synthetic sequences of each model. A declustering

step was applied in the POT method (see Coles (2001)).

Method IID AR(1) logARMAX(1) OU

True value 4.03 4.03 8.90 3.79

POT 4.18 (3.12,6.02) 4.16 (3.14,5.68) 12.19 (5.31,29.96) 3.21 (2.31,5.04)
MMLE 3.89 (3.12,5.15) 3.90 (3.09,4.95) 18.77 (5.88,36.96) 3.62 ( 2.61,5.05)
CPL1E 3.84 (3.11,5.17) 3.76 (3.16,4.72) 9.52 (5.54,17.09) 3.62 (2.61,4.98)

• generate a five-year sequence (one observation per day) of the reference time series
model;

• fit the censored Gaussian extreme value process to this sequence after censoring at
the 95% quantile; and

• compute the 100-year return level for the fitted model which is defined as the level
at which the mean number of clusters above this level in a 100-year time period
is equal to one. This return level was chosen because it is generally the quantity
of interest in practical applications. It depends on both the marginal distribution
and the dependence structure of the process. It was computed by simulating a long
realization (1000 years) of the fitted model.

It can be seen from Table 1 that the results obtained with the fitted censored Gaussian
extreme value process clearly outperform those obtained with the usual POT method.
The MMLE and CPL1E produce similar results for the three models with no extremal
dependence (IID, AR(1) and OU) but those obtained with the CPL1E are clearly superior
to those obtained with the MMLE in terms of accuracy and bias for the logARMAX(1)
model. The IID and AR(1) models have almost the same 100-year return levels, which is
expected from the theory since they have the same marginal distribution and no extremal
dependence. The lower return period of the OU process, which also has the same marginal
distribution and no extremal dependence when observed at a regular time step, may be
due to the irregular time sampling. The extremal dependence of the logARMAX(1) model
leads to a higher return level than the other models, but also to bigger bias and variance in
the estimators, which is in conformity with the simulation results reported in Section 3.2
(see Figure 2).

5. Application to significant wave height. Significant wave height (Hs) is an im-
portant oceanographic parameter that is directly related to the energy of a sea state. It
was originally defined as the mean height of the one-third highest waves, and was thought
to give about the same value as an experienced seaman’s eyeball estimate of wave height.
With the development of instruments producing more accurate measurements of sea sur-
face elevation, Hs was redefined as four times the standard deviation of the sea surface
elevation on a certain space-time domain where the sea state conditions can be assumed
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to be stationary. The ratio of four was chosen to ensure that the two definitions roughly
coincide.

Offshore structures in particular must be designed to exceed a specific level of reliability,
which is typically expressed in terms of return periods of Hs. The three sources of data
(buoy, reanalysis and satellite) which can be used to estimate the extremal behavior of Hs
are introduced in Section 5.1. In Section 5.2, we focus on a specific location in which buoy
data are available and compare the results obtained with the three datasets. The buoy and
satellite data give similar results, whereas the reanalysis data lead to significantly different
results. Since the buoy is generally considered to be the reference, it suggests the use of
satellite data when no buoy data are available at the location of interest. This is further
discussed in Section 5.3 which shows maps of Hs return-periods in the North Atlantic based
on satellite data.

5.1. Hs data. The data used in this work come from the three sources briefly described
below.

• Reanalysis data. The ERA-interim dataset is a global reanalysis carried out by the
European Center for Medium-Range Weather Forecasts (ECMWF). It can be freely
downloaded and used for scientific purposes.1 In this work, we consider 21 years of
data, from 1989 until 2009.

• Buoy data. We focus on data from the buoy Brittany (station 621632), which is part
of the UK Met Office monitoring network. It is located at position (47.5 N, 8.5 W)
and provides hourly Hs data. In this work, we consider 10 years of data, from 1995
until 2005 (no data are available for 2000). Missing values represent about 7.7% of
the data and are generally associated with extreme events (as breakdowns generally
occur during storms), which is an important issue when implementing block maxima
or POT approaches.

• Satellite data. The observations consist of Hs measured at discrete locations along
one-dimensional tracks from seven different satellite altimeters which have been de-
ployed progressively since 1991. The dataset and related information can be freely
downloaded.3 In this study, we consider data from 1992 until 2007.

A typical example of data coverage over a 24-hour time window in the North Atlantic
Ocean can be seen in Figure 1. The reanalysis data are sampled over a regular 1.5 × 1.5-
degree grid at synoptic times every six hours starting at midnight, in contrast to the
irregular space-time sampling provided by the satellite altimeter. However, the reanalysis
data tend to underestimate Hs variability (see the next section) and they provide infor-
mation only at a synoptic scale, whereas satellite data give smaller-scale information as
well.

1http://data.ecmwf.int/data/
2http://www.ndbc.noaa.gov/station_page.php?station=62163
3ftp://ftp.ifremer.fr/ifremer/cersat/products/swath/altimeters/waves/
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Buoys provide accurate information on sea-state conditions but are sparsely distributed
over the ocean, and there is generally no buoy at the location of interest for a particular
application. In such a situation, it is important to be able to derive estimates of the extremal
behavior of Hs from the other sources of data introduced in this section, which are available
all over the oceans. These datasets have been considered in numerous studies interested in
the distributional properties of Hs (see e.g. Challenor, Foale and Webb (1990); Tournadre
and Ezraty (1990); Caires and Sterl (2005); Menéndez et al. (2008); Vinoth and Young
(2011)).

5.2. Single-site analysis. In this section, we focus on the location of the buoy Brittany
and illustrate how the methodology introduced in this work can be used to estimate the
extremal behavior of Hs at this location using the three datasets introduced in the previous
section.

Hs data are non-stationary with an important seasonal component. A classical approach
to treating seasonality in meteorological applications is to block the data by month and fit
a separate model each month, assuming that the different realizations of the same month
across years are independent realizations of a common stochastic process. We adopt this
approach herein, focusing on the month of December. Blocking the data by month leads
however to waste data and probably to the loss of important information on extreme
events. The development of non-stationary models which include seasonal and inter-annual
components to cover the whole time series would be a valuable topic for future research.

Reanalysis and satellite data provide observations that are not exactly at the location of
interest. Interpolation methods could be used, but may smooth the data (see Ailliot et al.
(2011)). We thus decided to consider:

• the reanalysis data available at location (48 N, 9 W), which is the closest grid point
to the buoy Brittany, and

• the time series obtained by retaining all of the closest observations to the buoy in the
satellite tracks which intersect a 3o × 3o box centered on the location of interest (see
Vinoth and Young (2011); Wimmer, Challenor and Retzler (2006)).

Figure 5 shows the resulting reanalysis time series, which exhibits an important inter-
annual variability particularly when we look at the extreme values. There were two severe
storms in which Hs exceeded 12 meters in 1989 and 2007, whereas for the other years
Hs was always below 9 meters. These two storms exert a strong influence on the results
obtained from fitting a model to extreme events. To facilitate comparison with the buoy
data (which are unavailable for 1989 and 2007) we also consider a subset of reanalysis data
for the years for which buoy data are available (see Figure 5). This dataset is referred to as
"restricted reanalysis data" whereas the full reanalysis time series is named "full reanalysis
data."

Figure 6 shows all of the data available for December 2005. The agreement between the
reanalysis and buoy time series is generally good, although the reanalysis data tend to be
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Figure 5. Reanalysis data for 21 months of December. The dotted vertical lines correspond to the beginning
of the monthly blocks (1st of December of each year) and the gray area corresponds to the years in which
both buoy and restricted reanalysis data are available.

smoother and to exibit lower extremes, as confirmed by the quantile-quantile (QQ) plots in
Figure 7, which show the buoy data to have higher quantiles than the restricted reanalysis
data. However this no longer holds true when we compare the quantiles of the buoy and full
reanalysis data because of the significant inter-annual variability (the months of December
when the buoy data are available correspond to years with generally low Hs). Finally,
Figure 7 shows good agreement between the empirical quantiles of the buoy and satellite
data which suggests that the satellite data may constitute a better source of information
on high Hs than the reanalysis data. Figure 6 presents the complex temporal sampling of
the satellite data with clusters of several observations and long gaps with no observation,
which prevents the use of the standard methods of the extreme value theory (i.e. block
maxima and POT).
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Figure 6. Comparison of the three time series for December 2005. Solid line: buoy data (location [47.5 N,
8.5 W]); dotted line: reanalysis data (location [48 N, 9 W]); plus points: closest satellite observation to the
buoy from each satellite track within a 3o box.

We first focus on buoy data since this dataset is generally considered to be the reference
for the other datasets (see e.g. Queffeulou (2004)). The first step is to choose a censoring
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Figure 7. QQ-plots of the empirical distribution of the buoy (x-axis) against the empirical distribution of
the full reanalysis data (y-axis on the left panel), the reduced reanalysis data (y-axis on the middle panel)
and the satellite data (y-axis on the right panel)

threshold u. This is a crucial step since u must be high enough to justify approximation
by probabilistic models derived from extreme value theory but not too high in order to
keep enough observations to fit the model. A common tool for selecting an appropriate
threshold is to fit the model for various thresholds and choose the lowest one that ensures
the estimates are almost stable for any higher threshold value. Indeed, from a theoretical
point of view, if the fitted censored Gaussian extreme value process is an appropriate model
for describing the behavior of the observed process above a threshold u, then it should also
be appropriate above a higher threshold. However, in practice, it is generally difficult to
come up with a decision using such diagnostic plots. Figure 8 shows that the estimate of
ν seems to stabilize only over the threshold u = 8 meters, which has been selected in the
sequel. This threshold roughly corresponds to the 99% quantile of the marginal distribution.

The parameter values are given in Table 2 together with 95% confidence intervals com-
puted using parametric bootstrap. The shape parameter ξ is slightly negative (bounded
tail) but the sampling distribution shown in Figure 9 indicates that the difference with zero
(Gumbel distribution) is not significant. This is in agreement with previous studies (see e.g.
Caires and Sterl (2005)) in which ξ is often fixed to be equal to zero. More generally, Figure
9 shows the empirical distribution of the parameters obtained using parametric bootstrap
and the strong relations between the estimates of the parameters µ, σ and ξ. High values
for position parameter µ are generally associated with high values for shape parameter ξ,
which is compensated for by low values for scale parameter σ. As a consequence, any error
on one parameter influences the value of the others, leading to wide confidence intervals
for µ, σ and ξ (see Table 2). Parameter ν is less correlated with the other parameters,
although there is a noticeable positive correlation with ξ. In practical applications, the end
user is generally interested in return levels, which are functions of the four parameters of
the model, and thus the errors made on individual parameters may compensate for one
another (see also Ribereau, Naveau and Guillou (2011)).
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Figure 8. Values of the MPL1E computed on buoy data as a function of threshold u (x-axis). From the left
to right panels: estimates of µ, σ, ξ and ν. The dashed lines correspond to 95% confidence intervals computed
using parametric bootstrap (results based on 1000 independent replications of the fitted model simulated with
the temporal sampling of the original data).

Figure 10 compares various important characteristics of the extremal behavior of the data
with those of the fitted model. The statistics computed from the data always lie in the 95%
prediction intervals for the fitted model and thus the model seems to be able to reproduce
both the marginal distribution and the dynamics of the observed time series above the
selected threshold. This gives us confidence in the results obtained when extrapolating the
extremal behavior of the data using the model. Using a lower threshold u leads to estimates
with smaller variances (see Figure 8), but the fitted models are no longer able to reproduce
the characteristics of the data above high levels (results not shown).

The censored Gaussian extreme value process was also fitted to the reanalysis and satel-
lite data. For these datasets, we selected a lower threshold u = 6 meters. This choice was
based on the same diagnostic plots as those previously discussed for buoy data and prac-
tical considerations (using the threshold u = 8 meters would lead to retaining fewer than
10 observations above the threshold for the satellite and restricted reanalysis data). The
parameter values of the models fitted on the buoy and satellite time series are broadly
similar (see Table 2) but exhibit important differences with those obtained on the two re-
analysis datasets. In particular, parameter ν, which describes the dynamics of the process,
is higher for the reanalysis datasets. This is in agreement with Figure 6, which shows that
the reanalysis data tend to be smoother than the buoy data. The value of ξ is close to
zero for the buoy and satellite data, whereas it is significantly negative (bounded tail) for
the restricted reanalysis data and slightly positive for the full reanalysis data, probably
because of the influence of the two severe storms in 1989 and 2007 (see Figure 5). These
results are also in agreement with Figure 7, which indicates that the full reanalysis dataset
has a heavier tail than the buoy dataset, whereas the restricted reanalysis dataset has a
lighter tail.
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5.3. Spatial analysis. Similar results were obtained at the other locations for which
buoy data were available. The buoy and satellite data generally lead to the identification of
similar models, whereas the reanalysis data identify more extremal dependence and longer
storms. If we believe the buoy data to be a good reference, then these results suggest that
satellites may provide more accurate information on the extremal behavior of Hs than
reanalysis data. In this context, the proposed methodology can be an efficient tool for
estimating the extremal properties of Hs at any ocean location for which satellite data are
available.

This is illustrated in Figure 11, which shows 20-year return levels in the North Atlantic
computed using satellite data. To reduce the variability of the estimates, we have fixed
the tail parameter ξ to be equal to zero which is a common assumption when fitting
extreme value models to Hs data (see e.g. Caires and Sterl (2005)) and is in agreement with
our previous single-site analysis. The map in Figure 11 exhibits a clear spatial structure,
coherent with that obtained using another method in Wimmer, Challenor and Retzler
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Figure 10. Comparison of the extremal behavior of the buoy data and fitted model. First panel: QQ-plot of
the marginal distribution of the buoy (x-axis) against the fitted model. Second panel: QQ-plot of the cluster
maxima of the buoy (x-axis) against the fitted model (y-axis). Third panel: mean number of up-crossings
per month as a function of the level (x-axis) for the buoy data (solid line) and fitted model (dashed line).
The dashed-dotted lines represent 95% prediction intervals computed by simulation (results based on 1000
independent replications of the fitted model simulated with the temporal sampling of the original data).

(2006). Further improvements may be obtained by constraining the parameters so that
they vary smoothly in space (see e.g. Cooley, Nychka and Naveau (2007); Reich and Shaby
(2012)), although such a sophisticated development is beyond the scope of this study.

6. Conclusion. In this paper, we propose an original method for analyzing the ex-
tremal behavior of univariate time series. Our approach is motivated by the need to analyze
environmental time series with missing values or irregular sampling. Tests performed on
classical time series models indicate that the proposed method also performs well on time
series with regular sampling compared to the other methods which have been proposed
in the literature. The parameters are estimated using a composite likelihood method, and
both theoretical and simulation results indicate that doing so leads to consistent estimates.
The results obtained on Hs data indicate that the proposed methodology can be used to
estimate the extremal behavior of Hs from satellite data and produce accurate climatology
of extreme Hs all over the ocean.

We believe our methodology to be sufficiently flexible to build extensions useful for
practical applications. For example, it could deal with other max-stable processes, include
non-stationary components or be extended to a space-time model. These possible extensions
will be the subject of future research.
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Table 2

Thresholds, parameter values and return levels for the different datasets. 95% confidence intervals
computed using parametric bootstrap are given in parentheses (results based on 1000 independent

replications of the fitted models simulated with the temporal samplings of the original data).

Full reanalysis Restricted reanalysis Buoy Satellite

Threshold

u 6 6 8 6
Nb obs > u 182 74 59 48

Parameter values

µ 4.20 (3.20,4.66) 2.19 (-6.85,3.80) 5.12 (-7.3,6.67) 3.80 (2.23,4.47)
σ 0.69 (0.41,1.31) 1.70 (0.81,8.83) 0.50 (0.11,7.23) 1.33 (0.86,2.69)
ξ 0.14 (-0.10,0.3) -0.17 (-0.6,-0.02) 0.07 (-0.40,0.32) 0.01 (-0.25,0.17)
ν 0.13 (0.10,0.17) 0.12 (0.07,0.18) 1e-3 (8e-4,2e-3) 0.05 (0.03,0.08)

Return levels

q10 10.1 (8.5,12.3) 8.2 (7.3,9.1) 10.4 (9.3,12.2) 12.1 (10.7,14.6)
q20 11.0 (9.0,14.3) 8.5 (7.5,9.6) 10.8 (9.4,13.8) 12.9 (11.1,16.4)
q50 12.5 (9.5,17.9) 8.8 (7.6,10.1) 11.4 (9.6,16.0) 14.0 (11.5,19.1)
q100 13.6 (9.9,21.6) 9.0 (7.7,10.6) 11.8 (9.7,18.8) 14.7 (11.7,21.6)
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Figure 11. Map of 20-year return levels in the North Atlantic Ocean. A 3o-wide moving window was used
to build the time series at the different locations by retaining the value closest to the center for each satellite
track crossing the window. A variable threshold corresponding to the 95% quantile was used.

SUPPLEMENTARY MATERIAL

Supplementary material: Proof of the consistency of the MPL1E estimates.
(doi: COMPLETED BY THE TYPESETTER; .pdf). In the attached supplemental mate-
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rial (Raillard, Ailliot and Yao (2013)), we prove the consistency of the MPL1E estimator
in an idealized situation with no censoring and known marginal distributions.
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1. Consistency of MPL1 estimator. In this supplementary material, we prove the
following theorem.

Theorem 1.1. Let {Zt} be a Gaussian extreme value process with unit Fréchet margins,
as defined in the paper, and dependence parameter ν∗ ∈ Θ = [ν−, ν+] with 0 < ν− < ν+.
Assume that the process is observed at regular time {1...n}, and denote

Ln(ν) =
n−1∏
i=1

∂2FZ

∂z1∂z2
(Zi, Zi+1; ν),

the pairwise likelihood function, with Fz defined by

FZ(zt1 , zt2 ; ν) = P(Zt1 ≤ zt1 , Zt2 ≤ zt2) = exp [−V (zt1 , zt2 ; ν)] ,

and

(1) V (zt1 , zt2 ; ν) = 1
zt1

Φ
(

a

2
+ 1

a
log zt2

zt1

)
+ 1

zt2

Φ
(

a

2
+ 1

a
log zt1

zt2

)
.

We define last ν̂n = argmax Ln(ν) as the corresponding estimator of ν∗. Then, ν̂n is a
strongly consistent estimator of ν∗, i.e.

lim
n→∞

ν̂n = ν∗a.s.

∗Corresponding Author (E-mail: nicolas.raillard@gmail.com)
1
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A Gaussian extremal process {Zt} is a moving maxima process as defined in Stoev
(2008). Using the results given in that paper, we deduce that {Zt} is a stationary unit
Fréchet process, continuous in probability, mixing, and hence ergodic. It allows us to use the
following theorem, which is a straightforward generalization of Theorem 1.12 in Pfanzagl
(1969):

Theorem 1.2. Let {Zi}i=1,...,n be a stationary and ergodic process, whose distribution
depends on a parameter ν∗ ∈ Θ, where Θ is a compact subset of R, and let Qn be a contrast
function defined as

Qn(ν) = 1
n

n−1∑
i=1

f(Zi, Zi+1; ν),

where f is a measurable function with real values and continuous in ν. Suppose that:

(a) E infν∈Θ f(Z1, Z2; ν) > −∞;
(b) ν 7→ Ef(Z1, Z2; ν) has a unique finite minimum at ν∗.

Then, the minimum contrast estimator ν̂n = argminν∈ΘQn(ν) is strongly consistent:

lim
n→∞

ν̂n = ν∗ a.s.

We use this theorem with

f(Z1, Z2; ν) = − log p(Z1, Z2; ν),

where p(z1, z2; ν) denotes the joint pdf of (Z1, Z2), Θ = (ν−, ν+) with 0 < ν− < ν+. An
explicit expression for f is given in Section 1.1. Properties (1) and (2) of Theorem 1.2 are
verified in Sections 1.2 and 1.3, respectively.

1.1. Expression of the constrast. We have

p(Z1, Z2; ν) = ∂2

∂z1∂z2
FZ(z1, z2; ν),

with FZ(z1, z2; ν) = exp((−V (z1, z2; ν)) and V defined in (1) and thus

f(Z1, Z2; ν) = V (z1, z2; ν) − log
(

∂V

∂z1
(z1, z2) ∂V

∂z2
(z1, z2) + ∂2V

∂z1∂z2
(z1, z2)

)
.
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Function V and its derivatives satisfy

V (z1, z2; ν) =
Φ(a/2 + 1/a log z2

z1
)

z1
+

Φ(a/2 + 1/a log z1
z2

)
z2

= Φ(w)
z1

+ Φ(v)
z2

,

∂V

∂z1
(z1, z2; ν) = −Φ(w)

z2
1

− φ(w)
az2

1
+ φ(v)

az1z2
,

∂V

∂z2
(z1, z2; ν) = −Φ(v)

z2
2

− φ(v)
az2

2
+ φ(w)

az1z2
,

∂2V

∂z1∂z2
(z1, z2; ν) = − vφ(w)

a2z2
1z2

− wφ(v)
a2z1z2

2
,

with

w = a

2
+ 1

a
log z2

z1
,

v = a − w = a

2
+ 1

a
log z1

z2
,

φ(w) = 1√
2π

e−a2/8e− log2(z1/z2)
2a2

√
z1
z2

,

φ(v) = 1√
2π

e−a2/8e− log2(z1/z2)
2a2

√
z2
z1

.

Taking into account that φ(w)
az2

1
− φ(v)

az1z2
= 0, the following simplified expressions for the

derivatives of V are obtained:
∂V

∂z1
(z1, z2) = −Φ(w)

z2
1

,

∂V

∂z2
(z1, z2) = −Φ(v)

z2
2

,

∂2V

∂z1∂z2
(z1, z2) = − φ(w)

az2
1z2

= − φ(v)
az2

2z1
=

e−a2/8 exp
(

log2 z2
z1

2a2

)
(z1z2)3/2 .

Finally, we deduce that

(2) f(z1, z2; ν) = V (z1, z2; ν) − log
[Φ(w)Φ(v)

a2z1z2
+ φ(w)

az2
1z2

]
.

1.2. Lower bound (a). We have

inf
ν

{f(z1, z2; ν)} ≥ inf
ν

{V (z1, z2; ν)} + inf
ν

{
− log

[Φ(w)Φ(v)
a2z1z2

+ φ(w)
az2

1z2

]}
,

and each term of the right-hand side of this expression is treated separately below.
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• Term V (z1, z2; ν).
V can be bounded using the Fréchet bound (Fréchet (1951)) ,

P (Z1 ≤ z1)+P (Z2 ≤ z2)−1 ≤ P(Z1 ≤ z1, Z2 ≤ z2) ≤ min {P (Z1 ≤ z1), P (Z2 ≤ z2)) ,

which implies that

min
(

− 1
z1

, − 1
z2

)
≤ V (z1, z2; ν) ≤ exp

(
− 1

z1

)
+ exp

( 1
z2

)
,

and thus
inf
ν

{V (z1, z2; ν)} ≥ min
(

− 1
z1

, − 1
z2

)
.

The right-hand term of the last expression has a finite expectation since 1
Z1

and 1
Z2

have unit exponential distributions.
• Term − log

[
Φ(w)Φ(v)

a2z1z2
+ φ(w)

az2
1z2

]
.

We have

− log
[Φ(w)Φ(v)

z1z2
ν2 + φ(w)

z2
1z2

ν

]
≥ 1 − Φ(w)Φ(v)

z1z2
ν2 + φ(w)

z2
1z2

ν

≥ 1 − ν2

z1z2

≥ 1 −
ν2

+
z1z2

,

and Cauchy’s inequality implies that the right-hand term of the last expression has
a finite expectation since

E
[ 1

Z1Z2

]
≤
√
E[1/Z2

1 ]E[1/Z2
2 ] = 1.

1.3. Identifiability (b). We must now prove that ν 7→ Ef(Z1, Z2; ν) has a unique finite
minimum at ν∗ on Θ = [ν−ν+]. To this end we denote by Pν the distribution with density
function p(z1, z2; ν). Then,

Eν∗

[
− log p(Z1, Z2; ν)

p(Z1, Z2; ν∗)

]
= K(Pν∗ , Pν),

is the Kullback-Leibler divergence between Pν∗ and Pν . We have K ≥ 0 and K = 0 iff
Pν = Pν∗ . As the density functions are positive and continuous in (z1, z2), this is equivalent



5

to p(z1, z2; ν∗) = p(z1, z2; ν) for all (z1, z2). In particular, K = 0 implies that for all z1 =
z2 = z > 0, we have

exp
[
−2

z
Φ
( 1

2ν

)]Φ
(

1
2ν

)2

z2 ν2 +
φ
(

1
2ν

)
z3 ν

 = exp
[
−2

z
Φ
( 1

2ν∗

)]Φ
(

1
2ν∗

)2

z2 ν∗2 +
φ
(

1
2ν∗

)
z3 ν∗

 .

Letting z → 0 while z > 0 we can see that the exponents in the exponential function must
be equal, i.e.

Φ
(1

ν

)
= Φ

( 1
ν∗

)
.

Henc,e ν = ν∗. The proof is complete.
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